Evolving cross sections of Ford spheres

Illustrating Math show-and-ask

Jim Propp (jamespropp@gmail.com)

October 10, 2025

These slides are at https://faculty.uml.edu/jpropp/ford-spheres.pdf.

"lf . . .

"... you've seen one countable dense subset of the line, you've seen them all."

"lf . . .

"... you've seen one countable dense subset of the line, you've seen them all."

.

"lf . . .

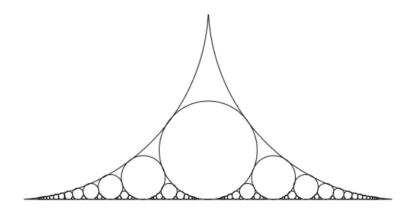
"... you've seen one countable dense subset of the line, you've seen them all."

7

Not true! There can be geometry hiding here that comes into view if we give each element of the countable dense set $S \subseteq \mathbb{R}$ some real estate in the half-plane $\{(x,y) \mid y \geq 0\} \subseteq \mathbb{R}^2$, so that S is the limit set of non-overlapping regions in the half-plane.

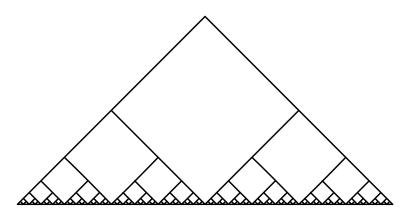
Example: Q

The set of rational numbers is the limit set of the Ford circles.



Example: $\mathbb{Z}[1/2]$

The set of dyadic rationals (rationals whose denominators are powers of 2) is the limit set of the "Ford squares".

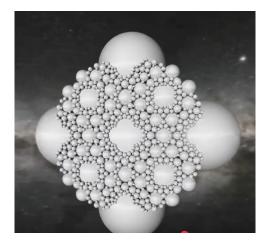


Countable dense subsets of the complex plane

Likewise, even though the set of Gaussian rationals $\mathbb{Q}(i) = \{a+bi \mid a,b \in \mathbb{Q}\}$ and the set of Eisenstein rationals $\mathbb{Q}(\omega) = \{a+b\omega \mid a,b \in \mathbb{Q}\}$ (with $\omega = \frac{-1+\sqrt{-3}}{2}$) are **both countable dense subsets** of the complex plane,

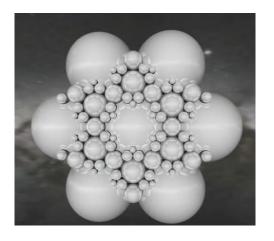
they are the limit sets of geometrically **different** fractal sphere-arrangements in 3-space ("Ford spheres" as described by Sam Northshield and others, and depicted in Sam Wells and Aidan Donahue's video "What are Ford spheres?").

Ford spheres for $\mathbb{Q}(i)$ (from the video)



(the five big spheres correspond to 0 and the 4th roots of 1)

Ford spheres for $\mathbb{Q}(\omega)$ (from the video)



(the seven big spheres correspond to 0 and the 6th roots of 1)

Take $\zeta = i$ or $\zeta = \omega$.

Take
$$\zeta = i$$
 or $\zeta = \omega$.

Identify the complex plane with the plane $\{(x,y,z) \mid z=0\}$ in \mathbb{R}^3 , and look at the Ford spheres in the upper half space $\{(x,y,z) \mid z \geq 0\}$ whose intersection with the limit-plane z=0 is $\mathbb{Q}(\zeta)$.

Take
$$\zeta = i$$
 or $\zeta = \omega$.

Identify the complex plane with the plane $\{(x,y,z) \mid z=0\}$ in \mathbb{R}^3 , and look at the Ford spheres in the upper half space $\{(x,y,z) \mid z \geq 0\}$ whose intersection with the limit-plane z=0 is $\mathbb{Q}(\zeta)$.

Let B_{ζ} be the union of the Ford spheres together with their interiors — a union of closed balls.

Take
$$\zeta = i$$
 or $\zeta = \omega$.

Identify the complex plane with the plane $\{(x,y,z) \mid z=0\}$ in \mathbb{R}^3 , and look at the Ford spheres in the upper half space $\{(x,y,z) \mid z \geq 0\}$ whose intersection with the limit-plane z=0 is $\mathbb{Q}(\zeta)$.

Let B_{ζ} be the union of the Ford spheres together with their interiors — a union of closed balls.

Let's try to visualize the three-dimensional fractal set B_{ζ} using two-dimensional cross-sections that change over time, as the cutting-plane z=h approaches the limit-plane z=0.

The movie(s) I want to see

For h > 0 let $B_{\zeta}(h)$ be the intersection of the closed set B_{ζ} with the cutting-plane z = h — a union of closed disks (a few large disks when h is big, many small disks when h is small).

The movie(s) I want to see

For h > 0 let $B_{\zeta}(h)$ be the intersection of the closed set B_{ζ} with the cutting-plane z = h — a union of closed disks (a few large disks when h is big, many small disks when h is small).

As h approaches 0, $B_{\zeta}(h)$ approaches $\mathbb{Q}(\zeta)$ in the sense of Hausdorff distance.

The movie(s) I want to see

For h > 0 let $B_{\zeta}(h)$ be the intersection of the closed set B_{ζ} with the cutting-plane z = h — a union of closed disks (a few large disks when h is big, many small disks when h is small).

As h approaches $\mathbb{Q}(\zeta)$ in the sense of Hausdorff distance.

I want to watch it happen (both without and with continuous zooming).

Disclaimer

I don't do research in this area.

I don't at this time want to learn how to create animations.

I just think these animations would be fun to watch.

And perhaps they would be of independent interest for math outreach, as cool examples of what it means for a countable set to be dense ("How can a set be all over the place but hardly anywhere?") or just as fan-service for fractal-philes.

Thanks! — jamespropp@gmail.com

These slides are at https://faculty.uml.edu/jpropp/ford-spheres.pdf.