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http://faculty.uml.edu/jpropp/kenyon.pdf


A non-paper by Rick
The arXiv preprint by Random trimer tilings by Ghosh and
Dhar cites the following paper:

There is no paper by Rick with that title.

He wrote an “Ann. Prob. 28, 759 (2000)” paper, but it’s
about conformal invariance of the dimer model.

Rick tells me that no paper of his proves that result about
trimers, but that it can be derived from the results in the 1992
paper Tiling a polygon with rectangles by Kenyon and
Kenyon.
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https://arxiv.org/pdf/cond-mat/0609322
https://www.ibr.cs.tu-bs.de/users/fekete/oldhp/Sem06/kenyon.pdf


Kenyon and Kenyon, 1992
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Kenyon and Kenyon, 1992

(referring to Conway’s Tiling Groups by Thurston (1990))
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https://www.cimat.mx/ciencia_para_jovenes/pensamiento_matematico/thurston.pdf


Thurston, 1990
Thurston gives a necessary (not sufficient) criterion for
determining when a plane region R can be tiled by dominos.
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Thurston, 1990
We two-color the grid of squares.
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Thurston, 1990

We assign an integer value h(v) to some vertex v on the
boundary π of R (the choice of v and the choice of h(v) do
not matter) and we go around the boundary of R , extending
h(. . . ) to each new vertex we encounter:

We call h(·) a height-function.
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Thurston, 1990
Applying this to our example:
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Thurston, 1990
To see why this works, suppose there were a tiling of R :
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Thurston, 1990
Extend h(·) to R one tile at a time:
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Thurston, 1990
Extend h(·) to R one tile at a time:
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Thurston, 1990

The height function associated with a domino tiling is locally
consistent because each tile is color-balanced (going around a
tile causes the height to change by 3− 3 = 0) and it’s globally
consistent because of local consistency combined with the
hypothesis that the region is simply-connected.
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Thurston, 1990
In this way, the domino tilings of R correspond to the
height-functions on R .

The map from tilings to height-functions is many-to-one, but
can be made unique if we fix the coloring and fix the height of
a designated boundary vertex.
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Thurston, 1990
The height function retains all the information in the tiling:
two vertices p, q that are adjacent in the underlying
cell-complex of squares are joined by an edge in the tiling if
and only if the corresponding height function h has the
property that |h(p)− h(q)| is 1.
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Converting one tiling into another
Thurston was aware that his height-functions allow one to
prove that for any two domino-tilings t1 and t2 of a
simply-connected plane region, t1 can be converted into t2
through a succession of “flips”, each of which retiles a 2-by-2
square (replacing horizontal dominoes by vertical dominoes or
vice versa).

The first published statement of this result was in the 1995
paper Spaces of Domino Tilings by Saldanha, Tomei, Casarin,
and Romualdo.
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https://link.springer.com/article/10.1007/BF02570703


Saldanha et al., 1995

T is the “space” (i.e., graph) of tilings whose vertices
correspond to tilings and whose edges correspond to flips.
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Saldanha et al., 1995

. . .

. . .

Here t1 and t2 are tilings of a simply-connected region,
d(t1, t2) is the flip-distance between them, A∗ is the set of
vertices of the square cells that underlie both tilings, and θ1

and θ2 are height functions associated with t1 and t2.
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Saldanha et al., 1995

Recall that height goes up by 1 (resp. down by 1) when you
travel along a tile-edge with a shaded (resp. unshaded) square
to your left.

Check the formula for d(t1, t2):

1
4
(
|0− 4| + |1− 5| + |0− 4|

)
= 3
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Saldanha et al., 1995

Notice that if t1 and t2 are two domino tilings that are related
by a single flip,

1
4

∑
p∈A∗

|θ1(p)− θ2(p)| = 1

because θ1(p)− θ2(p) = ±4 if p is the center of the 2-by-2
square that has been flipped and θ1(p)− θ2(p) = 0 otherwise.
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Saldanha et al., 1995

This equation implies, by way of the triangle inequality, that
for general t1 and t2,

d(t1, t2) ≥
1
4

∑
p∈A∗

|θ1(p)− θ2(p)|

The real work is showing that equality holds.

Once that work is done, we obtain an interpretation of the
individual terms of the sum: 1

4 |θ1(p)− θ2(p)| equals the
number of flips that get performed on the 2-by-2 square
centered at p along every geodesic in T from t1 to t2.
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Saldanha et al., 1995
Saldanha et al. consider extensions to other sorts of regions,
but for now, let’s just note that if R is not a simply-connected
subset of the plane, the height-function may not even be
well-defined.
E.g., consider a 3-by-3 square with a 1-by-1 hole in the middle.
The region can be tiled (and has exactly two tilings, not
related by a flip of the kind we’re considering).
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Saldanha et al., 1995

Any putative height-function would have to increase by 4
along the outer boundary, which is impossible.
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Propp, (1993) 2025
In the 1990s, I showed that the natural partial order on
height-functions makes the space of domino-tilings of a
simply-connected region a distributive lattice.
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Propp, (1993) 2025
Many other combinatorial models have the same property,
such as tilings of hexagons by lozenges (two equilateral
triangles that share an edge).
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Thurston, 1990
Shade all left-pointing triangles. Then height goes up (resp.
down) by 1 when you travel along a tile-edge with a shaded
(resp. unshaded) triangle to your left.

The height function is globally consistent and determines the
tiling: an edge with endpoints p, q is a tile-edge if and only if
|θ(p)− θ(q)| = 1.

Saldanha showed that for lozenge tilings of simply-connected
regions,

d(t1, t2) =
1
3

∑
p

|θ1(p)− θ2(p)|
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Ribbon tilings

Igor Pak and others extended the Conway-Lagarias-Thurston
approach to the study of ribbon tilings, e.g., 4-ribbon tilings:

See On tilings by ribbon tetrominoes by Muchnik and Pak
(1999), Ribbon tile invariants by Pak (2000), and Ribbon tile
invariants from the signed area by Moore and Pak (2002).
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https://www.math.ucla.edu/~pak/papers/MP.pdf
https://www.math.ucla.edu/~pak/papers/tile.pdf
https://www.math.ucla.edu/~pak/papers/MoorePak.pdf
https://www.math.ucla.edu/~pak/papers/MoorePak.pdf


Ribbon tilings

In his 2002 article Ribbon tilings and multidimensional height
functions , Scott Sheffield used height functions to resolve a
conjecture of Pak’s, showing that for any two k-ribbon tilings
t1, t2 of a simply-connected region, t2 can be obtained from t1
via a sequence of 2-flips like this:
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https://www.ams.org/journals/tran/2002-354-12/S0002-9947-02-02981-1/S0002-9947-02-02981-1.pdf
https://www.ams.org/journals/tran/2002-354-12/S0002-9947-02-02981-1/S0002-9947-02-02981-1.pdf


Conway and Lagarias, 1990

All of this work was directly or indirectly inspired by the 1990
article of Tiling with polyominoes and combinatorial group
theory by Conway and Lagarias. As Saldanha writes:

Conway and Lagarias’ work concerns tiles made of three
hexagons (unlike dominoes which are made of two squares).
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https://www.sciencedirect.com/science/article/pii/0097316590900574
https://www.sciencedirect.com/science/article/pii/0097316590900574


Conway and Lagarias, 1990
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Conway and Lagarias

Theorem (C & L):
(1) Tn can be tied by T2’s precisely when n is 0, 2, 9, or 11
(mod 12).
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Conway and Lagarias

Theorem (C & L):
(2) Tn can be tied by L3’s precisely when n is 0 (i.e., never,
outside of the trivial case).
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Conway and Lagarias
But what if we allow both kinds of tiles?
Then as long n is congruent to 0 or 2 mod 3 (so that the
number of hexagons is a multiple of 3), Tn can be tiled by a
mix of T2 tiles and L3 tiles.

34 / 61



An old (?) conjecture

Conjecture: For any two T2-and-L3 tilings t1 and t2 of a
simply-connected region, t1 can be converted into t2 through a
succession of moves of the following two kinds:

35 / 61



An old (?) conjecture

I’m not sure who first conjectured this, but my best guess is
that it was me, circa 2000 (in emails).

In any case, Colin Defant, Leigh Foster, Rupert Li, Hanna
Mularczyk, Cris Moore, Benjamin Young and I are working
toward a proof.
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New terminology

The T2 and L3 tiles are two of the three kinds of “trihexes”. I
rebranded them as the stone, the bone, and the phone.
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New terminology
One reason to expect the stone and bone tiles to be more
tractable than the phone tile is that, if one three-colors the
grid of hexagons (Orange, Green, Purple) so that adjacent
hexagons are different color, then a stone or bone contains one
hexagon of each color while a phone does not. So let’s follow
Conway and Lagarias and ban phones.
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Connection to ribbon tilings

If we disallow one of the three orientations of bone tiles, then
we’re in the realm of ribbon tiles, and Sheffield’s result applies.
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Connection to ribbon tilings

But if we allow all five (translationally-distinct) prototiles, the
connection to ribbon tiles breaks down.
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The correct definition of height functions?

A natural kind of height function for stones-and-bones tilings
is given by a triple of integers that goes up by ei − ej when
you travel along a tile-edge with color i to your left and color j
to your right (with e1 = (1, 0, 0) etc.).

θ(q) = θ(p) + (1, 0,−1)
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Stones-and-bones height functions

This height function is locally consistent because each tile is
color-balanced, and globally consistent because of local
consistency and simply-connectedness of the region.

It also retains all the information in the tiling: two vertices p, q
that are adjacent in the underlying cell-complex of hexagons
are joined by an edge in the tiling t if and only if the
corresponding height function θ has the property that
||θ(p)− θ(q)||1 is 2, where || · ||1 is the L1-norm.
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Consistency
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Consistency
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Consistency
We assign each vertex in the interior of a stone a height equal
to the average of the heights of its three neighbors.
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Stones-and-bones height functions
All triples (a, b, c) that occur as heights of vertices have the
same value of a + b + c , so our three-dimensional heights are
really two-dimensional.

It’s conceptually convenient to take a + b + c = 0 but it’s
typographically preferable to choose heights so that all
integers that occur are non-negative (as in the figures).

It can be easily checked that if t1 and t2 are related by a Type
I or Type II move,

∑
p ||θ1(p)− θ2(p)||1 = 36.

So for general t1 and t2, by the triangle inequality, the
(conceivably infinite!) moves-distance between the two tilings
is bounded below by the sum

1
36

∑
p

||θ1(p)− θ2(p)||1
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A new, stronger conjecture

Conjecture (2024): For stones-and-bones tilings t1, t2 of a
simply-connected region, the moves-distance d(t1, t2) is given
by the formula

d(t1, t2) =
1
36

∑
p

||θ1(p)− θ2(p)||1

That is, the height-function bound on moves-distance is tight.

Ample experimental evidence supports the conjecture.
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Six acyclic digraphs

Based on what each Type I and Type II move does to the
height-triple, we assign each move a color as well as a
direction. E.g., a “Green-ifying” move increases the Green
component of the height-triple at the expense of the Orange
and Purple components, while a “de-Green-ifying” move
increases the Orange and Purple components at the expense
of the Green component. Likewise for the other colors.
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Six acyclic digraphs
Each edge of the moves-graph gets an orientation and a color.
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Six acyclic digraphs

Define six sets of directed edges O+, O−, G+, G−, P+, and
P− as follows:

O+ is the set of Orange-ifying directed edges, O− is the set of
de-Orange-ifying directed edges, etc.

Let O+G+P− be the directed graph associated with the union
of O+, G+, and P−, and likewise for the other choices of signs.

It’s easy to see that O+G+P+ and O−G−P− have cycles; it’s
not much harder to use height-functions to show that the
other six graphs are acyclic.
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Six acyclic digraphs
E.g., here’s O+G+P−:
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Six acyclic digraphs

Conjecture (2025): For any simply-connected region, the six
aforementioned acyclic digraphs are confluent. That is, there
is only one sink-vertex, and every vertex has a path to that
vertex.

Like the 2024 conjecture, the 2025 conjecture would imply the
“old” conjecture (connectedness of the moves graph).
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A simpler height function?

We’ve also looked at replacing the height-triple by just one of
its three components.

Surprisingly, this stripped-down height function provably
determines the tiling.

This height function is not however a height-function of the
classical kind; in particular, these height-functions do not form
a distributive lattice.

Here’s the “Orange-ness” poset from the previous example:
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A simpler height function?

Might these posets always be lattices?
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The tileability problem

Thurston used height functions to give a linear time algorithm
for determining whether a region could or could not be tiled by
dominoes or lozenges (here “linear” means “linear in area”).

Can we do something similar for stones-and-bones tilings?
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Random stones-and-bones tilings

David desJardins’ highly efficient TilingCount program
(described in his talk “Counting Tilings by Enlightened Brute
Force”; here are links to his slides and video) can be used to
compute N(R), where R is any not-too-big simply-connected
region in the hexagonal grid and N(R) is the number of
stones-and-bones tilings of R .

Consulted twice, it can compute the ratio N(R\t)/N(R)
where t is a specific tile in R ; this ratio is the probability that
a uniformly random tiling of R contains the tile t.
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https://dept.math.lsa.umich.edu/~speyer/JIM/abstracts.html


Random stones-and-bones tilings
Here for instance is a specific region R and a specific tile at
the bottom of R that’s present in over 99% of the tilings of R .

There appear to be frozen regions in three of the corners.
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Random stones-and-bones tilings

The right kind of height function might enable us to efficiently
sample from the uniform distribution on stones-and-bones
tilings of large (simply-connected) regions via some form of
Coupling-From-The-Past, as we can do for domino tilings.

This might lead us to discover an analogue of the arctic circle
theorem for the sorts of region I call benzels, introduced to
serve as an analogue of Aztec diamonds in the
stones-and-bones setting.

The page http://faculty.uml.edu/jpropp/benzels.html has
many relevant links, including slides and videos from earlier
talks I’ve given about stones-and-bones tilings.

58 / 61

http://faculty.uml.edu/jpropp/benzels.html


Connection to dimer model on square grid
I just realized this week that the dimer model on a square grid
“lives inside” this trimer model.

For instance, the stones and bones tilings of this region reduce
to domino tilings of the Aztec diamond of order 3.

59 / 61



The second-to-last slide of this talk

All slides from my talk are available at

http://faculty.uml.edu/jpropp/kenyon.pdf

Thanks to the organizers for this wonderful conference!
And...

60 / 61

http://faculty.uml.edu/jpropp/kenyon.pdf


61 / 61


