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This talk describes joint work with Dy-
lan Thurston and with (former or cur-
rent) Boston-area undergraduates Gabriel
Carroll, Andy Itsara, Ian Le, Gregg Musiker,
Gregory Price, and Rui Viana, under the
auspices of REACH (Research Expe-
riences in Algebraic Combinatorics at
Harvard). For details of proofs, see pre-
prints on-line atwww.math.wisc.edu
/∼propp/reach .

1



I. Triangulations and frieze patterns

To every triangulationT of an n-gon
with vertices cyclically labelled 1 through
n, Conway and Coxeter associate an(n−
1)-rowed periodic array of numbers called
afrieze pattern determined by the num-
bersa1,a2, . . . ,an, whereak is the num-
ber of triangles inT incident with ver-
tex k.

(See J. H. Conway and H. S. M. Cox-
eter, “Triangulated Polygons and Frieze
Patterns,”Math. Gaz. 57 (1973), 87–
94 and J. H. Conway and R. K. Guy,
in The Book of Numbers, New York :
Springer-Verlag (1996), 75–76 and 96–
97.)
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E.g., the triangulation

6 5

4

32

1

of the 6-gon determines the 5-row frieze
pattern

... 1 1 1 1 1 1 1 1 1 ...

... 1 3 2 1 3 2 1 3 2 ...

... 1 2 5 1 2 5 1 2 5 ...

... 1 3 2 1 3 2 1 3 2 ...

... 1 1 1 1 1 1 1 1 1 ...
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Rules for constructing frieze patterns:

1. The top row is

. . . ,1,1,1, . . .

2. The second row (offset from the first)
is

. . . ,a1,a2, . . . ,an,a1, . . .

(with periodn).

3. Each succeeding row (offset from
the one before) is determined by the re-
currence

A
B C : D = (BC - 1) / A
D
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Facts:

• Every entry in rows 1 throughn−1
is non-zero (so that the recurrence

D = (BC-1)/A

never involves division by 0).

• Each of the entries in the array is a
positive integer.

• For 1≤ m ≤ n−1, then−mth row
is the same as themth row, shifted.
(That is, the array as a whole is in-
variant under a glide reflection.)

5



Question: What do these positive inte-
gers count? (And why does the array
possess this symmetry?)

E.g., in the picture

what are there 5 of?
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Answer: Perfect matchings of the graph
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General construction:

Put a black vertex at each of then ver-
tices of then-gon.
Put a white vertex in the interior of each
of the n− 2 triangles in the triangula-
tion T .
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For each of then−2 triangles, connect
the black vertices of the triangle to the
white vertex inside the triangle. This
gives a connected planar bipartite graph
with n black vertices andn− 2 white
vertices.
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If we remove 2 of the black vertices
(say verticesi and j), we get a graph
with equally many black and white ver-
tices. LetCi, j be the number of perfect
matchings of this graph.
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Theorem (Gabriel Carroll and Gregory
Price): The Conway-Coxeter frieze pat-
tern is just

. . . C1,2 C2,3 C3,4 C4,5 . . .

. . . C1,3 C2,4 C3,5 . . .

. . . Cn,3 C1,4 C2,5 C3,6 . . .

. . . Cn,4 C1,5 C2,6 . . .
... ... ... ...

(interpret all subscripts modn).

Note: This claim explains the glide-reflection
symmetry.
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Proof of theorem:

1. Ci,i+1 = 1.
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(proof of theorem, continued)

2. Ci−1,i+1 = ai.
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(proof of theorem, continued)

3. Ci, jCi−1, j+1 = Ci−1, jCi, j+1−1.

Move the 1 to the left-hand side, and
write the equation in the form
Ci, jCi−1, j+1+Ci−1,iC j, j+1 =Ci−1, jCi, j+1

j +1

j

i

i−1
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(proof of theorem, concluded)

This is a consequence of a lemma due
to Eric Kuo (see Theorem 2.5 in “Ap-
plications of graphical condensation for
enumerating matchings and tilings,”
math.CO/0304090):

If a bipartite planar graphG has 2 more
black vertices than white vertices, and
black verticesa,b,c,d lie in cyclic or-
der on some face ofG, then

M(a,c)M(b,d) =

M(a,b)M(c,d)+M(a,d)M(b,c),

where M(x,y) denotes the number of
perfect matchings of the graph obtained
from G by deleting verticesx andy and
all incident edges.
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Note that if we replaceCi, j by the dis-
tanceDi, j between pointsi and j, and
all the points on then-gon lie on a cir-
cle, we get the three-term quadratic re-
lation

Di, j Di−1, j+1+Di−1,i D j−1, j = Di−1, j Di, j+1

which is a consequence of Ptolemy’s
theorem on the lengths of the sides and
diagonals of an inscriptible quadrilat-
eral.
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In fact, the Carroll-Price theorem does
have geometric content, but not for Eu-
clidean geometry.

Dylan Thurston pointed out that this re-
lation can be understood in terms of the
topology and geometry of the hyperbolic
manifold with boundary obtained from
the closed disk by removingn points on
the boundary (where we require then
boundary components to be geodesics,
and we require the metric in the interior
to have constant curvature−1).
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A version of this construction that in-
cludes edge-weights gives the cluster al-
gebras of typeA introduced by Sergey
Fomin and Andrei Zelevinsky. (See sec-
tion 3.5 of Fomin and Zelevinsky, “Y -
systems and generalized associahedra”,
hep-th/0111053.)
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II. The Stern-Brocot tree and super-
bases of Z2, or, The topography of Farey-
land

Themediant of two fractionsa
b, c

d , each
expressed in lowest terms, is the frac-
tion a+c

b+d.

Aside from 0
1 = 0 and1

0 = ∞ (included
by special allowance), we require nu-
merators and denominators to be posi-
tive.
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In the Stern-Brocot process, we start
with the row

0
1

<
1
0

and repeatedly insert mediants between
every pair of adjacent fractions in the
current row, to get the next row:

0
1

<
1
0

0
1

<
1
1

<
1
0

0
1

<
1
2

<
1
1

<
2
1

<
1
0

0
1

<
1
3

<
1
2

<
2
3

<
1
1

< .. .

0
1

<
1
4

<
1
3

<
2
5

<
1
2

<
3
5

<
2
3

<
3
4

<
1
1

< .. .
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It’s natural to write these numbers in a
“tree” with two roots.

But it’s even more natural to put pairs
of fractions at the nodes and just have
one root(0

1,
1
0), where the two children

of (a
b,

c
d) are(a

b,
a+c
b+d) and(a+c

b+d ,
c
d).

(0
1,

1
2) (1

2,
1
1) (1

1,
2
1) (2

1,
1
0)

(0
1,

1
1) (1

1,
1
0)

(0
1,

1
0)

. . . . . . . . . . . .
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We can represent each pair(a
b,

c
d) by the

two-by-two matrix
(

c a
d b

)

(note the switch!) whose two descen-
dants are then

(

c a
d b

)(

1 0
1 1

)

=

(

a+ c a
b+d b

)

and
(

c a
d b

)(

1 1
0 1

)

=

(

c a+ c
d b+d

)

.

Every 2-by-2 matrix with non-negative
integer entries and determinant+1 arises
in a unique fashion from this process.
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We can think of the columns of each
matrix as giving an ordered base (usu-
ally called a basis) for a two-dimensional
lattice L. The vectors in the base are
primitive vectors, where a non-zero vec-
tor u is calledprimitive if it cannot be
written askv for k > 1 andv ∈ L.

(e1,2e1 + e2)(2e1+ e2,e1 + e2)(e1 + e2,e1+2e2)(e1 +2e2,e2)

(e1,e1+ e2)(e1+ e2,e2)

(e1,e2)

. . . . . . . . . . . .
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If we want to include negative numbers
in this story (after all,12 is also−1

−2) and
arbitrary bases forZ2, one natural way
to do this, introduced by Conway inThe
Sensual (Quadratic) Form, is to replace
vectors and bases by “lax vectors” and
“lax bases”, and to use “super-bases”
as well, and to use these as the faces,
edges, and vertices of a picture called
the “topograph” ofZ2.

A lax vector is a primitive vector, only
defined up to sign. Ifu is a primitive
vector, the associated lax vector is writ-
ten±u. We callu (in contrast to±u) a
strict (primitive) vector.
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A strict base is an ordered pair(u,v) of
primitive vectors whose integral linear
combinations are exactly the elements
of L.

A lax base is a set{±u,±v} obtained
from a strict base.
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A strict superbase is an ordered triple
(u,v,w) for which u + v + w = 0 and
(u,v) is a strict base (implying that(u,w)
and(v,w) are also strict bases forL).

A lax superbase is a set{±u,±v,±w}
where(u,v,w) is a strict superbase.

{±u,±v,±w} is a lax superbase if and
only if u,v,w are primitive vectors any
two of which form a base, and

±u±v±w = 0

for some choice of signs.
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Each superbase

{±u,±v,±w}

contains the three bases

{±u,±v}, {±u,±w}, {±v,±w}

and no others.

Each base

{±u,±v}

is in the two superbases

{±u,±v,±(u+v)}, {±u,±v,±(u−v)}

and no others.
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Thetopograph is the graph whose ver-
tices are lax superbases and whose edges
are lax bases, where each superbase is
incident with the three bases in it.

This gives a 3-valent tree whose ver-
tices correspond to the lax superbases
of L, whose edges correspond to the lax
bases ofL, and whose “faces” corre-
spond to the lax vectors inL.

(Highbrows may wish to call this tree
the dual of the triangulation of the hy-
perbolic plane by images of the modu-
lar domain under the action of the mod-
ular group.)
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(from The Sensual (Quadratic) Form)

[Note that the distinction between lax
and strict is ignored here, for notational
simplicity.]
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(from The Sensual (Quadratic) Form)

[Here too the distinction between lax
and strict is ignored.]
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If you want to use the square latticeL =
Z2, it’s most natural to center the to-
pograph on the edge associated to the
lax base{±u,±v}whereu =(1,0) and
v = (0,1):

u−u

v

−v
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If you want to use the triangular lattice
L = {(x,y,z) ∈ Z3 : x + y + z = 0} (or
Z3/Zv wherev = (1,1,1), if you pre-
fer) it’s most natural to center the topo-
graph on the vertex associated to the lax
superbase{±e1, ±e2,±e3}wheree1, e2,
e3 are shortest-length vectors inL sum-
ming to0.

e1−e1

e2

−e2e3

−e3
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III. Markoff numbers

A Markoff triple is a triple(x,y,z) of
positive integers satisfyingx2+y2+z2 =
3xyz; e.g., the triple (2,5,29).
A Markoff number is a positive in-
teger that occurs in at least one such
triple.
Writing the Markoff equation as
(*) z2− (3xy)z+(x2+ y2) = 0,
a quadratic equation inz, we see that
if (x,y,z) is a Markoff triple, then so
is (x,y,z′), wherez′ = 3xy− z = (x2 +
y2)/z, the other root of (*).
(z′ is positive becausez′ = (x2 + y2)/z,
and is an integer becausez′ = 3xy− z.)

Likewise forx andy.
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Claim: Every Markoff triple(x,y,z) can
be obtained from the Markoff triple(1,1,1)
by a sequence of such exchange opera-
tions. E.g.,(1,1,1)→ (2,1,1)→ (2,5,1)
→ (2,5,29).

Proof idea: Use high-school algebra and
some Olympiad-level cleverness to show
that if (x,y,z) is a Markoff triple with
x ≥ y ≥ z, and we takex′ = (y2+ z2)/x,
thenx′ < x unlessx = y = z = 1. See
A. Baragar, “Integral solutions of the
Markoff-Hurwitz equations,” (Journal
of Number Theory 49 (1994), 27–44).

So in fact, each Markoff triple can be
obtained from (1,1,1) by a sequence of
moves that leaves two numbers alone
and increases the third.
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Create a graph whose vertices are the
Markoff triples and whose edges corre-
spond to the exchange operations

(x,y,z) → (x′,y,z),

(x,y,z) → (x,y′,z),

(x,y,z) → (x,y,z′)

where

x′ =
y2+ z2

x
,

y′ =
x2+ z2

y
,

z′ =
x2+ y2

z
.

This 3-regular graph is connected (see
the preceding claim), and it is not hard
to show that it is acylic. Hence the graph
is the 3-regular infinite tree.
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Unordered Markoff triples are
associated with lax superbases

of the triangular lattice,
and Markoff numbers with lax
vectors of the triangular lattice.
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For example, the unordered Markoff triple
2,5,29 corresponds to the lax superbase
{±u,±v,±w} whereu = ~OA, v = ~OB,
andw = ~OC, with O, A, B, andC form-
ing a fundamental parallelogram for the
triangular lattice, as shown below.

O

A B

C

The Markoff numbers 1, 2, 5, and 29
correspond to the primitive vectors~AB,
~OA, ~OB, and ~OC.
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To find the Markoff number associated
with a primitive vector~OX , take the union
R of all the triangles that segmentOX
passes through. The underlying lattice
provides a triangulation ofR. E.g., for
the vectoru = ~OC from the previous
page, the triangulation is

O

A B

C

Turn this into a planar bipartite graph
as in Part I, letG(u) be the graph that
results from deleting verticesO andC,
and letM(u) be the number of perfect
matchings ofG(u). (If u is a shortest
vector in the lattice, putM(u) = 1.)
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Theorem (Gabriel Carroll, Andy Itsara,
Ian Le, Gregg Musiker, Gregory Price,
and Rui Viana): If{u,v,w} is a lax
superbase of the triangular lattice, then
(M(u),M(v),M(w)) is a Markoff triple.
Every Markoff triple arises in this fash-
ion.

In particular, ifu is a primitive vector,
thenM(u) is a Markoff number, and ev-
ery Markoff number arises in this fash-
ion.

(The association of Markoff numbers with
the topograph is not new; what’s new is
the combinatorial interpretation of the
association, by way of perfect match-
ings.)
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Proof: The base case, with

(M(e1),M(e2),M(e3)) = (1,1,1),

is clear.
The only non-trivial part of the proof is
the verification that

M(u+v)= (M(u)2+M(v)2)/M(u−v).
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(proof of theorem, concluded)

E.g., in the picture below, we need to
verify that

M( ~OC)M( ~AB) = M( ~OA)2+M( ~OB)2.

O

A B

C

But if we rewrite the desired equation
as

M( ~OC)M( ~AB) =

M( ~OA)M( ~BC)+M( ~OB)M( ~AC)

we see that this is just Kuo’s lemma!
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Remarks: Some of the work done by
the REACH students used a square lat-
tice picture; this way of interpreting the
Markoff numbers combinatorially was
actually discovered first, in 2001–2002
(Itsara, Le, Musiker, and Viana).

Also, the original combinatorial model
for the Conway-Coxeter numbers (found
by Price) involved paths, not perfect match-
ings. Carroll turned this into a perfect
matchings model, which made it pos-
sible to arrive at the matchings model
of Itsara, Le, Musiker, and Viana via a
different route.

Seewww.math.wisc.edu/∼propp/
reach/newback.jpg .
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IV. Geometric implications

LetS be the one-holed torus with a point
removed (a 2-manifold with 1-point bound-
ary).

Just as a natural covering space of the
one-holed torus is the planeR2, a nat-
ural covering space ofS is R2 \ L, the
plane minus a lattice.

S can be given a hyperbolic structure
that gives it constant curvature−1. There
are many ways to do this (a two-parameter
family’s worth, in fact). The deleted
point becomes a “cusp at infinity”.
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Fix such a hyperbolic structureh (and
for technical reasons, a horocycle pass-
ing through the cusp). For each prim-
itive vector u in the lattice, there is a
unique simple closed geodesic onS whose
lift up to the-plane-minus-a-lattice runs
parallel tou. Let Lh(u) be the length
of this geodesic. If we defineM(u) =
α cosh−1(βLh(u)) (for suitableα, β that
don’t depend onh), we get positive real
numbers satisfying the relation

M(u+v)M(u−v) = M(u)2+M(v)2.

E.g., if h is the unique hyperbolic struc-
ture onS that gives it three-fold rota-
tional symmetry about the cusp (call it
h0), thenM(u) is exactly the Markoff
number associated withu.
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It is believed, but unproved, that forh0,
no two simple closed geodesics have the
same length unless they are related by
an automorphism ofS that preservesh0.

This is theunicity conjecture for Markoff
numbers: No positive integer “is a Markoff
number for two distinct reasons.”

Equivalently, Mh0(u) = Mh0(v) if and
only if u and v are in the same orbit
of L under the action of the 6-element
dihedral group generated by permuta-
tions ofe1, e2, ande3.
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Our group used algebraic and combina-
torial methods to prove a weak version
of this conjecture.

“Generic unicity”: For a denseGδ set
of hyperbolic structures onS, no two
simple closed geodesics have the same
length.

Sketch of proof: PutM(e1)= x, M(e2)=
y, andM(e3) = z (with x,y,z > 0) and
recursively define

M(u+v)= (M(u)2+M(v)2)/M(u−v).

Then for all primitive vectorsu, M(u)
is aLaurent polynomial in x,y,z; that
is, it can be written in the formP(x,y,z)/
xaybzc, whereP(x,y,z) is an ordinary poly-
nomial inx,y,z (with non-zero constant
term).
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(sketch of proof of theorem, concluded)

If u inside the cone generated by+e1

and−e3, thena < b > c and(c+1)e1−
(a + 1)e3 = u. (Likewise for the other
sectors ofL.)

Hence all the “Markoff polynomials”
M(u) are distinct (aside from the fact
thatM(u) = M(−u)), and thusM(u)(x,y,z)
6= M(v)(x,y,z) for all primitive vectors
u 6=±v as long as(x,y,z) lies in a dense
Gδ set of real triples.

(The numerator of each Markoff poly-
nomial is the sum of the weights of all
the perfect matchings of the graphG(u),
where edges have weightx, y, or z ac-
cording to orientation.)
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V. Other directions for exploration

Neil Herriot (another member of REACH)
showed that if we replace the triangular
lattice used above by the tiling of the
plane by isosceles right triangles (gen-
erated from one such triangle by repeated
reflection in the sides), superbases of
the square lattice correspond to triples
(x,y,z) of positive integers satisfying ei-
ther

x2+ y2+2z2 = 4xyz

or
x2+2y2+2z2 = 4xyz.

So, is there some more general combi-
natorial approach to ternary cubic equa-
tions of similar shape?
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Gerhard Rosenberger (“Uber die dio-
phantische Gleichungax2+by2+cz2 =
dxyz,” J. Reine Angew. Math. 305 (1979),
122–125) showed that there are exactly
three ternary cubic equations of the shape
ax2+by2+cz2 =(a+b+c)xyz for which
all the positive integer solutions can be
derived from the solution(x,y,z)= (1,1,1)
by means of the obvious exchange op-
erations(x,y,z) → (x′,y,z), (x,y,z) →
(x,y′,z), and(x,y,z)→ (x,y,z′), namely:

x2+ y2+ z2 = 3xyz,

x2+ y2+2z2 = 4xyz,

and
x2+2y2+3z2 = 6xyz.
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The third Diophantine equation “ought”
to be associated with some combinato-
rial model involving the reflection-tiling
of the plane by 30-60-90 triangles, but
the most obvious approach (based on
analogy with the 60-60-60 and 45-45-
90 cases) does not work.
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What about the equationw2+x2+y2+
z2 = 4wxyz? (Such equations are called
Markoff-Hurwitz equations.)

The Laurent phenomenon applies here
too: The four exchange operations con-
vert an initial formal solution(w,x,y,z)
into a quadruple of Laurent polynomi-
als. (This is a special case of Theorem
1.10 in Fomin and Zelevinsky’s paper
“The Laurent phenomenon,”math.CO/
0104241.)

The numerators of these Laurent poly-
nomials ought to be weight-enumerators
for some combinatorial model, but we
have no idea what this model looks like.
We can’t even prove that the coefficients
are positive, although they appear to be.
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