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Diffusion Limited Aggregation (DLA)

Diffusion-Limited Aggregation, or DLA (Witten and Sander, 1981),
is a process in which randomly-walking particles cluster together.

One version:

◮ The 1-particle cluster C1 = {s1} contains just s1 = (0, 0).

◮ For all n > 1, a particle does “random walk from infinity” in
Z
2, until it hits a site sn adjacent to the (n − 1)-particle

cluster Cn−1; then Cn = Cn−1 ∪ {sn} = {s1, . . . , sn} is the
n-particle cluster.

3 / 25



A typical DLA aggregate

http://classes.yale.edu/fractals/panorama/physics/dla/BigDLA2.gif

shows what a typical DLA aggregate looks like.

Although this model has been studied for thirty years, virtually
nothing has been proved about it.
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A related erosion model

Lionel Levine wrote a simulation of Diffusion-Limited Erosion
(DLE) in which the initial aggregate is the complement of a large
disk centered at (0, 0).

Particles take a random 2-D walk starting from (0, 0) until they
join the aggregate.

One sees from
http://www.math.cornell.edu/~levine/gallery/idledisc500.png

that in DLE, as in DLA, random-looking dentritic structures form.

(Do the dendritic structures in two pictures look the same? Would
the differences go away if we made our simulations larger?)
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Internal DLA

On the other hand, consider the model in which the initial
aggregate is {(0, 0)}, and the way the aggregate grows is that a
particle takes a random walk from (0, 0) until it reaches the
complement of the aggregate, at which point the new site joins the
aggregate.

Now instead of a random dentritic structure we see a circular
cluster with small random fluctuations at its boundary; see Fig. 1
on page 4 of http://arxiv.org/pdf/1010.2483.pdf (and
ignore the red/blue coloring, which is not relevant for today’s
purposes).
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Stability vs. instability

It’s easy to see intuitively why we get this qualitative difference
between DLA and DLE on the one hand and IDLA on the other, by
considering what happens to small fluctuations from circularity.

In the case of DLA and DLE, these fluctuations tend to be
magnified by subsequent evolution of the interface between the
aggregate and its complement; in the case of IDLA, the
fluctuations tend to be dampened.

That’s because a random walk started at point x tends to visit
points close to x sooner than points that are farther away.
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Deviation from circularity

So we know that the IDLA cluster “wants to be round”; but how
badly does it want it?
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Deviation from circularity

So we know that the IDLA cluster “wants to be round”; but how
badly does it want it?

Theorem (Jerison-Levine-Sheffield, 2010; Asselah, Gaudillière,
2010): The deviations from circularity have typical magnitude on
the order of log r or smaller, where r is the radius of the growing
cluster.
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The continuum limit

One could start with a lopsided cluster and see how it gets rounder.

Under appropriate time-dependent rescaling, this discrete
stochastic interface process becomes a continuous deterministic
interface process called Laplacian growth.

In Laplacian growth, a time-dependent region Ωt in R
2 grows so

that the boundary ∂Ωt moves outward with velocity proportional
to harmonic measure on ∂Ωt .

Probabilistically, harmonic measure is the probability density for
Brownian motion started at (0, 0) and stopped at ∂Ωt .

In other words: the velocity is proportional to the normal derivative
of the Green’s function for Ωt , which is the function on Ωt that
vanishes on ∂Ωt whose Laplacian is the Dirac delta at (0, 0).
See the upcoming book “Laplacian Growth” by Levine and Peres.
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Competitive erosion

Another model exhibiting stable interface dynamics is competitive
erosion (aka mutual diffusion-limited aggregation).

A large patch in Z
2 is colored red and blue, with a vertices colored

red and the remaining b vertices colored blue.

Two vertices are designated the “red source” and the “blue
source”.

1. A particle does a random walk from the red source until it
arrives at a vertex colored blue; then that vertex is recolored red.

2. A particle does a random walk from the blue source until it
arrives at a vertex colored red; then that vertex is recolored blue.

Steps 1 and 2 get repeated in alternation, over and over.
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Interfaces for competitive erosion

See pictures at the top of
http://www.math.cornell.edu/~levine/gallery/erosion.html.

It is predicted on theoretical grounds, and “confirmed” by
simulations, that if

◮ the patch is a large disk (that is, the intersection of a large
disk with Z

2, with edges joining vertices at Euclidean distance
1), and

◮ the two sources are on the boundary of the disk,

then

◮ the system evolves into a segregated coloring, and

◮ the red/blue interface is (a discrete approximation to) a
circular arc perpendicular to the bounding circle.
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A sketch of a physics argument

The stability heuristic for IDLA applies here too.

In the case where the two sources are diametrically opposite and
the initial coloring has equal numbers of red and blue vertices,
symmetry dictates that if there is a stable interface, it must be the
diameter equidistant from the sources.

In the general case, we invoke the fact that Brownian motion (the
continuum limit of random walk) exhibits conformal invariance,
and use Möbius transformations to reduce the general case to the
diametric case discussed above.
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Is randomness necessary?

These interface processes are driven by random walks.
What if we replace the random walks by non-random walks with
some of the same essential properties?

Specifically: a random walk on Z
2 has the property that if, up to

some time t, it has visited some site N times, then it has exited
that site in each of the four directions approximately N/4 times.

What if we devise a walk that satisfies this law-of-large-numbers
property but uses “less randomness” than ordinary random walk, or
isn’t random at all?

Might it still give rise to similar interface dynamics?
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Partially derandomized DLA

One way for a particle to do “less random” random walk on Z
2 is

to obey the following protocol:

1. If the particle wants to take a step from a site that has not been
exited before, the particle takes a random step (independent of
everything it has already done).

2. If a particle wants to take a step from a site that HAS been
exited before, the particle goes in the “successor direction” relative
to the previous exit from that site. (That is, if the last exit from
the site was in the East/North/West/South direction, the new exit
must be in the North/West/South/East direction, respectively.)
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Partially derandomized DLA on a torus

Here’s what the 2000-particle cluster looks like for partially
derandomized DLA on a 128-by-128 torus with initial 1-site cluster
at (64, 64) and a point source at (0, 0):
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Partially derandomized DLA on a torus

Oded Schramm came up with this variant of DLA and did the first
simulations of it in 2005 (unpublished work).

No theoretical work on this model has been done.

17 / 25



Getting rid of randomness

Going a step further, we could decree that our particle must obey
the following protocol:

1′. If the particle wants to take a step from a site that has not
been exited before, the particle goes East.

2. If a particle wants to take a step from a site that HAS been
exited before, it goes in the “successor direction” relative to the
previous exit from that site.

Note that nothing is random.
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Fully derandomized DLA on a torus

Here’s what the 2000-particle cluster looks like for fully
derandomized DLA on a 128-by-128 torus:

As Schramm observed, “the patterns look rather orderly”.
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Rotor-routers

But in fact, many stable random interface processes have fully
derandomized analogues that display (or appear to display) the
same interface dynamics in the continuum limit.

Walks that obey property 2 are said to follow the “rotor-router
rule”.

(See http://jamespropp.org/csps12.pdf for slides for a talk
on rotor-routing in Z

2 that I gave at Berkeley in Spring 2012, see
http://jamespropp.org/pims10.pdf for slides for a talk on
rotor-routing in more general graphs, and Google "rotor-router"
to find lots of recent work in this general area.)
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Rotor-router aggregation

To see rotor-router aggregation in action, visit
http://rotor-router.mpi-inf.mpg.de/growing.mpg.

A whole afternoon could be devoted to talks about what we know,
and what we guess, about rotor-IDLA in Z

2.

Theorem (Levine and Peres, 2010): The deviations from circularity
have magnitude on the order of

√
r log r or smaller, where r is the

of the radius of the growing cluster.

Even though this
√
r log r is a worse bound than the log r bound

obtained for IDLA, experimental evidence suggests that deviations
from circularity for rotor-router aggregation are smaller than
typical deviations for IDLA.

Indeed, it is possible that for rotor-router aggregation, the radial
fluctuations from circularity remain bounded as r goes to infinity!
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Rotor-router competitive erosion

David Einstein did a simulation of derandomized competitive
erosion in a disk (using one set of rotors for the particle emitted by
the blue source at the top of the disk and another set of rotors for
the particle emitted by the red source at the bottom of the disk):
http://jamespropp.org/qmdle.gif

The initial coloring of the disk is as far from equilibrium as possible.

The left panel shows the coloring, the middle panel shows the
states of the rotors used by particles emitted by the blue source
and the right panel shows the states of the rotors used by particles
emitted by the red source.

The equilibrium state for the interface seems be the same
circular-arc that is conjectured for the fully random case, and (just
as in the case of IDLA), the derandomized version appears to have
smaller deviations.
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Rotor-router erosion

Recall that (internal) diffusion-limited erosion is an unstable
interface process.

What happens when we derandomize it with rotor-routers?

Check out the pictures of rotor-DLE at
http://www.math.cornell.edu/~levine/gallery/rotordledisc1000.png

As in Schramm’s (fully derandomized) rotor-DLA, we see very
orderly spikes interspersed with dendritic structures displaying both
orderly and random features.

Also note the very regular behavior of the rotors in some, but not
all, of the region.
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Random ballistic deposition

Tobias Friedrich did a simulation in which particles, starting at a
source in the North, randomly step Southwest, South, or
Southeast, and join an aggregate that is initially a horizontal line
segment in the South.

As in DLA, random-looking dentritic structures form; see
http://jamespropp.org/snow_fullyrnd.mpg.
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Nonrandom ballistic deposition

Friedrich also did a version using 3-way rotor-routers:
http://jamespropp.org/snow.mpg.

A striking feature of rotor-router deposition is that initially one
sees very orderly structures, as in rotor-router aggregation, but
then at some point a transition occurs, and one sees dendritic
structures similar to the ones we see in rotor-DLE.

There should be a deterministic continuum interface model
associated with Friedrich’s rotor-router deposition model; it should
exhibit a finite-time singularity, forming a cusp similar to what we
see in the discrete model.

Slides for this talk are on-line at

http://jamespropp.org/mathfest12b.pdf
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