
Derandomized parallel simulation
of Markov chains via P -machines

Jim Propp
(U. Mass. Lowell)

July 11, 2008

(based on articles I’m writing with
Ander Holroyd and Lionel Levine,
as well as articles I didn’t write
authored by Joshua Cooper,
Benjamin Doerr, Tobias Friedrich,
Joel Spencer, and Gábor Tardos;
with thanks also to Stephen Witham)

Slides for this talk are on-line at
jamespropp.org/mcqmc08-2.pdf

1

I. Deriving the rotor mechanism

from first principles

Question: If a finite-state irreducible ape-
riodic Markov chain is started in state
x0, what is the probability p that it hits
state v before hitting state w? (With
probability 1, eventually the chain will
hit one or the other.)

Parallel simulation (random or deter-
ministic): Put N particles at state x0.
Advance them until each has hit v or
w. Estimate p by K/N where K is the
number of particles that “escaped” (i.e.,
that hit v).

If we do random independent simula-
tion, the expected magnitude of the dis-
crepancy |K/N − p| is O(1/

√
N).

2

That is, the un-rescaled, signed discrep-
ancy D := K − Np is O(

√
N).

What sort of (random or deterministic)
simulation might give us smaller dis-
crepancy?

Idea: Write the “global discrepancy” D
as a sum of “local discrepancies” and
choose a mechanism that will control
the local discrepancies individually.

3

In our case, let h(x) be the probability
that a random walk started at x escapes
(i.e. hits v before hitting w), so that
h(x0) = p, h(v) = 1, and h(w) = 0.

The function h is harmonic outside of
{v, w}; that is, for all x not in {v, w},
h(x) =

∑
y p(x, y)h(y).

We can use the harmonicity property
of h(·) to write the global discrepancy
D as a sum of local discrepancies D(x)
with x varying over all states other than
v and w.

4

Specifically, we have

D =
∑

x 6∈{v,w}
D(x)

with D(x) equal to
∑

y

(N (x, y)−N (x)p(x, y))(h(y)−h(x))

where N (x, y) is the number of particles
that moved from x to y (note: a particle
that moved from x to y exactly k times
contributes k to N (x, y)) and N (x) =∑

y N (x, y).

5

We can’t control h(y)−h(x), but we can
choose to “simulate” the Markov chain
with steps that minimize the magnitude
of the multipliers N (x, y)−N (x)p(x, y).

Example: Suppose that at time 0 there
are 3 particles at x and at time 1 there
are 5 particles at x. Suppose p(x, y) =
p(x, z) = 1/2. We can’t split the 3 par-
ticles at x at time 0 evenly between y
and z, nor can we split the 5 particles
at x at time 1 evenly between y and z,
but we can split the 3 + 5 = 8 particles
at x evenly between y and z over time.

To do this, we must ensure that if y gets
an “extra” half-particle in the first step,
z must get an extra half-particle in the
second step, and vice versa.

6

This is exactly what a rotor-router does:
It keeps track of imbalances in alloca-
tions and rectifies them over time to
keep the local discrepancy as small as
possible.

Holroyd-Propp: We can use determin-
istic rotor-routing of N particles to esti-
mate the escape probability p to within
an error of C/N , where C is

∑

x,y: p(x,y) 6=0

|h(y) − h(x)|.

7

In the case where every p(x, y) is either
0 or 1/m for some fixed m, the rotor-
router mechanism is simple:

For each x, match up the y’s with p(x, y)
> 0 with the integers mod m.

At each time-step in the simulation, there
is a rotor at each state x whose value is
in Z mod m.

If there is just one particle at x at time
t, we increment the rotor at x and send
the particle to the ith neighbor of x,
where i is the new value of the rotor.

If there are k particles at x at time t,
we do the above procedure k times.

To find the state of the system at time
t + 1, we do all of the foregoing for ev-
ery x such that there are one or more
particles at x at time t.

8

The same rotor-router mechanism also
gives us ways to estimate other quanti-
ties associated with finite-state Markov
chains with precision O(1/N), such as
the steady-state probability of a state,
or the expected time to get from one
state to another.

More complicated variants of the rotor-
router mechanism can be used to com-
pute or estimate other quantities, such
as the expected squared time to get from
one state to another.

9

II. Linear machines and P -machines

Let π (the “source”) be a probability
distribution on the state-space of a Markov
chain, let A (the “target”) be a subset
of the state-space, and let T be a pos-
itive integer. We can use rotor-routers
to estimate the probability p that a par-
ticle that starts at a π-random site will
be in the set A after T time-steps:

For some large N , put π(x)N ± 1 par-
ticles at each site x and run them via
rotor-router dynamics for T steps. Then
p can be estimated by K/N where K
is the number of particles that ended
up in the target set A after T steps of
rotor-router walk.

This is the P -machine for estimating p.

10

If we could split the particles at x and
send them to the successor states y in
the exact proportions dictated by the
transition probabilities p(x, y), then p
would exactly equal K̃/N , where K̃ is
the “number of particles” in A at time
T counted with fractional multiplicity.

In this case, we might as well take N to
be 1 and use the term “mass” instead of
“number of particles”. Then the mass
at time 0 is distributed according to π,
and the mass at y at time t + 1 equals
the sum, over all x, of p(x, y) times
the mass at x at time t (the “heat-flow
rule”).

This is the linear machine for comput-
ing p (p is just the mass in A at time
T).

11

What’s surprising here is that the P -
machine is such a good approximation
to the linear machine, at least for cer-
tain Markov chains.

Theorem (Cooper and Spencer):

Suppose our Markov chain is random
walk in the d-dimensional lattice, our
source distribution is concentrated on
{(x1, x2, . . . , xd) ∈ Zd : x1 + x2 + ... +
xd is even}, and our target set contains
just one point.

Then the difference between K/N and
p is at most C/N , where the constant
C depends only on d, and not on π or
A or T .

12

That is, the number of particles in A at
time T (under rotor-router walk) differs
from the expected number of particles
in A at time T (under random walk)
by at most a constant C that does not
depend on the size of N (the number
of particles being sent through the P -
machine), or the size of T (the number
of time-steps we are simulating), or on
how far apart the source-distribution π
and the target-set A are; all C depends
on is the dimension of the lattice.

Furthermore, for small d, the constant
C is fairly small. E.g., for d = 1 we can
take C = 3, and for d = 2 we can take
C = 8.

13

If the set A is larger, the error |K/N−p|
can be larger than C/N , but if the sites
in A are largely contiguous, the error
will probably be substantially smaller
than the trivial upper bound |A|C/N .

An initial result in this direction (proved
by Cooper, Doerr, Spencer, and Tar-
dos) is that if d = 1 and A is an interval
of length L, then |K/N − p| is at most
O((log L)/N).

14

III. Variants

Order matters: Doerr and Friedrich have
done simulations showing that for Z2,
the P -machine approximates the linear
machine more closely if one uses rotors
that rotate through the states in a non-
cyclic order like

North, East, West, South, North, ...

instead of rotors that rotate through the
states in a cyclic order like

North, East, South, West, North, ...

This ranking of the different RR schemes
is consistent with Doerr and Friedrich’s
findings for cyclic vs. non-cyclic rotors
in derandomized IDLA in two dimen-
sions (as described in my other talk).

15

Cooper, Friedrich, Spencer, and Tardos
have also studied P -machines on regu-
lar trees. They show that in that con-
text, the discrepancy is O(

√
log N/N).

16

IV. Rounding

The single-particle rotor-walk algorithm,
parallelized, becomes the P -machine al-
gorithm. The latter can be viewed as
a form of heat flow in fixed precision
arithmetic, with a twist: the rotors con-
trol the rounding of the least significant
bits.

Rotors actually give an improvement over
naive methods of simulating heat flow
in discrete space and discrete time with
fixed-point arithmetic. (The method might
generalize to variants of diffusion that
include convection and reaction terms.
But this will probably be of only minor
interest for PDE, since rounding error
isn’t as big an issue as error introduced
by discretization of space and time.)

17

V. Diffusion

The rotor-router model was invented at
least three times: once by physicists (study-
ing self-organized criticality), once by
computer scientists (studying load-balancing
networks), and once by mathematicians
(seeking deterministic analogues of stochas-
tic processes).

The physicists who studied rotor-routing
(Priezzhev, Dhar, Dhar, and Krishna-
murthy) called it the Eulerian walkers

model .

18

The physicists found that when a sin-
gle particle does rotor-routing in a large
rectangular array with random rotor-
settings at the sites, repeatedly walk-
ing from a randomly chosen site to the
boundary of the rectangle, the rotors
evolve into an organized state, and the
distance travelled by the particle in T
consecutive steps tends to be on the or-
der of T 1/3 rather than T 1/2.

19

This tells us that although rotor-router
walk behaves like diffusion for some pur-
poses, it does not behave like diffusion
for all purposes. This is a basic fact
of life for the kind of quasirandomness
you get from rotor-routers and similar
mechanisms: they are highly tailored
to estimating a particular quantity for
a particular stochastic process , and if
you keep the process the same but change
the question you’re asking, a different
kind of simulation may be needed.

20

For pseudorandom simulation, when you
generate a sample path you are essen-
tially studying all possible questions you
might ever want to ask about the sys-
tem. The trouble is, you get no guaran-
tees that your answers are any good.

Rotor-router simulations, when appli-
cable, often come with rigorous, non-
asymptotic bounds that sometimes let
you replace confidence intervals for quan-
tities of interest by certainty intervals.

21

