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Part I. Background and statement of results

Let G be a finite directed graph.
Assume that associated with each vertex v is an infinite list, or
stack, of neighbors of v :

v (1), v (2), v (3), . . .

Assume we also have a walker/particle/chip located at a particular
vertex.
To execute a stack-walk move when the particle is at v :

I move the particle to the neighbor of v pointed to by the top
entry in the stack at v , and

I pop that entry from the stack at v .

That is, the particle travels from v to v (i) after its ith departure
from v .
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Special case: Wilson stacks

Suppose the stack at each vertex v is an IID sequence, where the
probability of the event v (i) = w is p(v ,w) (where∑

w p(v ,w) = 1).

Suppose furthermore that all the stacks are independent of one
another.

Then the itinerary of the particle is just a (possibly biased)
random walk on G .

This is David Wilson’s stacks model for the Markov chain with
transition probabilities p(v ,w); see
http://dbwilson.com/ja/tau.ps
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Special case: Rotor-routing

Suppose the stack at each vertex v is a periodic sequence.

Then the itinerary of the particle is a rotor-router walk (or “rotor
walk”) on G .

See “Chip-Firing and Rotor-Routing on Directed Graphs”
(Alexander Holroyd, Lionel Levine, Karola Mészáros, Yuval Peres,
James Propp, and David Wilson), arXiv:0801.3306 .

This rotor-walk reflects many of the properties of the random walk
with transition probabilities p(v ,w), where p(v ,w) is the density
of {i : v (i) = w} in N; “low local discrepancy implies low global
discrepancy”. See “Rotor Walks and Markov Chains” (Alexander
Holroyd and James Propp), arXiv:0904.4507 .
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Sources, targets, and hitting sequences

Assume we have a designed source vertex s and one or more
target vertices ti 6= s, where the stack at a target vertex ti is

s, s, s, . . .

(so that when the particle leaves a target vertex it goes
immediately back to the source vertex).

The hitting sequence is the sequence of targets that the particle
visits.
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Example of a hitting sequence

Vertex set: {0, 1, 2, 3, 4} (source is 1, targets are 0 and 4)

Initial stack at 1: 0, 2, 0, 2, 0, 2, . . . (period 2)
Initial stack at 2: 1, 3, 1, 3, 1, 3, . . . (period 2)
Initial stack at 3: 4, 2, 4, 2, 4, 2, . . . (period 2)

Stack-walk: 1, 0, 1, 2, 1, 0, 1, 2, 3, 4,
1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 4, . . .

(eventually periodic with period 16)

Hitting sequence: 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, . . . (period 4)
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Global periodicity from local periodicity

Theorem 1 (Periodicity Theorem): If all stacks are periodic, so is
the hitting sequence.

Remark: It is trivial that if all stacks are periodic, the absorption
sequence is eventually periodic. Theorem 1 is a stronger claim.

Remark: It is false that if all stacks are periodic, then the walk
periodic (see the preceding example).
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Palindromicity

Call a periodic sequence palindromic if its fundamental period is
the same forwards and backwards.

That is, if we define the reversal of a periodic sequence

a1, a2, . . . , ap−1, ap, a1, a2, . . . , ap−1, ap, . . .

as
ap, ap−1, . . . , a2, a1, ap, ap−1, . . . , a2, a1, . . .

then a periodic sequence is palindromic iff it is its own reversal.
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Examples and non-examples of palindromicity

Not palindromic: 1, 2, 1, 2, . . . (period 2)
(reversal is 2, 1, 2, 1, . . . )

Palindromic: 1, 2, 1, 1, 2, 1, . . . (period 3)

Palindromic: 1, 2, 2, 1, 1, 2, 2, 1, . . . (period 4)
(this is how service alternates in a tennis tiebreaker)

(Aside: Thanks to Peter Winkler, who launched this whole
investigation by suggesting that “tennis rotors” would be worth
studying.)
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Global palindromicity from local palindromicity

Theorem 3 (Periodicity Theorem): If all stacks are palindromic, so
is the hitting sequence.
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Global reversal from local reversal

Theorem 3 is a consequence of a more general theorem:

Theorem 2 (Reversal Theorem): Reversing all the (periodic) stacks
results in reversal of the (periodic) hitting sequence.
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Example of Reversal Theorem

Reverse the earlier example of a hitting sequence (slide 6):

Vertex set: {0, 1, 2, 3, 4} (source is 1, targets are 0 and 4)

Initial stack at 1: 2, 0, 2, 0, 2, 0, . . . (period 2)
Initial stack at 2: 3, 1, 3, 1, 3, 1, . . . (period 2)
Initial stack at 3: 2, 4, 2, 4, 2, 4, . . . (period 2)

Stack-walk: 1, 2, 3, 2, 1, 0, 1, 2, 3, 4, 1, 0, 1, 2, 1, 0, . . .

Hitting sequence: 0, 4, 0, 0, 0, 4, 0, 0, . . .
(reversal of 0, 0, 4, 0, 0, 0, 4, 0, . . . )
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Part II. Sketch of proof of Theorem 1 (Periodicity
Theorem)

Main tools for Theorem 1:

I Abelian property for rotor-routing
(Holroyd-Levine-Mészáros-Peres-Propp-Wilson)

I Notion of equivalence of rotor-configurations (GLPZ)

I Combinatorial characterization of equivalence (GLPZ)

By making multiple copies of arcs (directed edges) when necessary,
we may assume that the number of arcs emanating from each
vertex v in G equals the period of the stack at v .

Instead of a one-sided infinite stack of neighbors of v , we’ll
associate with v a two-sided infinite stack of arcs emanating from
v .
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Doubly-infinite stacks of arcs

Before the particle leaves a vertex v , the stack at v is

. . . , c , d |e, f , g , . . .

After the particle leaves v , the stack at v is

. . . , c , d , e|f , g , . . .

and the particle leaves v along arc e.

What appears before the divider is the Past;
what appears after the divider is the Future.

It’s helpful to imagine that the divider is a moving pointer, and
that the entries in the stack don’t move or change.
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Retrospective rotors

The last entry of Past shows which neighbor the particle went to
the last time it visited v (assuming the particle has been to v
before). We call this the (retrospective) rotor at v .

When we move the particle from v , we advance the retrospective
rotor at v by “one click” and move the particle to the neighbor of
v that the new setting of the rotor at v points to.

Note that when we advance the rotor at v , we may obtain an arc
that points to the same neighbor of v as before.
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Example of a hitting sequence, revisited

Initial stack at 1: . . . , 0, 2, 0, 2|0, 2, 0, 2, . . .
Initial stack at 2: . . . , 1, 3, 1, 3|1, 3, 1, 3, . . .
Initial stack at 3: . . . , 4, 2, 4, 2|4, 2, 4, 2, . . .

Initial rotor at 1: 2
Initial rotor at 2: 3
Initial rotor at 3: 2
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The crux of the problem

After the particle has passed from the source at 1 to the respective
targets 0, 0, 4, 0 (before returning to 1 each time), the setting of
the rotors is

Rotor at 1: 0
Rotor at 2: 3
Rotor at 3: 4

This is not the same as the rotor configuration we saw at the start
of the process, so why should we expect the hitting sequence to
continue periodically thereafter?
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Particle addition operators

For any vertex v and any rotor-configuration ρ, we can add a chip
at v and let it do rotor-walk until it hits a target vertex, leaving in
its wake a new rotor-configuration ρ′.

The particle addition operator Ev is the map that sends ρ to ρ′.

It can be shown that the particle addition operators Ev commute
with one another (the abelian property): EvEw = EwEv .

That is, EvEw ρ = EwEv ρ for all vertices v ,w and all
rotor-configurations ρ.
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Equivalence of rotor-router configurations

If C is any chip-configuration (i.e., a mapping from V (G ) to the
non-negative integers, i.e., a multiset of vertices {v1, v2, . . . , vk}),
we define EC = Ev1Ev2 · · ·Evk

, a self-map from the set of
rotor-configurations to itself.

We say rotor-configurations ρ and ρ′ are equivalent if any of the
following equivalent conditions holds:

I There exists some chip-configuration C such that
EC ρ = EC ρ

′.

I If C is the chip-configuration with deg(v)− 1 chips at v ,
EC ρ = EC ρ

′.

I If C is any chip-configuration with ≥ deg(v)− 1 chips at v ,
EC ρ = EC ρ

′.
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Example of equivalence

Consider once again the example of a hitting sequence from slide 6.

Let ρ0 be the initial rotor-setting
1: 2
2: 3
3: 2

and let ρ4 be the rotor-setting
1: 0
2: 3
3: 4

after 4 particles have gone to the targets.

If we let C be the chip-configuration with 4 chips at vertex 1 (and
no other chips), then one can check that EC ρ0 = ρ4 = EC ρ4.
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The relevance of equivalence to Theorem 1

If you take a snapshot of the rotor-settings at those moments when
a target is reached, the sequence of snapshots

ρ0, ρ1, ρ2, ρ3, ρ4, . . .

(with ρi+1 = Es ρi for all i ≥ 0) is not periodic.

(Fact A:) But if you replace each snapshot by its equivalence class,
the resulting sequence of equivalence classes

[ρ0], [ρ1], [ρ2], [ρ3], [ρ4], . . .

is periodic.

(Fact B:) Moreover, if two rotor-configurations ρ, ρ′ are equivalent,
and we apply Es to each, the target that the chip arrives at is the
same for both rotor-configurations.
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Outline of proof of Theorem 1

Define a simple local operation ρ 7→ ρ′ on rotor-configurations
(reverse cycle-popping) such that equivalence of
rotor-configurations is the reflexive-symmetric-transitive closure of
the relation ρ ≡ ρ′.

Use reverse cycle-popping to prove Fact A.

Use reverse cycle-popping to prove Fact B.

Conclude that the hitting sequence is periodic.
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Reverse cycle-popping

If the rotors in ρ contain a cycle passing through vertices
v1, v2, . . . , vr , we may reverse-pop this cycle by regressing the
rotor at each vertex vi that participates in the cycle.

Example:
1 : 2 1 : 2 1 : 0
2 : 3 → 2 : 1 → 2 : 3
3 : 2 3 : 4 3 : 4

By reverse-popping the cycle (23) and then reverse-popping the
cycle (12), we can turn ρ0 into ρ4.
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Part III. Sketch of proof of Theorem 2 (Reversal
Theorem)

Main tools for Theorem 2:

I Abelian property for rotor-routing
(Holroyd-Levine-Mésáros-Peres-Propp-Wilson)

I Notion of equivalence of rotor-configurations (GLPZ)

I Combinatorial characterization of equivalence (GLPZ)

I Inclusion of antiparticles/holes in rotor-router dynamics (as in
Friedrich and Levine)
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The relevance of equivalence to Theorem 3

Suppose the Future half of the stack at each vertex is initially
palindromic.

If you take a snapshot of the rotor-system at those moments when
a target is reached, the sequence of snapshots

ρ0, ρ1, ρ1, ρ2, ρ3, ρ4, . . .

is not palindromic.

But if you replace each snapshot by its equivalence class, the
resulting sequence of equivalence classes

[ρ0], [ρ1], [ρ2], [ρ3], [ρ4], . . .

is palindromic.
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The relevance of equivalence to Theorem 2

More generally (i.e., without assumption of palindromicity):

Reversing all the stacks does not reverse the stacks in the sequence
of snapshots, but it does reverse them modulo equivalence.
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Particles and antiparticles

To move a particle from v : advance the rotor at v (from arc d to
arc e, say) and then move the particle along arc e.

To move an antiparticle from v : move the particle along arc e and
then regress the rotor at v (from arc e back to arc d).
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The relevance of antiparticles

Reversing the stacks and then seeing which targets a particle
released from s will hit is the same as seeing which targets an
antiparticle released from s will hit (without reversing the stacks);
the antiparticle will see the same targets, but in the reverse order.

We define operators E−v that modify a rotor-configuration by
putting an antiparticle at v and letting it do rotor-walk until it hits
a target.

Just as Es sends [ρi ] to [ρi+1] for all i ≥ 0, E−s sends [ρi+1] to [ρi ]
for all i ≥ 0 (though it generally does not send ρi+1 to ρi ).
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Working with antiparticles

The operators Eu and E−v do not commute, but they do commute
modulo equivalence.

In particular, the composition E−s Es acts as the identity on
equivalence classes.

Furthermore, starting from rotor-configuration ρ, if we add a
particle at s and let it walk until it hits a target, and then add an
antiparticle at s and let it walk until it hits a target, the
antiparticle will traverse the loop erasure (cf. Lawler’s work on
Loop-Erased Random Walk) of the path taken by the particle,
ending up at the same target.

The final configuration ρ′ of the rotors (once the particle and
antiparticle have both reached the target) will be equivalent to ρ.
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Part IV. The vorticity phenomenon

Consider Z2 with its usual degree-4 graph structure, with the
subset S = {(i , j) : i ∈ Z, j ∈ Z, i2 + j2 ≤ r2} (the set of lattice
points lying in the disk of radius r centered on (0, 0)).

Let T be the set of lattice points of Z2 that are not in S but are
adjacent to an element of S .

Let G be the induced subgraph of Z2 with vertex set S ∪ T .

Turn this into a source-and-targets problem with source s = (0, 0)
and target set T .
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Angle between successively-hit targets

Assume the stack at each vertex (i , j) ∈ S starts as
(i + 1, j), (i , j + 1), (i − 1, j), (i , j − 1), . . . (circulating
counterclockwise with period 4).

The stack at each vertex in T is just s, s, s, . . . (as always for a
target vertex).

Look at the directed angle between the elements of T that occur
as the nth and n + 1st terms of the target sequence.

Observation: This directed angle (a priori somewhere between 0
and 2π) is nearly always between 0 and π/2, and is shockingly
often equal to π/2 (exactly).
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Histogram

Example: For r = 10, if we plot the first million angles, we get

0
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3 Π
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The “unlikely” angles (the ones greater than π/2) are not equally
unlikely; there appear to be four successive “waves” in the
histogram, running from (k − 1)π/2 to kπ/2 for k = 1, 2, 3, 4.
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Global vorticity from local vorticity

It seems that the local 90-degree relation between the successive
emissions of particles from each vertex v somehow manifests itself
in a global 90-degree relation between the successive targets that
are hit (the spike at 90 degrees, along with the predominance of
angles between 0 and 90 degrees).

No theorems yet, but some nice animations for r = 25:
http://faculty.uml.edu/jpropp/vortex-short.gif (steps 800 – 999)
http://faculty.uml.edu/jpropp/vortex-long.gif (steps 0 – 999)
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Transition: rotor-router aggregation
The preceding observation is analogous to observations made
independently by Levine and Cook, pertaining to a rotor-router
aggregation model, in which the target boundary is not fixed but
moves steadily outward.

Suppose our vertex set is Z2, our source is (0, 0), and the stack at
each vertex (i , j) starts as

(0, 0), (i , j + 1), (i + 1, j), (i , j − 1), (i − 1, j),

(i , j + 1), (i + 1, j), (i , j − 1), (i − 1, j), . . .

(continuing with period 4). There is no target set.

The path taken by the particle can be viewed as a process of
aggregation, where the growing “blob” consists of all the sites that
have been visited up to a particular time. See
http://www.cs.uml.edu/∼jpropp/rotor-router-model/#01
(maximize the window and set Graph/Mode to 2-D Aggregation).
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Part V: Mysterious global structures for aggregation
models (Cook, Friedrich, Hoey, Levine)

The figure http://jamespropp.org/million.gif (image
courtesy of Kleber) shows the rotor-router blob when a million
chips have been added to the origin.

Hoey was the first to notice that the flower-pattern seen in the
middle turns into a repeating pattern in the plane if we view the
picture as living in the unit disk of the complex plane and apply
the analytic function z 7→ 1/z2; see Levine’s picture
http://math.mit.edu/∼levine/gallery/inverted.html .
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Why settle for a million?

The web-page http://rotor-router.mpi-inf.mpg.de/
(images developed by Friedrich and Levine) shows the rotor-router
blob when ten billion chips have been added to the origin.

Zooming in (with Google Maps-style controls) reveals several levels
of interesting global structure with no obvious source in the local
dynamics.

The number of rotor-router steps involved in the process that gives
rise to this picture is about N2/2π, where N = ten billion.

That’s about 1.6 times 1019 elementary operations.

How could such a computation have been completed on
contemporary computers?!?
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Fast simulation with particles and antiparticles

See http://math.mit.edu/∼levine/fast-simulation.pdf: Friedrich
and Levine have a way of quickly guessing the approximate number
of times each site gets visited during the entire process.

They can detect inconsistencies in their guess, and can fix the
inconsistencies by sending particles and antiparticles through the
system, converging on the truth.

Once they know how many times each site gets visited, they know
which sites have been visited and which have not.

Also, once they know how many times each site gets visited, they
know how many times each site gets visited mod 4, which
determines the final rotor setting at each site.

Friedrich and Levine can prove that their method works, and it
works quickly in practice, but they can’t prove that it works quickly.
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Deviations from circularity

Levine and Peres (arXiv:0704.0688) showed that the aggregation
blobs are asymptotically round, although there is much room for
improvement of their results; the deviations from roundness seen
empirically are much smaller than the bounds of Levine and Peres.

Recently Cook has noted that the deviations from circularity are
not erratic, but exhibit beautiful patterns of their own: see
http://www.paradise.caltech.edu/cook/Warehouse/ForPropp/LittleWindmill.png

See Cook’s Rotor Router Page for other interesting investigations.
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Other rotation patterns

Friedrich’s website also shows what you get if you use different
sorts of rotors.

I find the picture he calls “lrdu” (the third on the page) especially
intriguing.

What are we seeing?

And what aren’t (here and elsewhere on the page) we seeing
because we’ve chosen the wrong color-scheme, or because we’re
using the wrong display-device, or because we’ve got the wrong
sort of eyes?
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