Rotor-routing, smoothing kernels,
and reduction of variance:
breaking the O(1/n) barrier

Jim Propp (UMass Lowell, visiting UC Berkeley)

MSRI Research Seminar
January 24, 2012

Slides for this talk are on-line at
http://jamespropp.org/msril2a.pdf

/58

http://jamespropp.org/
http://jamespropp.org/msri12a.pdf

Acknowledgments

This talk describes work that evolved from conversations and
collaborations with David Einstein, Ander Holroyd, and Lionel
Levine, as well as answers | received to questions | posted on
MathOverflow (see http://mathoverflow.net).

)

58

http://mathoverflow.net

[. Introduction

3/58

Monte Carlo simulation (the two-minute course)

Consider a sequence of identically distributed r.v.’s X1, X5, ... with
Law(X,) = Law(X) for all n.

Let Sp:= X1+ -+ X,.

Exp(Sn/n) = Exp(X), and if the X,'s are independent, the LLN
says S,/n — Exp(X) almost surely.

58

Monte Carlo simulation (the two-minute course)

When it's easy to generate |ID samples from Law(X) but hard to
compute Exp(X), this gives a way to estimate Exp(X) empirically
(the “Monte Carlo method’):

Estimate Exp(X) by S,/n ~ Exp(X) for some large n.
If Var(X) is finite, then Var(S,/n) = Var(S,)/n? = nVar(X)/n?

= Var(X)/n, so the standard deviation o(S,/n) of our estimate is

typically O(1/+/n).

5/58

Quasi-Monte Carlo, aka “Casablanca simulation”
(Customer: “Are you sure this place is honest?")

Idea: We make o(S,/n) smaller than O(1/4/n) by “cheating”, i.e.,
by using NON-independent, identically distributed r.v.'s.

Here we are working in the space of all joinings Law(X1, Xo,...)
whose nth marginal is Law(X) for all n, and we are trying to
simultaneously minimize the functionals Var(S,/n), or equivalently
minimize the functionals Var(S,).

Note that S,/n is automatically an unbiased estimator of Exp(X).

6 /58

The Bernoulli case is special

For most r.v.'s, these goals conflict.

E.g., when Law(X) is uniform in [0, 1],

there are joinings for which Var(S,) is zero (easy),

and other joinings for which Var(S3) is zero (a fun puzzle),
but there's no joining that achieves both at the same time.

But when Law(X) is Bernoulli(p), there's a law for Xy, ..., X,
that simultaneously minimizes all of the Var(S,)'s.

58

The first two-thirds of this talk

Such “maximally anticorrelated Bernoulli sequences” can be used
as components of networks (“randomized rotor-router networks")
that compute anticorrelated sequences of r.v.'s of various kinds.

I'll apply this to a random variable associated with absorbing
Markov chains (namely the indicator r.v. of absorption in a
particular state) and show that with randomized rotor-routers we
get Var(S,/n) = O((log n)/n?) (cf. Var(S,/n) = O(1/n) for 1ID).

I'll show that for a different but related scheme we get
Var(S,/n) = O(1/n?).

That is, the typical difference between S,/n and Exp(X) is

O(1/n).

Moreover, I'll show that the tail of the distribution of S, — Exp(X)
isn’t just small; it vanishes beyond a certain point.

The last third of this talk

The preceding result is clearly best possible; Var(S,) can't be o(1),

since S,_1 and S, differ by an instance of X.
So Var(S,/n) can't be o(1/n?) and o(S,/n) can't be o(1/n).

But in the last part of this talk, I'll describe how to use Xi,..., X,
to get estimates of Exp(X) with typical error o(1/n).

58

Il. Rotor-routing

10/58

“MAID" (Maximally Anticorrelated, Identically
Distributed) Bernoulli sequences

With 0 < p < 1, and U uniform in [0, 1), let
Xn=|U+np| —|U+(n—1)p] € {0,1} for all n > 1.

Then Law(X,) is Bernoulli(p), and
Sn = U+ np] = |U] €{[np], [np]},
so S, has variance as small as it can be, subject to Exp(S,) = np.

(X1, X2, ...) is a random Sturmian sequence of density p.

11/58

A physical model

We have a spinner consisting of an arrow pinned to a disk; the
center of the arrow is pinned to the center of a disk and the arrow
is free to rotate. The disk has a black sector occupying a
proportion 0 < p < 1 of the disk.

If we were to repeatedly randomize the arrow, outputting a 1 or a
0 according to whether the arrow pointed into the black sector or
not, we would get an IID Bernoulli(p) process.

But instead we randomize the arrow just once at the start, and on
subsequent turns we merely rotate it counterclockwise p turns
around the circle, so that our sequence of 1's and 0's is a MAID
Bernoulli(p) process.

12/58

Irrational p vs. rational p

When p is irrational, there is a measure-preserving almost-bijection
between the circle R/Z and the set of Sturmian sequences of
density p.

When p is rational, say p = a/b in lowest terms, then there are
just b Sturmian sequences of density p, and the MAID
Bernoulli(p) process gives them equal likelihood.

E.g., for p = 2/5, the law of (X1, X2,...) is supported on five
infinite sequences of period 5, each of which has probability 1/5:
(1,0,1,0,0,...

0,1,0,1,0,...
0,0
1,0
0,1

5 s Uy

0,1,0

1,0,1,...
,0,1,0

0,0,1

I

~ A~~~
— — N N

I P B B

13/58

Markov chains and hitting probabilities

Consider a finite-state absorbing Markov chain with a designated
source-state s and absorbing states (“target-states”) t1,..., tm,
such that Prob(the chain eventually enters {ti,...,tn} | the chain
starts at state s) = 1.

Let t* be one of the target states, and let p* be the probability
that the chain eventually enters state t*.

Then p* = Exp(X), where X is 1 or 0 according to whether a run
of the Markov chain leads to absorption at t* or absorption
elsewhere.

14 /58

Particles on a directed graph

It's convenient to imagine that the states of the chain are vertices
in a directed graph, and that the evolution of the chain corresponds
to the trajectory of a particle that travels from the ith vertex to
the jth vertex when the Markov chain goes from state / to state j.

15/58

Gambler’s ruin

For simplicity, assume that each state i of the Markov chain has
just two successors, with probabilities p; and 1 — p;.

We'll focus on the Markov chain with state-space {0, 1,2, 3} where
1 is the source and 0 and 3 are the targets, with all allowed
transitions of the form i — i+ 1 and i — i — 1, with Prob(1 — 2)
= Prob(2 — 3) = p.

(This corresponds to the purse-size of a gambler who starts out
with $1 and makes a succession of bets, gaining $1 with probability
p and losing $1 with probability 1 — p, until he either has $3 and
leaves happy or has $0 and leaves broke.)

Let t* = 3. It's easy to prove that p* = p?/(1 — p + p?). But
what if we want to estimate p* empirically by running the chain?

16 /58

Monte Carlo made complicated

To simulate the gambler's ruin Markov chain, we use random
variables U;; (i € {1,2}, t € {1,2,3,...}) where each U;; is
U(0,1).

If the chain is in non-absorbing state i at time t, let its state at
time t +1 be i+ 1if Ui+ € [0,p) and i — 1 otherwise.

17 /58

Monte Carlo made even more complicated

To simulate the gambler’s ruin Markov chain repeatedly (in
“supertime”) we use random variables U; ; « (i € {1,2},
te{1,2,3,...}, ke {1,2,3,...}) where U;« is the source of
randomness we use when, for the kth supertime, a run of the
Markov chain has put us in state / at time t.

All the U; ; «'s are independent of one another.

(It may be helpful to imagine a spinner at (i, t) that we spin each
supertime the Markov chain is in state / at time t.)

When we reach a target state, we start again from the source state.

Each run will result in absorption at 0 or absorption at 3,
outputting a Bernoulli(p*) bit.

The successive Bernoulli(p*) bits will be I11D.

18 /58

Anticorrelated quasi-Monte Carlo

Instead of having each sequence U+ 1, Ui+2,... bellD,
have each sequence be MAID.

Thatis, Uitkt1 = Uitk +p (mod 1).

Once again there is a spinner at (i, t), but instead of randomizing
it each time we use it, we rotate it by p turns (i.e., by an angle of

27p).

We call this kind of spinner a rotor.

19/58

Rotor-routing

(see Holroyd, Levine, Mészéros, Peres, P., and Wilson, “Chip-Firing
and Rotor-Routing on Directed Graphs,” arXiv:0801.3306)

The particle starts at i; = s.

For t =1,2,... in succession, we update the rotor at (i, t)
(incrementing it by p;, (mod 1)) and use it to decide which
(it41,t + 1) the particle should go to, until the particle gets
absorbed at a target.

Rotors can be used for general finite-state Markov chains (even
when states have more than two successors), and indeed for some
infinite-state Markov chains; see Holroyd and Propp, “Rotor Walks
and Markov Chains”, arXiv:0904.4507.

20 /58

http://arxiv.org/abs/0801.3306
http://arxiv.org/abs/0904.4507

Stationarity

Theorem (P.): The operation of updating the rotors by sending a
particle through the network (incrementing some of the rotors
(mod 1) and leaving the rest alone) is a bijection from

R/Z x R/Z x --- to itself that preserves product measure.

21/58

ID-ness

Corollary: If the initial setting of the rotors is governed by product
measure, the outcome of the kth run (1 if the kth run leads to t*,
0 otherwise) has law Bernoulli(p*).

That is, the sequence of bits arising from anticorrelated Monte
Carlo with “spacetime rotors” will be a sequence of (identically
distributed) Bernoulli(p*) bits.

Confluence

Imagine that instead of just one particle in the directed graph we
have many; at each step we can advance only one particle (by
updating the rotor at the vertex it occupies and then moving the
particle in the direction indicated by the rotor), but we get to
choose which particle to move, until all particles have been
absorbed at target vertices.

Confluence Property (aka abelian property): The number of
particles absorbed at t; does not depend on the choices we make.

23 /58

Parallel rotor-routing

So, when sending n particles through the network, instead of
sending one particle through the network at a time (“sequential
rotor-routing”), we may start with all n particles at the source s,
advance each particle one step, advance each not-yet-absorbed
particle another step, advance each not-yet-absorbed particle
another step, etc.

The number of particles absorbed at t* will be the same for
sequential rotor-routing and parallel rotor-routing.

24 /58

Spacetime rotors achieve logarithmic discrepancy

Theorem (P.): If one sends n particles through a finite network of

spacetime rotors, the number that get absorbed at t* differs from

np* by O(log n) (so that the number of particles that get absorbed
at t*, divided by n, differs from p* by O((log n)/n) on average).

25 /58

lllustration of proof in a simple case

Consider $3 gambler’s ruin with p =1/2, p* =1/3.

Use parallel rotor-routing.

The sum of the positions of the particles is initially n x 1 = n.
When there are an even number of particles at (7, t), half go to

(i —1,t) and half go to (i + 1,t), so the sum of the positions isn't

changed.

When there are an odd number of particles at (7, t), the sum of the
positions changes by +1.

So at each stage t the sum of the positions changes by +2 (since
there are two sites /).

26 /58

Punchline of proof

After O(log n) stages, all particles have been absorbed at 0 or 3, so

Ax0+ B x3=n=xO(logn)

where A and B denote the number of particles absorbed at 0 and 3
respectively; hence

B = (1/3)n+ O(logn).

(The general case involves extra technology and in particular uses
harmonic functions on directed graphs, but no new ideas are
required.)

27 /58

I11. A different kind of rotor-routing

28 /58

Monte Carlo revisited

Instead of having an IID process U; ¢+ 1, U;t2, ...
at each spacetime location (/, t),

have an |ID process U; 1, Ui o, ...

at each space location i (that is, at each vertex),
so that a rotor may get used more than once during a run.

29 /58

Casablanca revisited

Replace each IID process by a MAID process.

Example: Consider $3 gambler’s ruin with p = 1/2.

1st particle:

2nd particle:

3rd particle:

4th particle:
5th particle:
6th particle:
Tth particle:

etc.

1—-0
1—-2—-3
1—0
1-2—-1—-0
1—-2—-3
1—0
1-2—-1—-0
(with period 3)

30/58

“Let’s see that again in configuration space”

i=1

—

=2

«—

|l absorption
|l absorption
|} absorption
|} absorption
|} absorption
|} absorption

U...

at 0

at 3

at 0

at 0

at 3

at 0

31/58

Cycles go away

Note that initially the rotors at 1 and 2 form a 2-cycle (with each
pointing toward the other), but that thereafter the graph formed
by the rotors is acyclic.

More generally, for rotor-routing on any finite graph, the initial
configuration of the rotors may contain cycles, but eventually all
the cycles go away.

32 /58

Stationarity revisited

Theorem (P.): The operation of updating the rotors by sending a
particle through the network preserves the restriction of product
measure to the set of “acyclic rotor configurations”.

(Note: It's easy to sample from this conditional distribution;

use Wilson's partial rejection sampling scheme, aka cycle-popping,
whereby you repeatedly rerandomize rotors that participate in
cycles until there aren’t any.)

33

58

ID-ness revisited

Corollary: If the initial setting of the rotors is governed by
the conditional measure on acyclic configurations,
then the successive runs are identically distributed.

34 /58

Confluence revisited

If we send n particles through the network until all have been
absorbed, the number of particles absorbed at t* does not depend
on the order in which we choose to move the particles.

35/58

Hey, wait a minute

The successive runs don't look like runs of the original Markov
chain (e.g., the time-to-absorption is never more than 3)!

36 /58

No, don't wait a minute

But if we just look at which absorbing state the Markov chain
eventually enters (i.e., which target-vertex the particle gets
absorbed at), the Casablanca process is governed by the same
distribution as the Monte Carlo process (see Holroyd and Propp,
“Rotor Walks and Markov Chains”, arXiv:0904.4507).

That is, if we let X,, be 1 if the nth particle gets absorbed at t*
and 0 otherwise, then Law(X,) = Bernoulli(p*).

37 /58

http://arxiv.org/abs/0904.4507

Space rotors achieve constant discrepancy

Theorem (Holroyd-P.): If one sends n particles through a finite
network of space rotors, the number that get absorbed at t* differs
from np* by O(1) (so that the number of particles that get
absorbed at t*, divided by n, differs from p* by O(1/n)).

Compare this with our result on spacetime rotors: not only is the

bound better (by a log factor), but we don't have to say “on
average' !

38 /58

lllustration of proof in a simple case

Consider $3 gambler’s ruin with p =1/2, p* =1/3.
Use parallel rotor-routing.
The sum of the positions of the particles is initially n x 1 = n.

We repeat the analysis we used for spacetime rotors, but we now
note that if at some stage vertex i introduces a change of +1 in
the sum of the positions,

then the next time there are an odd number of particles at vertex i,
the sum of the positions will change by —1,

and vice versa.

39 /58

Punchline of proof

When all the particles have been absorbed at 0 or 3,

Ax0+Bx3=n+t2

where A and B denote the number of particles absorbed at 0 and 3
respectively; hence

B =(1/3)n+2/3.

40 /58

V. Kernel smoothing

41/58

The O(1/n) barrier

Var(S,) can't be o(1), since S,_1 and S, differ by an instance of
X.

So o(Sn/n) can't be o(1/n).

42 /58

Breaking the O(1/n) barrier

To get past the barrier, we consider weighted sums

Sp=(a1Xi+aXo+ -+ apnXp)/(a1+a+ -+ an)
with the a;’s not equal to one another (and depending on n).
(If the X;'s were IID, this wouldn't help at all!)

Note that such a weighted average is automatically an unbiased
estimator of Exp(X).

I'll call the family of weights a,; (n > 1, 1 < i < n) a smoothing

kernel, since a similar device in nonparametric estimation goes by
that name.

43 /58

Kernel smoothing: a digression and advertisement

Kernel smoothing can be successfully applied to estimating
quantities in analysis

(the mean value of an almost periodic function),
geometry

(the density of a point-set with discrete spectrum),
and number theory

(the asymptotic average of an arithmetic function);
see the slides for my talk “How well can you see the slope of a
digital line? (and other applications of averaging kernels)"”,
http://jamespropp.org/Slope.cdf.

But | haven't got a general idea for when kernel smoothing should
work and how much improvement it should yield;
there doesn't seem to be literature on it.

44 /58

http://jamespropp.org/Slope.cdf

Parabolic weights

A good choice of weights for many applications, and rotor-routing

in particular, is
an,i = i(n—|— 1-— i),

which I'll adopt hereafter.

The resulting weighted average is the slope of the least-squares
regression line through the points

(1,51), (2,52), ...,(n, Sn)
where S; = X1 + X5 + .. + X].

45 /58

Rational p*

Example: Suppose all transition probabilities in the Markov chain
are rational, so that the sequence X, X5, ... is periodic, and p* is
rational.

Theorem (Einstein): The difference between the weighted sum S
and the absorption probability p* is O(1/n?).

(Note: The constant implicit in the O(1/n?) depends on the
Markov chain.)

46 /58

Random p

Theorem (P.): If Xq, Xz, ... is a random Sturmian sequence of
density p, where p is chosen uniformly at random in [0, 1], then the
standard deviation of the difference between the weighted sum S
and the density p is O(1/n%/?).

47 /58

Does kernel smoothing help rotor-routing?

The figure on the next slide shows what we get when we do 10*
rounds of Casablanca simulation of the $3 gambler’s ruin process
with p = 1/7 with randomized spacetime rotors.

The horizontal axis records n,
and the vertical axis records the exponent « such that the
discrepancy between S and p* equals 1/n“.

The line o = 1 represents the O(1/n) barrier; we want to go above
it.

48 /58

14

13

SIRLS ¥ YR T

ouf4dl=

L L L L 1 L L L L L L 1
4000 6000 8000 10000

49 /58

Does kernel smoothing help rotor-routing?

Empirically, here's what we get when we do 10* rounds of
Casablanca simulation of the $3 gambler's ruin process with
p = 1/ with randomized space rotors:

50 /58

out[21]=

51/58

Does kernel smoothing help rotor-routing?

Empirically, here's what we get when we do 10* rounds of
Casablanca simulation of unbiased random walk on Z x Z with
source s = (0,0) and targets t; = (0,0) and t, = t* = (1,1) and
p* = /8, with non-randomized space rotors initialized in the
“fylfot” configuration (see Holroyd and Propp, “Rotor Walks and
Markov Chains”, arXiv:0904.4507 for an explanation):

52 /58

http://arxiv.org/abs/0904.4507

4000 6000 8000

2000

53 /58

Non-randomized rotors?

Note that in the preceding case we are no longer doing probability
theory; everything is deterministic.

However, it seems likely that probabilistic intuitions and even
probabilistic theorems can be applied to the analysis of the
asymptotic (n — o0) behavior of these systems, and be used to
rigorously prove that kernel smoothing applied to rotor-routing
breaks the O(1/n) barrier.

(See Levine and Peres, “Strong Spherical Asymptotics for
Rotor-Router Aggregation and the Divisible Sandpile”,
arXiv:0704.0688 for an example of how to use probabilistic
theorems to prove results about a deterministic rotor-router
process.)

54 /58

http://arxiv.org/abs/0704.0688

V. Conclusion

55 /58

Derandomization of Monte Carlo with rotor-routers (for finite
Markov chains) improves discrepancy from O(1/y/n) to O(1/n).

(I've discussed this in the context of absorption probabilities; for
applications to absorption times, steady-state probabilities, etc.,
see Holroyd and Propp, “Rotor Walks and Markov Chains”,
arXiv:0904.4507.)

The use of kernel smoothing appears to give discrepancy o(1/n) in
many situations, but | don't have proofs of this outside the “instant
absorption” case (Markov chains in which absorption always occurs
on the first step) and a few other easy-to-analyze special cases.
Nor do | understand what the relevant asymptotic for the
kernel-smoothed discrepancy should be, even heuristically.

56

58

http://arxiv.org/abs/0904.4507

The problem

How can we get actual proofs that kernel smoothing breaks the
O(1/n) barrier for generic finite-state Markov chains?

Note that prior presults (Holroyd and P.) bounding the discrepancy
between the absorption probability p* and the ordinary average
Sp/n (i.e, the relative frequency of absorption at target t*) all
required the confluence property.

However, the confluence property can't be used here, since we

can't compute S without knowing the order in which the
respective absorptions at, and not at, t* occur.

57 /58

Challenges

Find a method that will let us prove things about the estimate for
p* obtained by doing a rotor-router derandomized simulation of
the absorption process and applying kernel smoothing to the
resulting sequence of 0's and 1's.

A brand new idea is needed!
(Maybe some sort of nonabelian version of the confluence

property?)

Also: Might there be some (nonlinear) method of estimating p*
that's better than (linear) kernel-smoothing?

Geometry of numbers says you can’t hope (generically) to do
better than O(1/n?), but David Einstein has almost proved (?)
that for the seeing-the-slope-of-a-line problem you can get within a
power-of-log factor of this bound.

58 /58

