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Abstract

This is an abstract that has not been written yet. You might think of it as an
abstract abstract.

1 Introduction

Let 7 be an arbitrary triangulation of a convex n-gon. To each edge e of the triangulation,
we associate a formal variable z.. We now define multivariate rational functions Q(v, w),
for any distinct vertices v, w of the polygon, as follows:

e if v, w are the endpoints of an edge e of the triangulation (either a side or diagonal
of the n-gon), then Q(v, w) = Q(w,v) = x¢;

e if {,u,v, w are distinct vertices of the polygon in cyclic order, then

Qt,u)Q(v, w) + Q(t, w)Q(u, v) = Q(t, v)Q(w, u). (1)

Thus, we associate rational functions with all the edges and diagonals of the polygon. If
we have functions associated with the sides and one of the diagonals of a quadrilateral
formed by four vertices of the polygon, then our recurrence allows us to associate a
function with the other diagonal. It is easy to check that every diagonal of the original
polygon can be reached by a succession of such operations, and it is also easy to check
that the computation never requires division by zero (for example, just plug in 1 for every
Ze, and then it follows by induction that all the functions obtained in this manner will
take on positive values).

What is perhaps not so obvious is that each edge and diagonal will have just one func-
tion associated to it — that is, the rational function Q(v, w) is uniquely determined, inde-
pendent of the sequence of applications of (1) used to obtain it. Furthermore, these func-
tions are all Laurent polynomials in the initial variables z, (i.e. polynomials in z.,z.'),
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in which every term has coefficient 1 and has each z. raised to the power —1 or 1 (or
Zero).

(Diagram of a polygon, with thingies associated to all its edges and such)

At least partial results along these lines have been known for some time. The unique-
ness of the Q(v,w) follows e.g. from interpreting them as lengths of hyperbolic geodesics
(see [6]). Indeed, (1) is strikingly reminiscent of Ptolemy’s theorem from Euclidean ge-
ometry, relating the sides and diagonals of a cyclic quadrilateral — hence, we refer to
(1) as the “Ptolemy recurrence.” However, the Euclidean setting is not enough to prove
uniqueness of the Q(u, v) for arbitrary values of the initial variables z., since the sides and
diagonals of a cyclic polygon are algebraically dependent. Using a slightly different but
equivalent form of the recurrence, Presi¢ and Mikrinovic, in [8], also obtained uniqueness
by showing that the only possible solutions to the recurrence are of the form

f(r) f(s)
ac9 == 16 16
for suitable functions f, g, and it is easy to verify that their solution satisfies the Ptolemy
recurrence for all quadruples of vertices. Yet another proof of uniqueness comes from
interpreting @Q(v,w) as Pliicker coordinates on the Grassmannian of all 2-dimensional
subspaces of C*, which is defined precisely by the relations given by (1); see [5] for
details.

That the rational functions Q(v,w) are Laurent polynomials in the initial variables
Ze, With coefficients in Z — regardless of the triangulation used — is a more recent
result. This fact follows from work in [4] and [5], where Fomin and Zelevinsky identified
these functions as cluster variables in the cluster algebra of type A, 3. In [4], Fomin
and Zelevinsky conjectured that all coefficients in these Laurent polynomials are positive,
though their methods do not suffice to prove positivity results. The article [3], by Conway
and Coxeter, is also loosely related; it seems to be the earliest connection between any
form of the recurrence (1) and triangulated polygons in the literature, and it effectively
demonstrates that all the Q(v, w) are positive integers when each z. is set to 1 (although
Conway and Coxeter were not thinking in terms of associating actual variables with each
edge).

Our purpose here is to present two new, simple graph-theoretical models that are
described by the Ptolemy recurrence. These two models, we hope, will more immediately
explain why the Q(v, w) are all Laurent polynomials, and at least one of them will provide
another explanation of their uniqueness. In addition, the models will quickly prove that
each Laurent polynomial has all coefficients equal to 1 and all exponents in the range
[—1, 1], generalizing Fomin and Zelevinsky’s conjecture.



2 The matchings model

We present the more complicated of our two models first, because it provides a new proof
of the uniqueness property effectively from scratch.

Construct a bipartite graph G as follows: for each vertex v of the polygon, we define
a vertex a, of the graph; for each triangle A of the triangulation 7, we define a vertex
ap of the graph. Connect a, to an by an edge precisely when v is a vertex of A. For any
two distinct vertices v and w of the polygon, the graph G — {a,, a,,} (which we henceforth
abbreviate G, ,,) has n —2 vertices associated to vertices of the polygon and n —2 vertices
associated to triangles; thus it makes sense to consider its perfect matchings. If M is a
matching of G, and e is an edge of the triangulation, define wy,(e) to be the number of
edges a,an of G used in the matching such that v is an endpoint of e and e is a side of

A. Define
m(M) =] [,

where the product is taken over all edges e of the triangulation. Finally, define

P(v,w) = m(M),
where the sum ranges over all perfect matchings M of G, 4.

(Diagram of GG, some matching, and the corresponding monomial)

We claim that when vw = e is an edge of the triangulation, P(v,w) = z., and
furthermore that the polynomials P satisfy the Ptolemy recurrence (1) for all ¢, u, v, w. It
then immediately follows that Q(v,w) = P(v,w) for all v and w. The uniqueness of the
Q(v, w) thus follows. Furthermore, for any edge e and any matching M, 0 < wy,(e) < 2.
(The upper bound holds because the number of edges a,an € E(G) such that v is an
endpoint of e and e is a side of A is either 2 or 4, depending on whether e is a side of 1
or 2 triangles in 7 if there are 4 such edges, however, they form a cycle, so at most 2
of them can be used in the matching.) The statement that every variable appears in the
polynomials P(v,w) with only exponents +1 then follows. It is also immediate from our
model that all coefficients of the polynomials are positive integers. It may not be obvious
that the coefficients are all 1; our second model will make this more transparent.

Before we prove the claim, we need one definition: Call a vertex v of the triangulation
a hanging vertex if it and its two neighbors form the vertices of a triangle of 7. Note
that our triangulation must have at least two hanging vertices. (For example, there are n
edges of the polygon, each of which belongs to one of n — 2 triangles, so we get at least 2
pairs of edges that belong to the same triangle. If n > 3, this means we have 2 triangles,
each of which has two of its edges as edges of the n-gon, and each such triangle gives us
a hanging vertex.)

Now, the first part of the claim — that when P(v,w) = x, when vw = e is an edge of
the triangulation — is proven by a straightforward induction on n. If n = 3, then there
is only one matching M of G, ,, and it is easy to check that m(M) = z..
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(Diagram of the base case)

When n > 3, there exist at least two hanging vertices. These two vertices cannot be
v and w, since then they could not be connected by an edge of the triangulation. Hence,
we have a hanging vertex u distinct from v and w. Then u belongs to just one triangle
A of T. Let G’ be the graph constructed from the (n — 1)-gon whose vertices are the
vertices of the original n-gon other than u, following the same construction used to build
G from the n-gon; we can do this, since 7 — {A} is a triangulation of this (n — 1)-gon.
Now, in any perfect matching M of G, 4, a, must be matched with aan. Then the edges
connecting aa to the two vertices of the n-gon adjacent to u are not used in the matching.
It follows that if we delete the vertices a,, aa from M, we get a matching M’ of the graph
Gy = G' — ay, 0. Conversely, any matching M’ of the graph G, can be extended
to a matching M of G, by including the edge a,an. Moreover, m(M) = m(M'); this
follows from the evident identities wys(asay) = war (asar) and wir(asay) = war(aay) = 1,
where s,t are the vertices of the n-gon adjacent to u. So we have a bijection between
the matchings M of G, , and the matchings M’ of G, ,,, so by the induction hypothesis,

v,w?

there is just one of each, and P(v,w) = m(M) = m(M') = z..

(Diagram of the induction step)

The second part of the claim — that the polynomials P(v,w) satisfy the Ptolemy
recurrence — is virtually identical to Theorem 5.4 from Eric Kuo’s paper [7]. However,
because our weighting scheme is different from Kuo’s (and for the sake of completeness),
we include the proof here.

Given our vertices ¢, u, v, w in cyclic order, define a doubled matching to be a multiset
of edges of G such that a4, a,, a,, a,, each belong to exactly one of these edges, and every
other vertex belongs to exactly two. Notice that the union (by multiplicity) of a matching
of G, and a matching of G, ,, is a doubled matching, as is the union of a matching of
Gt and a matching of G, ,, or the union of a matching of G, and a matching of G, ,,.
Moreover, if M is a doubled matching, then for each edge e of T, we can define wy,(e)
as for ordinary matchings (again counting edges of M by multiplicity), and we can define
(M) = [, x2-"*“), where the product is over all edges e of the triangulation. It is
immediately apparent that, if M; is a matching of G;, and M, is a matching of G, ,,
then m(M; U M) = m(M;)m(M,), and similarly for the other two pairings of the vertices
t,u,v,w.

Now, for any doubled matching M, let N (M) be the number of ways of expressing M
as the union of a matching of G, and a matching of G, ,,. The multiplicativity property
above then implies that

> N(M)m(M) = P(t,v)P(u,w),



where the sum ranges over all doubled matchings M. If we can show that N (M) is also
the total number of ways of expressing M either as the union of a matching of G, and
a matching of G, ,, or as the union of a matching of G, and one of G, ,, then it will
similarly follow that

Z N(M)m(M) = P(t,u)P(v,w) + P(t,w)P(u,v),

and we can then deduce the Ptolemy recurrence. Hence, we now turn to this task.

In M, viewed as a multigraph, every vertex of G has degree 2, except for a;, a,, a,, G,
which each have degree 1. It follows that M can be partitioned into double edges, cycles
not using any of the vertices ¢, u, v, w, and two paths, whose vertices are ay, ay, G, a,, in
some order. Moreover, we cannot have one path running from a; to a, and the other path
running from a, to a,: from the planarity of the graph G and the ordering of the points
around the n-gon, we see that these two paths would have to intersect at some vertex of GG,
but then this vertex would have degree at least 3 in M (4 if it is not among the endpoints
g, Ay, Gy, Gy ). Since every vertex has degree at most 2 in M, this is a contradiction. So
our paths either run from «a; to a, and a, to a,, or from a; to a,, and a, to a,.

Suppose that we have a path from a; to a, and a path from a, to a,. Then we claim
there are no decompositions of M as the union of a matching of G;, and one of G, .
Indeed, the edges of either path must alternate between the two matchings. However,
each path has even length (because G is bipartite), so (say) the path from a; to a, must
have both its first edge and its last edge belonging to the matching of G, ,. This is a
contradiction.

On the other hand, if we wish to decompose M into a matching of G, and one of
Gu, v, then we proceed as follows: Each doubled edge of M must occur in both matchings;
each of the two paths can also be decomposed in a unique way — the edge containing (say)
a; must be used in the matching of G, ,, and then successive edges along the path must
alternate between the two matchings. The last edge, which contains a,, is then assigned
to the matching of Gy, as required. Similarly, the last path can be safely decomposed in
a unique way. Finally, each cycle has even length (again by bipartiteness) and uses none
of the vertices ay, a,, a,, a,,, SO we can assign the edges alternately to the two matchings,
starting with either one. It is easy to check that this process does indeed give us perfect
matchings of the two graphs G, Gy,. The decomposition algorithm involved a two-
way choice for each cycle in M; thus, the number of expressions of M as the union of a
matching of Gy,, and one of G, is 2¢, where C is the number of cycles in M.

But the same argument shows that the number of expressions of M as the union of
a matching of G;, and a matching of G, is also 2¢ — that is, N(M) = 2°. Since we
saw that there were 0 decompositions into a matching of G}, and a matching of G, ,,
we see that N(M) is indeed the total number of decompositions into these two types of
matchings and into matchings of G, and G, ,, as we sought to prove. Moreover, exactly
the same argument, with the roles of ¢ and v switched, shows that the same result occurs
when M has paths from a; to a, and a, to a,. So the result holds for any M, and
summing over all M gives

P(t,u)P(v,w) + P(t,w)P(u,v) = ZN(M)m(M) = P(t,v)P(u,w),
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completing the proof of the claim.
We summarize our findings as follows:

Theorem 1 Let Q(v,w) = x, when v,w are the endpoints of an edge e of the triangu-
lation, and successively define values of Q(v,w) for other pairs of vertices v,w via the
recurrence (1). Then, for any distinct v and w, Q(v,w) = >_m(M), where M ranges
over all perfect matchings of Gy, with m,G defined as above. This value is obtained
regardless of the sequence of applications of (1) used to compute Q(v, w).

O
Next, before proceeding to our second model, we make a definition. For distinct
vertices v, w, consider the triangles of 7 that meet the line segment from v to w. We can
see that these triangles form a triangulation of a polygon whose vertices are among the
vertices of the n-gon. (This holds by a sort of induction — as we walk along the segment
from v to w, at any point, the triangles so far form a triangulation of such a polygon, and
this remains true when we cross an edge of the triangulation.) We call this polygon the
strip Sy from v to w. If vw is an edge of 7, we adopt the convention that the strip from
v to w is just that edge.

(Diagram showing two vertices and the strip between them)

Because the strip is itself a polygon with v and w as vertices, and equipped with a
triangulation induced by 7, we can compute Q(¢,u), where t,u are any two vertices of
Syw, by the recurrence (1). It is clear that this gives the same result as running the
recurrence on the original n-gon in its entirety, using the same sequence of quadruples
of vertices. In particular, we can construct the graph H on the vertices and triangles
of the strip S,, (as in the construction of G above). Then the perfect matchings of
H,. = H — {a,, a,} are naturally in bijection with the perfect matchings of G, ,, since
both are in bijection with the terms of the Laurent polynomial Q(v,w), which is the same
regardless of whether we use the strip or the larger polygon to compute it. In fact, each
matching of G, ,, can be obtained by extending the corresponding matching of H, ,, and
the extension is the same for all matchings. We will not providea detailed proof here, but
the argument is essentially an induction by successive removals of hanging vertices, much
as in the proof of the first part of Theorem 1 above. The key observation is simply that
a triangle of 7 with a hanging vertex distinct from v and w cannot be part of the strip:
if the line segment from v to w intersected such a triangle, it would have to pass through
two of its sides, but two sides are sides of the n-gon and so cannot meet such a segment.

The fact that Q(v,w) is the same regardless of whether we calculate it in S, ,, or in
the larger n-gon gives rise to another simple observation:

Proposition 1 If e is an edge of T such that x. appears in the Laurent polynomial
Q(v,w), then e is an edge of one of the triangles of Sy -
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Corollary 1 If M s any matching of G, ., and e is an edge of T not occurring in the
strip Sy, then wyr(e) = 1.

g

3 The trails model

Our next combinatorial model uses a graph whose vertices and edges are actually those
of the triangulation 7. For convenience, we will presently assume the vertices v and w
are fixed, and the triangulation is such that the strip from v to w is the entire n-gon
(equivalently, v and w are the only hanging vertices). We may assume this, as otherwise
we can chop off extra triangles without affecting the value of Q (v, w), as we have seen.

We construct a graph whose vertices are those of the n-gon, and whose edges are
precisely the edges of triangles in the triangulation 7. We refer to the edges of the graph
that are sides of the n-gon as exterior edges, and those that are diagonals as interior
edges. Direct the exterior edges so as to lead from v to w along the boundary of the
polygon; leave the interior edges undirected. Now consider trails running from v to w in
this graph, where the exterior edges must be followed in the direction indicated. (A trail
is like a path, except that vertices — but not edges — may be used more than once. This
follows standard terminology; see e.g. [1] or [2].) Such a trail will be called a zigzag trail
if the 2nd, 4th, 6th, ... edges are all interior edges, and there are no two distinct vertices
t,u on the same side of line vw, with the edges laeding from ¢ to u, such that the trail
visits u and later visits t.

If the edges e, eq, €3, ..., e, form a zigzag trail T', then k is necessarily odd, since the
last edge leads to the hanging vertex w and so is an exterior edge. Let

-1 -1
p(T) = TeyLg, Legleg, Leg " Ley, -
We then claim:

Theorem 2 If the strip S, ,, is the entire n-gon, then

Qv,w) = 3 p(T),
where the sum s over all zigzag trails from v to w.

Unlike with the previous model, our proof now assumes that the Q(v,w) are all unique,
although it assumes nothing further.

Before we can prove this theorem, we first need a lemma on the structure of substrips
of Sy

Lemma 1 Let s,t be the two vertices of the n-gon adjacent to w. Suppose that the vertices

joined to t by interior edges are sg, S1,...,Sr = S, and that the direction of the exterior
edges leads from s; to s;11 for each i. Denote sy 1 = w. Then, s;,s;11 are successive
vertices of the n-gon and s;s;11t s a triangle of T for each i =0,...,k, and the strip S,

s composed of those triangles of T not of the form s;s;.1t.
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Proof: Since s;, s;11 are consecutive among the vertices connected to ¢ by an interior
edge, some triangle of 7 must have Zs;ts; ;1 as one of its angles, so this triangle must be
s;S;y1t, giving the second claim. Between the intersections of segment vw with s;t and
with s;41t, it can intersect no other diagonal of 7 (because such a diagonal would have
to have t as one of its endpoints); therefore, every triangle of 7 other than s;ts; 1 lies
on the opposite side of line s;t from s;,1, or on the opposite side of line s;,1¢ from s;. It
follows that all vertices of the n-gon lie in one of these two regions, so there can be none
between s; and s;,1, proving the first claim.

For the third, imagine a variable point p moving along segment wt from w to ¢t. As
p moves, the collection of triangles of 7 met by line vp can only change when this line
encounters a vertex of such a triangle. However, any such vertex is a vertex of our n-gon,
and the only such vertices the line ever meets are v, w, and ¢. Thus, any triangle of S, ,,
not in S,; must have one of these three as a vertex. Now, it is easy to see that S, ,, and
Sy, each contain exactly one triangle of 7 with v as a vertex (the same one), and S,
contains just one triangle of 7" with w as a vertex, namely swt. So all the triangles in
Sy,w not in S, ; must have ¢ as a vertex. Let r be the vertex of the n-gon adjacent to ¢
and distinct from w. Then, S, ; should have exactly one triangle of 7 with ¢ as a vertex,
and since rtsg is a triangle of 7 (by the same argument used for the s;ts;;; above) and v
lies inside angle rtsg, this triangle is the one. The result then follows. g

(Diagram of the strip S, ,, with S, shaded, to make the argument clear)

Proof of Theorem 2: We use an induction again, on the number of triangles in
the strip. If there are 0 triangles, so that the strip consists of a single edge e, then there
is only one zigzag trail T', and p(T') = ., giving the base case. Otherwise, let s,¢ be the
two vertices of the n-gon adjacent to w. We have from (1) that

Qv,w) = (Qv,s)Q(t,w) + Q(v,1)Q(w, s))/Q(s, 1)
Qv, 8)xpw/Tst + Q(V, 1) T sy /Tt

, and from the induction hypothesis, Q(v, s) is the sum of p(T') where T ranges over all
zigzag trails in the strip S, 5, and Q(v,t) is the sum of p(T") over all zigzag trails in the
strip Sy (We can indeed apply the induction hypothesis here — these strips omit at
least the one triangle having w as a vertex and so contain fewer triangles than the original
n-gon.)

(Diagram of the triangulation, with directed exterior edges and v, w, s,t labeled, and a
zigzag trail shown)

Every zigzag trail from v to w has either sw or tw as its last edge. Consider any trail
T ending in the edge sw. If the previous edge was not ¢s, then it was rs for some r on the
same side of line vw as t (by the interior edge condition on zigzag trails); then ¢ cannot



have been visited an any earlier time on the trail (by the condition on the ordering of
vertices). Replace the final edge sw by st. We thus get a trail 7" from v to ¢, and we
claim 7" is in fact a zigzag trail in S, ;.

To see this, notice that ¢ cannot belong to any interior edge other than st, for such an
edge would intersect the interior edge rs, which is prohibited. Then, by the lemma, S, ;
consists of the triangles of T, except for the single triangle swt. Since T" never uses either
of the edges sw, tw, all of its edges do indeed belong to the strip 5, ;. We need to check
that every even-positioned edge of T” is an interior edge of this strip. However, each such
edge is an interior edge of S, ,,, and all interior edges of S, , are interior edges of S, 4,
except for the edge st. Since st is the last edge of 7" (thus in an odd position) and cannot
occur elsewhere in 7", the condition is verified. Similarly, we see that every exterior edge
of Sy, is traversed in the required direction — this property is inherited from S, , for
every edge except st (the one new exterior edge), and we see that st is indeed traversed
from s to t, as required. Finally, the condition on ordering of vertices in 7" follows from
the same condition for 7. So, we have verified that 7" is a zigzag trail in S, ;.

(Diagram of this case)

Now, if the edge of T" preceding sw was ts, then remove both of these edges to obtain
a trail 7" from v to ¢t. We again claim 7" is a zigzag trail in S,;, but the verification is
slightly more involved. Let sg,s1,..., S = s be the vertices of the n-gon connected to ¢
by interior edges and s, = w, as in the statement of the lemma. Then, from the lemma,
we know that the edges of the induced triangulation of the strip S, ; are the edges of T
other than s;s;y1 and s;11t (i = 0,...,k), and set is the only interior edge of S, ,, that
becomes an exterior edge of S, ;.

The edge of T' preceding ts cannot be s;t for any ¢ > 0: otherwise, the edge preceding
this in turn would have to be s;_;s;, but this edge is an exterior edge of S, ,,. However, it
would occur in the fourth-from-last position in 7', where an interior edge should appear
— contradiction. Therefore, the edge of T" preceding ts must be sot or rt, where r is
the vertex of the n-gon adjacent to ¢ and distinct from w. In the latter case, the edge
preceding rt must then be an interior edge, so the vertex visited just before r is on the
opposite side of line vw from £, and it cannot be any of sq,..., s, as none of these are
connected to r by an edge. It now follows from the condition on ordering of vertices that
none of s,...,S,_1 are ever used in 7T’; therefore, 7" does not use any of the edges ;11
or s;y1t (i =0,...,k). Thus, all the edges of 7" really are contained in the strip S, ;.

As in the previous case, we also need to check that the one new exterior edge sot, if
it is traversed at all, is traversed in the correct direction and occurs in an odd position.
However, by the foregoing argument, this edge can only occur if it immediately precedes
ts, so it is in third-from-last position in 7" (and thus last position in 7"), and it is traversed
in this direction. Finally, the condition on ordering of vertices for 7" follows from the same
condition for 7. Thus, T" is indeed a zigzag trail in S, ;.

So we have turned any zigzag trail T’ from v to w, ending in the edge sw, into a zigzag
trail 7" from v to ¢ in S, ;. Moreover, this process is reversible: if 7" ends in st, replace it
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(Diagram of the second case)

by sw to obtain a zigzag trail T in S, ,; otherwise, the edge st can never have been used,
so add it and tw to the end of the trail to obtain our zigzag trail T". It is straightforward
to check that this operation is the inverse of that previously described. Thus, we have a
bijection between zigzag trails T from v to w ending in sw and zigzag trails 7" from v to
t. Also, it is easily checked p(T) = p(T")xsw/xs for any corresponding trails T, 7".

By a similar argument, we have a bijection between zigzag trails 7" from v to w ending
in tw and zigzag trails 7" from v to s (in S, ), satisfying p(T") = p(T")2 /5. Since every
zigzag trail from v to w in S, ,, ends in one of the edges sw, tw, we can sum over all such
trails to find

D p(T) = Qv, )asw/st + Qv, )T /Tt = Qv, W),

proving the theorem. O

This model further demonstrates that Q(v,w) is a Laurent polynomial in the edge
variables, with each variable taking on exponents of 41, as we already saw with the
previous model. Furthermore, the condition on ordering of vertices makes it clear that
there is at most one way to arrange a given set of edges into a zigzag trail, from which it
follows that each coefficient of this Laurent polynomial is 1. We summarize these results
formally:

Theorem 3 In any Laurent polynomial Q(v,w) obtained via the Ptolemy recurrence (1),
every coefficient is 1, and every variable takes on only the exponents 1 and —1.

We might also remark that these polynomials are homogeneous of degree 1 (since each
p(T') has this degree), although this actually was already self-evident, since the recurrence
is homogeneous of degree 2 in the Q(v,w)’s, and all the initial conditions are of degree 1.

4 The exterior edges

We continue to assume that v, w are fixed such that S, ,, is the entire n-gon.

We now have two classes of objects — matchings of G, ,, and zigzag trails in S, ,, —
each of which is in bijection with the terms of the Laurent polynomial Q(v,w); therefore,
they are in bijection with each other. We would like to describe this latter correspondence
explicitly. In one direction, the map is obvious: given a matching M, we can simply read
off from the monomial m(M) which edges appear in the corresponding trail (namely, the
edges e such that x, appears in m(M)), and then there is just one way to arrange those
edges into a zigzag trail. The map in the other direction is not as obvious. We could
attempt an inductive construction of the matching from the zigzag trail, by our usual
method of peeling off triangles with hanging vertices. However, we will not pursue this
here. Instead, we will investigate a particular detail of the correspondence that leads into
a further discovery about Q(v,w).
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Proposition 2 Let t,u be vertices such that tu is an edge of the n-gon, and let s be the
other vertex of the (unique) triangle A of T having tu as an edge. Then, aa is joined to
as in a matching M if and only if the edge tu appears in the corresponding trail T.

Proof: The edge apas appears in the matching precisely when neither of the edges
aaat, apa, does, which in turn is equivalent to wy,(tu) = 0, so that xy, has exponent 1
in m(M). Also, this edge appears in T if and only if it has exponent 1 in the p(T) (it
cannot have exponent —1, since exterior edges can appear only in odd positions). So both
statements are equivalent to z, having exponent 1 in m(M) = p(T). O

(Diagram of a zigzag trail and the associated matching, highlighting exterior edges and
the corresponding matching edges)

So, given at least part of a zigzag trail, the corresponding part of the associated
matching can be immediately determined (and vice versa). What is interesting is that
this effectively determines the entire correspondence — that is, a zigzag trail is entirely
determined by the exterior edges it contains (and, equivalently, a matching of G, ,, is
entirely determined by the edges of the form aaas, as above, that it contains). This
statement also has an immediate algebraic interpretation, which is a strengthening of the
statement about coefficients in Theorem 3.

Theorem 4 A zigzag trail in S,, ts uniquely determined by the collection of exterior
edges it traverses. Equivalently: If we set x. = 1 for every interior edge e, and regard
Q(v,w) as a Laurent polynomial in the variables x. for exterior edges e, then every coef-
ficient s still 1.

Proof: Divide the exterior edges into two “arcs” separated by the line vw; let eq, ..., ex
be the exterior edges used by the trail 7" on one side of this line, arranged in order around
the polygon form v to w, and let fi,..., f; be the exterior edges (if any) used by the trail
on the other side of the line. The first edge of the trail must be an exterior edge; without
loss of generality it is e;. Now, by the condition on ordering of vertices, e;, ..., e; must
appear in 7 in that order, and similarly fi,..., f; must appear in 7" in that order.

Now, every exterior edge in 7" appears in an odd position, so any two successive such
edges must be separated by an odd number of interior edges. However, every interior edge
has its two endpoints on opposite sides of line vw, so traversing an odd number of such
edges entails crossing this line an odd number of times. Therefore, any two successive
exterior edges in 1" are on opposite sides of vw.

But this means that [ = k — 1 or £, and the exterior edges of 7" must be traversed in
the order

el:flan:an"':ek or elaflaeQana"'aekafka

accordingly. Moreover, if we consider just the interior edges of the triangulation 7, the
subgraph formed by these edges is easily seen to be acyclic (if there were a cycle, some
diagonal of the polygon would have to cross another), so there is at most one trail along
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interior edges from the endpoint of one exterior edge e; (resp. f;) to the beginning point
of the next edge f; (resp. e;11). Putting all these trails together, we see that there is just
one zigzag trail that uses the exterior edges ey, fi1,...,ex (or ..., eg, fi) in that order, and
no others. This proves the result. Il

(Maybe a diagram of external edges, showing the order in which they must be
connected?)

We close this section with one more easy fact that should not go unnoticed.

Proposition 3 If we set x. to 1 whenever e is an interior edge, then Q(v,w) is in fact a
polynomial (not just a Laurent polynomial) in the remaining variables x., and it is linear
in each such variable.

Proof: As observed earlier, if e is any exterior edge, it can only appear in an odd
position in any zigzag trail T, so it can only have exponent +1 in the monomial p(7), if
it appears at all. Il

5 Conclusion

We have developed two models that give us explicit bijections between classes of objects —
one class of trails, another class of matchings — and the terms of the Laurent polynomials
Q(v,w) generated by the Ptolemy recurrence. In the process, we have obtained new
information about the structure of these polynomials; we hope that these models also
provide some new intuitions as to why the (v, w) are Laurent polynomials in the first
place, and why they are uniquely determined. It would be interesting to compare these
models with preexisting incarnations of the Ptolemy recurrence, such as hyperbolic lengths
or Pliicker coordinates, and see if any further corrsepondences can be found. However,
the prospects for fruitful comparisons here are somewhat doubtful, as these other models
do not provide interpretations of the individual terms of the polynomials, only of the
polynomials’ numerical values.

The Ptolemy recurrence and its Laurent property arose in the work of Fomin and
Zelevinsky ([5]) in connection with the study of finite-type cluster algebras; this particular
recurrence corresponds to the cluster algebra of type A,,. This connection then suggests
the question (which Dylan Thurstion asks explicitly, [9]) of whether similar models exist
for other finite-type cluster algebras, so that their corresponding recurrences can similarly
be understood combinatorially. Such models would, we expect, provide similar insights
into the coefficients and exponents of the Laurent polynomials arising from these cluster
algebras. This seems to be a promising direction for future investigation.
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