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Tilings in two dimensions have long fascinated both professional and
recreational mathematicians. The appeal is easy to understand: the objects
being studied are concrete, and a person can develop useful intuitions about
them through hands-on experimentation that verges on play. One special
charm of the subject is that questions about tiling often take the form “Can
you tile a ...with ...?”7, so that an affirmative answer can be embodied in
a single picture. The solver of such a problem may have spent hundreds of
hours devising the picture, but a reader can verify its validity in a matter of
minutes. (See [2] for an example of this.)

In contrast, a negative answer to a tiling problem — that is, the assertion
that a certain kind of tiling does not exist — may not be so simple to verify.
If the region to be tiled is finite and there are only finitely many allowed tiles,
then it is possible in principle to determine the status of that tiling problem
(possible versus impossible) by brute-force, examining all possibilities; if all
possibilities can be eliminated then the desired tiling does not exist. But
checking the validity of such a proof takes nearly as long as constructing
the proof in the first place. What’s more, the brute-force approach does not
allow one to make the jump from isolated cases to infinite families of tiling

problems.



Fortunately, there are techniques for expeditiously proving that some
tiling problems cannot be solved. One of the cleverest of these is a method
invented by John Conway thirty-five years ago and developed further by Jeff
Lagarias [1]. Although the Conway-Lagarias article is cast in the language
of combinatorial group theory, the method often produces simple geometric
criteria for non-tileability that can be applied to specific problems without
knowledge of the algebraic machinery that gave rise to them.

Conway’s theory often permits one to construct simple “certificates of
non-tileability” for a region. For instance, we will see that Figure 7 is in a
certain sense a visual proof of the unsolvability of a particular tiling problem.
I like to think of it as a “proof-mandala”: if one prepares one’s understanding
in the proper way (by absorbing some preparatory theorems about the set
of allowed tiles) and contemplates the picture in the right frame of mind (by
noting certain facts about the untiled portion of the region), then one can
achieve enlightenment (perceive the futility of striving to tile the region).
Putting it less fancifully, Figure 7 is the visual culmination of an argument;
it clinches a proof of non-tileability once Conway’s theory has been used to
formulate a specific concrete criterion.

My purpose here is to give you a glimpse of Conway’s ideas in as accessible
a way as possible, avoiding combinatorial group theory entirely. The price
that you will pay for my pedestrian approach is that some of the ideas in
the proof of the main theorem will seem to come out of nowhere. I hope
that the novelty and power of the method will intrigue you sufficiently that
you feel impelled to read the original articles and learn about the algebraic
framework that the proof fits into. In addition to Conway and Lagarias’
article [1], there is also a paper of Thurston [8] that gives the method a
slightly different slant. T will close the article by briefly discussing the more

advanced viewpoints that these two articles take.



Tiles, tilings and tileability

The tiles we will consider are of the kind known as polyominoes. Ev-
ery polyomino can be formed by taking a union of cells in a square grid,
and the number of cells determines whether the polyomino is classified as
a monomino, domino, tromino, tetromino, or what have you. (For a
precise definition of polyominoes, see [5] and [7].) The five tetrominoes are
shown in Figure 1. These shapes have received recent notoriety through the

video game Tetris.
Figure 1. The tetrominoes.

When a large polyomino (a union of many cells) can be written as a union
of small polyominoes that are disjoint except along their boundaries, we say
that the large polyomino has been tiled by the small ones. It is easy to show
that each of the small polyominoes must be a union of some subset of the
cells that jointly constitute the large polyomino.

The book [7] discusses many of the tiling properties of tetrominoes, and
I will not attempt a general overview here. Instead T am going to focus on
one particular sort of tetromino, the so-called skew tetromino. This is the
tetromino standing at the very left of our family portrait. The skew tetromino
cannot be rotated so as to yield its own mirror-image without leaving the
plane. Later, one of the skew tetromino’s siblings will elbow its way into the
action, namely, the square tetromino, standing off to the right — but that

is getting ahead of our story.
Figure 2. The skew tetromino.

I am going to give criteria for recognizing when a region can be tiled
by skew tetrominoes, using all four of the orientations shown in Figure 2.

These criteria are necessary conditions for tileability, so that when one of



them fails, you can conclude that the region in question cannot be tiled.
While such criteria can never give you assurance that a tiling problem has
an affirmative answer, they can often save you from wasting time looking for
a tiling where none exists.

One sort of region that will defeat any would-be tiler who has only skew
tetrominoes on hand is a rectangle. For consider the skew tetromino that
covers the upper-left cell of the rectangle; without loss of generality, we may
suppose it is placed as shown in Figure 3. The placement of this skew tetro-
mino forces the placement of another skew tetromino below it, and so on,
leading to a configuration in the lower-left corner that cannot be extended
to a tiling. This is a “quasi-local” obstruction to tiling, in that we only need

to look at part of the region to be tiled to deduce untileability.
Figure 3. Failed tiling of a square.

Such quasi-local arguments for non-tileability fail us when we move on to
the tiling problems that are the main subject of this article. Define an Aztec
diamond of order n as a region consisting of 2n(n+ 1) unit cells, arranged
in centered rows of lengths 2,4,6,...,2n —2,2n,2n,2n—2,...,6,4,2. Aztec
diamonds were introduced in [3], where it was shown that the Aztec diamond

of order n has exactly 27("+1)/2

tilings by dominoes. Figure 4 shows the Aztec
diamond of order 5. This region also appears in problem 81 of [5], which asks
whether the region can be tiled by the twelve pentominoes in such a way that
each pentomino gets used exactly once; this problem (which also appears as

problem 5.22 of [7]) was solved in the negative by Andy Liu [6] ten years ago.
Figure 4. Aztec diamond of order 5.

The difficulty with tiling an Aztec diamond is global: Figure 5 shows

that we can tile a sizable portion of the Aztec diamond of order 17, leaving



uncovered only a 6-by-6 block that is far away from the boundary. On the
other hand, since (as is easily shown) we can tile the whole plane with skew
tetrominoes, we can start tiling our Aztec diamond from the center and work
outward until only a narrow fringe along the boundary remains untiled. Thus,
it is not difficult to tile any particular portion of the Aztec diamond — what

is hard is tiling the whole thing.
Figure 5. Failed tiling of an Aztec diamond.

A well-known technique for proving that particular tiling problems cannot
be solved is the use of coloring arguments. For instance, to show that the
Aztec diamond of order 5 cannot be tiled by skew tetrominoes, impose the
coloring shown in Figure 6, with two-by-two blocks of black cells alternating
with two-by-two blocks of white cells (along with a few left-over white cells).
A skew tetromino of any orientation placed anywhere in the region must
cover three black cells and one white cell or vice versa. In particular, it must
contain an odd number of black cells. Since any tiling of the entire region
by skew tetrominoes must use exactly 15 tiles, and each tile contains an odd
number of black cells, the entire region must contain an odd number of black
cells. Since the number of black cells in the region is even, we have reached

a contradiction, and no such tiling exists.
Figure 6. Colored Aztec diamond.

Suitably generalized, the coloring-scheme of Figure 6 tells us that the
Aztec diamond of order n cannot be tiled by skew tetrominoes if n(n +
1)/2 is odd, which happens whenever n is 1 or 2 more than a multiple of
4. But what about values of n for which n(n 4+ 1)/2 is even? A bit of
experimentation should convince you that no tiling exists when n = 3 or 4,

so one might suppose that a different coloring argument might be devised to



handle such cases. However, it can be shown (see [1]) that there cannot be
a coloring argument (at least in the simplest sense of the term) that proves
the untileability of the Aztec diamond of order n for even one value of n for
which n(n 4 1)/2 is even.

This is where Conway’s approach comes to our aid. Following his lead, we
will soon see that for no positive integer n can the Aztec diamond of order n
be tiled by skew tetrominoes. In fact, we will formulate a criterion (the main
theorem) that will let us look at Figure 7 and, after a moment’s inspection,
announce that we are satisfied that the Aztec diamond of order 7 cannot be

tiled by skew tetrominoes.
Figure 7. The proof-mandala.

Shadowing paths

To initiate you into the mysteries of such proof-mandalas, I am going to
take you on an odd sort of imaginary excursion: you and I will in a sense
be walking together, but we will be doing our walking miles apart, in two
different cities.

For want of better names, I will call these cities Hoboken and Manhattan,
with no slander intended toward either great city. Any resemblance between
either of the imaginary places that T will describe and the real places whose
names they bear is mostly coincidental.

In Hoboken, all the streets and avenues are one-way, with streets running
west to east and avenues running south to north. If you like, you can imagine
a two-way ring road around the city that will somewhat alleviate the incon-

venience resulting from the city’s eccentric traffic system. (See Figure 8.)
Figure 8. Hoboken.

The city is naturally associated with a portion of an infinite square grid;



for example, one can interchangeably speak of “vertices” (in the grid) or
“intersections” (in the city). To keep track of the traffic pattern, let’s mark
the edges of the grid with arrows that indicate the direction of traffic (solid
arrows for the streets and unfilled arrows for the avenues). Note that each
vertex has an ingoing solid arrow, an outgoing solid arrow, an ingoing unfilled
arrow, and an outgoing unfilled arrow, and that every intersection looks just
like every other.

As a pedestrian in Hoboken, I am free to go with or against vehicular
traffic; at each corner I can go in any of the four possible directions. In this
way [ can trace a path in the grid whose edges connect adjacent vertices.
Given my starting point, my journey is uniquely specified by the set of deci-
sions I make as to whether to travel on a street or an avenue and whether to
travel with traffic or against it. Conversely, any sequence of such decisions

corresponds to an actual path through the city.
Figure 9. Manhattan.

Hoboken is the city in which T am going to do my walking; you, however,
are going to be walking in Manhattan. This city also has one-way streets
and avenues, but the direction of traffic along streets (and along avenues)
alternates, instead of being in a single fixed direction throughout the city.
(See Figure 9.) As before, each vertex has an ingoing solid arrow and an
outgoing solid arrow and an ingoing unfilled arrow and an outgoing unfilled
arrow (the first two horizontal and the last two vertical). There are four
different sorts of intersections in Manhattan, but they are all related to one
another by symmetries (reflections and rotations, to be precise).

Say a path in Manhattan shadows a path in Hoboken if they are de-
scribed by the same instructions, in the following sense. As I take my walk
in Hoboken, you and I will talk by cell-phone and T will tell you what 1T am

doing: not whether I am going north, south, east, or west, and not whether



[ am turning left or right, but merely whether I am going on a street or
an avenue, and whether I am going with traffic or against it. If you and I
walk at the same pace and you imitate my path as described by me over the
cell-phone (which can be done in one and only one way, given your starting

point), you are tracing out the shadow of my path.
Figure 10. Shadowing a path.

For example, consider the path in the top half of Figure 10 that starts
at the marked point and traverses the boundary of the skew tetromino in
the counterclockwise sense, ending where it started. If I traverse this path in
Hoboken, then the description of my path is STSTATST AT S~ 8~ A5~ A~
where S and A denote street and avenue respectively and + and — determine
whether T am going with or against traffic. If T describe my path to you in
this fashion by cell-phone, and you imitate it in Manhattan, you will travel
along the path in the bottom half of Figure 10, traveling clockwise around
the cell on the right and counterclockwise around the cell on the left.

Let’s call a walk closed if its terminal point coincides with its initial point.
The shadow of a closed walk in Hoboken need not be closed in Manhattan; a
walk that encircles a single block in Hoboken is an example of this. However,

we do have the following crucial fact:

Claim 1: If a region in Hoboken can be tiled by skew tetrominoes, then
any closed walk in Hoboken that makes a complete circuit of the boundary

of that region is shadowed by a closed path in Manhattan.

Proof: We use induction on the area of the region, necessarily a multiple
of 4. If the tileable region is just a single skew tetromino then we are in the
situation of Figure 10. To see that this figure is the only one we need to

examine for the base case of our induction, note first that if you had chosen



a different starting point for your walk in Manhattan, your walk would still
have been closed, since Manhattan has symmetries (translations, rotations,
and reflections) carrying any vertex to any other and respecting the pattern
of arrows. Neither would the situation be affected if [ had chosen a different
starting point for my walk along the boundary of the skew tetromino, for
that would be tantamount to having you start your walk at a different point
in Manhattan. Finally, we have dealt with only one of the four orientations
a skew tetromino can have, but the symmetries of Hoboken and Manhattan
imply that what works for one orientation must work for the other three.
Now suppose we’ve proved the claim for all tileable regions with area less
than 4n. Consider a region R with area exactly 4n that comes equipped
with a particular tiling. To prove that the boundary of R (a closed curve
in Hoboken) is shadowed by a closed curve in Manhattan, I am going to
modify my itinerary a bit, as suggested by Figure 11. Specifically, T am
going to travel from a starting point p on the boundary of R to another
point ¢ on the boundary of R; then travel from ¢ to p in the interior of R,
traveling only on the boundaries of tiles in my tiling of R; then return from
p to g by the same interior route; and finally travel in the same direction as
before (clockwise or counterclockwise) from ¢ to p along the boundary of R,

completing my tour. The polygonal arc pg divides R into two regions, which

we will call A and B.
Figure 11. The induction step.

Since A and B each have area less than 4n, and since each is tileable
by skew tetrominoes, the boundary of each of them is shadowed by a closed
path in the shadow-grid. Thus, the modified itinerary that I described above
(from p to g to p to ¢ to p) is shadowed by a closed path. However, the
second and third legs of this journey (from ¢ to p to ¢ in the interior of

R) are “inverses” of each other. It follows that as your walk in Manhattan



shadows my (modified) walk in Hoboken, the second and third legs of your
journey will also be inverses of each other, and the two together will leave
you right where you were at the end of the first leg, when 1 was first at ¢.
Hence, excising this pointless detour from my journey (and from yours), we
see that the shadow of a path encircling R in Hoboken is also a closed path

in Manhattan. This verifies the induction and completes the proof. a

Signed area and the main theorem

We can strengthen Claim 1 using the notion of the signed area “enclosed”
by a shadow path. To define this, we must first define the winding number
of a finite closed curve around a point not on the curve. If we draw a ray
emanating from the point, the winding number is simply the number of times
that the curve crosses from one side of the ray to the other in the positive
direction (counterclockwise) minus the number of times that the curve crosses
from one side of the ray to the other in the negative direction (clockwise).
If the closed curve consists of grid-edges, then the winding number of the
curve around a point is the same for any other point in the same cell. We
call this the winding number of the curve around the cell. For all but finitely
many cells, the winding number of the curve around the cell is zero. Thus,
we can speak of the sum of the winding numbers of the curve around all the
cells; this is what T mean by the signed area enclosed by a curve. The reader
should check that when the closed curve is simple, the signed area as I have
defined it is equal to plus or minus the area enclosed by the curve as defined
in the usual sense (positive if the curve winds counterclockwise, negative if
the curve winds clockwise).

If the region R in Hoboken has a boundary whose shadow in Manhattan
is a closed curve, we define the (signed) shadow-area of the region R as the
signed area enclosed by the shadow of its boundary. We now show that a

region that can be tiled by skew tetrominoes must have shadow-area equal
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to zero.

Claim 2: If a region in Hoboken can be tiled by skew tetrominoes, then
any closed walk in Hoboken that makes a complete circuit of the boundary of
that region is shadowed by a closed path in Manhattan that encloses signed

area 0.

Proof: Again we use induction. The same pictures that worked before
still work; we just have to examine them in a different frame of mind. In
Figure 10, we need to notice that the shadow-curve has winding number
+1 around one cell, —1 around another cell, and 0 around every other cell,
giving it a total signed area of 0. As for the induction in Figure 11, we need
to observe that for every place where the shadow of the internal path from
¢ to p crosses a ray, the shadow of the return path from p to ¢ crosses the
same ray in the opposite direction. Thus the shadows of the second and third
legs of your trip in Manhattan make canceling contributions to the winding
number around any particular cell, and thus make canceling contributions
to the signed area of the complete path. Excising the detour, we obtain the

desired induction. O

You (the reader, not the walker) are now in a position where you can
convince yourself of the untileability of many specific regions, including as
it happens Aztec diamonds of any order. Specifically, take the boundary of
your region in the Hoboken grid and shadow it in the Manhattan grid; if the
resulting curve is not closed, or if it is closed but encloses non-zero signed

area, then your region cannot be tiled by skew tetrominoes.

Satori

If you want to convince someone else that the region cannot be tiled,

using the method as we have discussed it so far, then that person has to do
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essentially everything that you did. That is, he or she must carefully shadow
the entire boundary and (if the shadow-path closes) work out the signed area
of what may be a rather crazy self-intersecting closed curve. This is certainly
a better way for you to convince people that a tiling problem is unsolvable
than forcing them to read through a three-inch stack of coffee-stained sheets
of graph paper in which all possibilities are tried and eliminated. But there
is a still better way, in which a region R can be marked up in such a manner
that, in the case where the boundary of R is shadowed by a closed curve, the
proof-checker can see at a glance how much signed area is enclosed by the
shadow-curve.

Recall that a square tetromino is a 2-by-2 square, as shown on the far right
in Figure 1. The shadow of the boundary of a square tetromino in Hoboken
is the boundary of a square tetromino in Manhattan, but the orientation may
switch, giving it signed area +4 or —4. We need to nail down the sign exactly.
Let’s choose a particular corner in Hoboken and call it the Hoboken origin;
we will say that another corner in Hoboken is even if it can be reached from
the origin in an even number of steps (lengths of a city block) and odd if it
can be reached from the origin in an odd number of steps. Meanwhile, let’s
find an intersection in Manhattan of “Hoboken type” (i.e., where the street
goes east and the avenue goes north), and let that be the Manhattan origin.
We define evenness and oddness of Manhattan intersections in an analogous
way. If we assume that you and I begin our walks at vertices of the same
parity, then it follows that you and I will be at vertices of the same parity as
one another forever afterwards, since every block we walk changes the parity
of your location and mine from odd to even or from even to odd.

Call a square tetromino in either grid even if its corners are at even
vertices and odd otherwise. Consider the boundary of such a tetromino in
Hoboken, traversed in the counterclockwise direction. The shadow of this
path is also the boundary of a square tetromino, and with a little doodling

you can check that the shadow path in Manhattan encircles signed area +4
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or —4 according to whether the original square tetromino was even or odd.

We can now state our

Main theorem: Suppose a simply-connected region in the plane can be
tiled by a mixture of skew tetrominoes and square tetrominoes. Then the
number of even square tetrominoes minus the number of odd square tetro-
minoes does not depend on what tiling one chooses; i.e., it is an invariant.
In particular, if the difference is non-zero for one such tiling, then the region

cannot be tiled by skew tetrominoes alone.

Proof: The difference in question, when multiplied by 4, is just the signed
area enclosed by the shadow of the boundary of the region to be tiled, because
each tetromino is shadowed by a path enclosing signed area +4, —4, or 0
according to whether it is an even square tetromino, an odd square tetromino,
or a skew tetromino. The justification is the same as in the proof of Claim

2, namely, the additivity of signed area. a

Now look back at Figure 7. The Aztec diamond of order 7 has been
decomposed into a number of skew tetrominoes along with four square tetro-
minoes. Because all four square tetrominoes are even, the invariant has value
+4. Tt follows that the region cannot be tiled by skew tetrominoes alone. In
this sense, Figure 7 can be a proof-mandala for the impossibility of tiling the
Aztec diamond of order 7 by skew tetrominoes, once the mind has absorbed
the main theorem.

The mandala has even more to teach the receptive spirit. Notice that
the Aztec diamond of order 7 has an Aztec diamond of order 6 sitting inside
it, fringed above by skew tetrominoes and a single square tetromino. This
order-6 diamond in turn contains of an order-5 diamond fringed above by
skew tetrominoes. And so on. The mandala shows a clear iterative pattern

for reducing an Aztec diamond of order 2k to an Aztec diamond of order
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2k — 1 plus some skew tetrominoes, and for reducing an Aztec diamond of
order 2k + 1 to an Aztec diamond of order 2k plus some skew tetrominoes
and a single square tetromino, in such a way that the square tetrominoes all
have the same parity. Thus, for general n, any tiling of the Aztec diamond

of order n by skew tetrominoes and square tetrominoes must have an excess

n+1

=] square tetrominoes of one particular parity. In particular,

of exactly |
for n > 1, there can be no tiling of the Aztec diamond of order n by skew
tetrominoes alone.

It would be interesting to know of a different way to prove the main
theorem. One possible approach would be to mimic Donald West’s proof [9]
of Conway’s triangle-tiling theorems, and show that every tiling of a simply-
connected plane region by skew tetrominoes and square tetrominoes can be
obtained from every other such tiling by means of a small repertoire of “local
moves,” each of which preserves the difference between the number of even
square tetrominoes and odd square tetrominoes. Readers might experiment
with such local moves and see if they can come up with a demonstrably
complete set. My own guess is that a complete finite set of local moves does

exist.

Extensions

As was mentioned earlier, the shadow-path method can be used to show
that many particular regions R, and not just Aztec diamonds, cannot be
tiled by skew tetrominoes. In fact, if one chooses R “at random,” then it is
likely that the shadow of its boundary will not be a closed path, or if it is
closed, that it will not enclose signed area 0. Even if it does enclose signed
area 0, a slight refinement of our approach may permit us to rule out the
existence of a tiling. For, observe that the shadow of the boundary of a skew
tetromino winds clockwise around one cell in the shadow-grid and counter-
clockwise around another cell of the same color, relative to the coloring shown

in Figure 12. Thus, we can talk about (signed) A-area, B-area, C-area, and
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D-area, whose sum will be the signed area enclosed by a curve. In order for
R to be tileable by skew tetrominoes, the shadow of the boundary of R must

enclose A-area, B-area, C-area, and D-area all equal to 0.
Figure 12. Coloring the grid-squares.

This strengthened version of the main theorem goes a long way toward
closing the gap between demonstrably tileable regions and demonstrably un-
tileable regions. However, the gap is not altogether shut. For instance, the
region of area 8 shown in Figure 13 is not tileable by skew tetrominoes, de-
spite the fact that the main theorem (even in its strengthened form) does
not tell us this. It would be valuable to know of an efficient algorithm that
would close the gap completely, by deciding whether a given region is or is

not tileable by skew tetrominoes.
Figure 13. An untileable region.

It is also interesting to change the game and weaken the notion of “tileabil-
ity” so that the preceding necessary condition becomes sufficient as well. We
define a tile homotopy of a path in the grid as a process of perturbing the
path by “pulling it through tiles”. More precisely, an elementary homotopy
between two closed grid-paths replaces a part of the path (call it P) join-
ing two vertices p,q by another grid-path P’ joining the same two vertices,
such that P and P’ together form the boundary of a tile. Figure 14 shows
a series of elementary tile homotopies between the path shown in Figure 13
and the trivial loop; first the boundary is pulled outward by adding a skew
tetromino on the outside and pulling the boundary through the new tile;
then the path is pulled inward, using a tiling of the enlarged region by skew
tetrominoes. It can be shown using combinatorial group theory that a closed

path in Hoboken is tile-homotopic to the trivial loop if and only if its shadow
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in Manhattan is closed and encircles A-area, B-area, C-area, and D-area all

equal to 0.
Figure 14. Tile homotopy.

The shadow-path method can be used to prove that in any partial tiling of
the Aztec diamond of order n, the diameter of the untiled portion is bounded
below by a constant times y/n. For, one can find a small rectangle that
covers the untiled portion and approximate the boundary of this rectangle
by a closed loop L that travels only along the boundaries of tiles but is as
direct as possible subject to that constraint. Since L is tile-homotopic to the
boundary of the Aztec diamond, whose shadow encloses signed area roughly
2n, the shadow of L must have length at least ¢y/n for some constant ¢. Hence
L itself must have length at least ¢y/n, implying that the untiled portion of
the Aztec diamond has large diameter. It is hard to imagine a proof of such
a result by means of the methods that predated Conway’s work.

On the other hand, Aaron Meyerowitz has shown that there can be no
analogous bound on the area of the untiled portion, by pointing out that for
any n > 1 it is possible to tile the Aztec diamond of order n by ﬂnz——l'll —1 skew
tetrominoes, a single L-shaped tromino, and a single monomino. Specifically,
we can tile the Aztec diamond of order n minus a 2—by—2L%J rectangle that
butts up against a corner of the diamond, as shown in Figure 15. This
rectangle can then be tiled by skew tetrominoes leaving only a tromino and
a monomino unaccounted for. Note, however, that the tromino and the

monomino are far apart, as the preceding lower bound on the diameter of

the untiled portion requires.
Figure 15. Variant proof-mandala.

One disadvantage of the elementary approach to Conway’s invariants that

16



has been adopted here is that the reader may be left feeling convinced but
mystified: How might anyone dream up the traffic patterns of Hoboken and
Manhattan that proved so useful here? And how can the arguments used here
for skew tetromino tilings be generalized to handle other tiling problems?
The answer lies in the notion of the tile homotopy group; the interested
reader should consult [1]. A major idea in the Conway-Lagarias paper is to
regard graphs like Figures 8 and 9 as Cayley graphs of groups, as I have
implicitly done in the way I labeled and oriented the edges. One satisfying
feature of the tile homotopy viewpoint is that coloring arguments of the
sort considered earlier turn out to be a special case of Conway’s method.
Specifically, coloring arguments are associated with abelian homomorphic
images of the tile homotopy group.

Thurston’s follow-up paper [8] presents a more geometrical way of looking
at tile homotopy that suggests that Cayley graphs of groups are not at the
heart of the method. Given a collection of subsets of the plane (to be viewed
as the set of all allowed locations of tiles), Thurston invites us to create a
topological space by taking the disjoint union of all those subsets (imagined
if you like as floating above the plane) and identifying two points on the
boundaries of two such tile-regions if they lie above the same point in the
plane. Assuming that the tiles are all simply-connected, it is easy to see that
the boundary of any tileable region corresponds to a path in Thurston’s space
that is homotopic to the trivial loop. Thus we obtain a necessary condition
for tileability from homotopy considerations, though actually exploiting this
connection may be difficult in practice without recourse to Cayley-graph
tricks. It turns out that the idea of boundary invariants can be extended
beyond the realm of tilings, using Thurston’s more geometrical approach;
details appear in [4].

I will end with an accessible puzzle that has a positive solution. The
mandala teaches us that when n = 2k? — 1, the Aztec diamond of order n can

be tiled by skew tetrominoes and k? square tetrominoes (all having the same

17



parity). Figure 5 shows us that in the case k = 3, we can arrange things
so that these k? square tetrominoes are all at the center of the diamond,

forming a 2k-by-2k square. Can you find a way to do this for all k7
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