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Coupling from the Past: a User’s Guide
James Propp and David Wilson

ABSTRACT. The Markov chain Monte Carlo method is a general technique for
obtaining samples from a probability distribution. In earlier work, we showed
that for many applications one can modify the Markov chain Monte Carlo
method so as to remove all bias in the output resulting from the biased choice
of an initial state for the chain; we have called this method Coupling From The
Past (CFTP). Here we describe this method in a fashion that should make our
ideas accessible to researchers from diverse areas. Our expository strategy is
to avoid proofs and focus on sample applications.

1. Introduction

In Markov chain Monte Carlo studies, one attempts to sample from a distri-
bution m by running a Markov chain whose unique steady-state distribution is .
Ideally, one has proved a theorem that guarantees that the time for which one plans
to run the chain is substantially greater than the mixing time of the chain, so that
the distribution 7 that one’s procedure actually samples from is known to be close
to the desired 7 in variation distance. More often, one merely hopes that this is
the case, and the possibility that one’s samples are contaminated with substantial
initialization bias cannot be ruled out with complete confidence.

The “coupling from the past” procedure introduced in [PW1] provides one
way of getting around this problem. Where it is applicable, this method delivers
samples that are governed by 7 itself, rather than 7. In the past two years, many
researchers have found ways to apply the basic idea in a wide variety of settings. To
paraphrase Wilfrid Kendall, one of the first to jump into the fray: “We must now
be more ambitious about our simulation objectives. We can no longer be content
merely with long-run approximations to equilibrium distributions but instead must
strive after perfection” [K].

Coupling from the past (hereafter CFTP) is based on what Kendall calls sto-
chastic flows (in discrete or continuous time). We restrict attention for now to
the discrete-time, finite-state version. Given a finite state-space X, a discrete-
time stochastic flow on X is a random process indexed by discrete time taking
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its values in the set of maps from X to itself. Tf one lets f; denote the (ran-
dom) map at time 7, then the stochastic flow determines “streamlines” of the form
(z, fi(2), fiv1(fi(2)),...). Just as the Markov chain Monte Carlo method is predi-
cated on the availability of rapidly-mixing Markov chains, CFTP is predicated on
the availability of rapidly-coalescent stochastic flows, in which there is a strong
tendency for the streamlines to converge. (Note that once two streamlines have
converged, they coincide forever after.)

It is worth stressing at the outset that CFTP is especially valuable as an alter-
native to standard Markov chain Monte Carlo when one is working with stochastic
flows for which one suspects, but has not proved, that rapid coalescence occurs. In
such cases, the availability of CFTP makes it less urgent that theoreticians obtain
bounds on time-to-coalescence, since CFTP (unlike Markov chain Monte Carlo)
cleanly separates the issue of efficiency from the issue of quality of output. That is
to say, one’s samples are guaranteed to be uncontaminated by initialization bias,
regardless of how quickly or slowly they are generated. (See section 7 for a dis-
cussion of how to avoid subtle sources of error arising from the variability of the
running time of the procedure.)

Even if one has rigorously proved that rapid mixing occurs (as Randall et al.
have done [LR.S] and [MR] for the particular application for which CFTP was orig-
inally invented), CFTP may be preferable to the usual Markov chain Monte Carlo
strategy of running the system until it is “well-mixed” (e.g., running the system
until the variation distance between 7 and 7 is less than 107°¢). For one thing, the
bounds that have been obtained may be unduly pessimistic. Even if the bounds
are tight, CFTP may be the preferred option. Consider, for instance, a situation
in which a rigorous upper bound on mixing time has been obtained via coupling
methods. On the one hand, the standard Monte Carlo approach would require
running the Markov chain for some multiple of the estimated mixing time, and this
multiple grows without bound as the desired bound on variation distance shrinks.
On the other hand, the fact that the bound on mixing time was proved using cou-
pling techniques is likely to be symptomatic of the existence of a natural way of
realizing the Markov chain as part of a stochastic flow whose time-to-coalescence is
equal (or comparable) to the mixing time of the chain; if this is the case, one can
reduce the initialization bias to zero by running the Markov chain under CFTP for
a (random) duration whose expected value is bounded by a fixed multiple of the
mixing time.

As an historical aside, we mention that the conceptual ingredients of CFTP
were in the air even before the versatility of the method was made clear in [PW1].
Precursors include Letac [Le], Thorisson [T], and Borovkov and Foss [BF]. Even
back in the 1970’s, one can find foreshadowings in the work of Ted Harris (on the
contact process, the exclusion model, random stirrings, and coalescing and anni-
hilating random walks), David Griffeath (on additive and cancellative interacting
particle systems), and Richard Arratia (on coalescing Brownian motion). One can
even see traces of the idea in the work of Loynes [Lo] thirty-five years ago.

2. Coupling from the past

Computationally, one needs three things in order to be able to implement the
CFTP strategy: a way of generating (and representing) certain maps from X to
itself; a way of composing these maps (so as to be able to simulate the flow for many
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time-steps); and a way of ascertaining whether total coalescence has occurred, or
equivalently, a way of ascertaining whether a certain composite map (obtained by
composing many random f’s) collapses all of X to a single element.

The first component is what we call the random map procedure; we model it
as an oracle that on successive calls returns independent, identically distributed
functions f from X to X, governed by some selected probability distribution P
(typically supported on a very small subset of the set of all maps from X to itself).
We use the oracle to choose independent, identically distributed maps f_1, f—2, f—3,

.y J=n~, where how far into the past we have to go (/N steps) is determined during
run-time itself. The defining property that N must have is that the composite map
FouE fiofsofgo-ofn
must be collapsing. Finding such an N thus requires that we have both a way of
composing f’s and a way of testing when such a composition is collapsing. (Having
the test enables one to find such an N, since one can iteratively test ever-larger
values of NV, say by successive doubling, until one finds an N that works. Such an N
will be a random variable that is measurable with respect to f_n, fon41,.- ., f=1.)

Once a suitable N has been found, the algorithm outputs F° y(z) for any z € X
(the result will not depend on =z, since F is collapsing). We call this output the
CFTP sample. Tt must be stressed that when one i1s attempting to determine a
usable N by guessing successively larger values and testing them in turn, one must
use the same respective maps f; during each test. That is, if we have just tried
starting the chain from time —N; and failed to achieve coalescence, then, as we
proceed to try starting the chain from time —Ny < —Nj, we must use the same
maps f-n,, f-Ny+1, ---, f—1 as in the preceding attempt. Failure to abide by this
principle “voids the warranty” of our algorithm.

We showed in [PW1] that, as long as the nature of P guarantees (almost
sure) eventual coalescence, and as long as P bears a suitable relationship to the
distribution 7, the CFTP sample will be distributed according to . Specifically,
it 1s required that P preserve m in the sense that if a random state x is chosen in
accordance with m and a random map f is chosen in accordance with P, then the
state f(x) will be distributed in accordance with .

We will not repeat here the proof, whose simplicity makes it seem rather amaz-
ing that the idea was not exploited sooner. Our goal is to show that designing
good stochastic flows for CFTP is not much harder than designing good Markov
chains for Monte Carlo, and to argue that the Monte Carlo community should be
looking for opportunities to apply these ideas. We will give several applications of
the CFTP philosophy, and conclude with some words of warning about the proper
use of CFTP algorithms.

The article [PW1] gives many examples of situations in which CFTP works
by virtue of monotonicity. In particular, there is a “top state” 1 and a “bottom
state” 0, and the random maps f that have positive probability under P have the
property that a composite map F is collapsing if and only if F(0) = F(1). There
are many situations in which this is the case for non-obvious reasons, e.g., the hard-
core model on a bipartite graph [KSW]. However, in this article we will focus on
situations in which this simple state of affairs does not prevail.

For an interesting attempt to embed CFTP in a general probabilistic frame-
work, see the article by Foss and Tweedie [FT]. For a discussion of the many uses of
the notion of backwards composition of random maps, see the forthcoming survey
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article by Diaconis [D]. For an on-line bibliography on perfect random sampling
using Markov chains, see http://dimacs.rutgers.edu/~dbwilson/exact.html.

3. The hard-core model

The states of this model are given by subsets of the vertex-set of a finite graph
G, or equivalently, by 0, 1-valued functions on the vertex-set. We think of 1 and
0 as respectively denoting the presence or absence of a particle. In a legal state,
no two adjacent vertices may both be occupied by particles. The probability of
a particular legal state is proportional to A, where m is the number of particles
(which depends on the choice of state) and A is some fixed parameter-value. We
denote this probability distribution by 7. That is, 7(S) = M51/Z where S is a
state, || is the number of particles in that state, and Z =5 "¢ AST

Luby and Vigoda [LV] provide a simple Markov chain Monte Carlo procedure
for randomizing an initial hard-core state. The random moves they consider are
determined by a pair of adjacent vertices u, v and a pair of numbers i, j with (i, 5)
equal to (0,0), (0,1), or (1,0). They assume that the pair u, v is chosen uniformly
from the set of pairs of adjacent vertices in GG, and that (7, j) is (0, 0) with probability
H—%’ (0,1) with probability H—%’ and (1,0) with probability H—% Once such a
quadruple u, v, 4, j is chosen, the algorithm proposes to put a vacancy (resp. particle)
at vertex w if ¢ is O (resp. 1), and similarly for v and j; if the proposed move would
lead to an illegal state, it is rejected, otherwise it is accepted. It is not hard to show
that this randomization procedure has m as its unique steady-state distribution.

Luby and Vigoda show that as long as A < ﬁ, where A > 4 1s the maximum
degree of (&, this Markov chain is rapidly mixing. They do this by using a coupling
argument: two initially distinct states, evolved in tandem, tend to coalesce over
time. That is, the authors implicitly embed the Markov chain in a stochastic flow.
As such, the method cries out to be turned into a perfect sampling scheme via
CFTP.

This is easy to do. One can associate with each set of hard-core states a three-
valued function on the vertex-set, where the value “1” means that all states in the
set are known to have a particle at that vertex, the value “0” means that all states
in the set are known to have a vacancy at that vertex, and the value “?” means that
it is possible that some of the states in the set have a particle there while others
have a vacancy. We can operate directly on this three-valued state-model by means
of simple rules that mimic the Luby-Vigoda algorithm on the original two-valued
model.

More specifically, we start with a three-valued configuration in which the ad-
jacencies 0-0, 0-7, and 7-7 are permitted but in which a 1 can only be adjacent to
0’s. Proposals are still of the form (0,0), (0,1), (1,0), and they still have respec-
tive probabilities 2)\1+1, 2;:'_1, 2;:'_1, but proposals are implemented differently.
When 1t is proposed to put 0’s at u and v, the proposal 1s always accepted. When
it 18 proposed to put 0 at u and 1 at v, there are three cases. If all the vertices ad-
jacent to v (other than u) have a 0, the proposal is accepted. If any vertex adjacent
to v (other than u) has a 1, the proposal is simply rejected and nothing happens.
However, if vertex v has a neighbor (other than u) that has a 7 but no neighbor
(other than u) that has a 1, then v gets marked with ? and u also gets marked with
? (unless u was already 0, in which case the marking of u does not change). When

and
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it is proposed to put 1 at w and 0 at v, the same procedure 1s followed, but with
the roles of u and v reversed.

In short, we can take the work of Luby and Vigoda and, without adding any
new ideas, check that their way of coupling two copies of the Luby-Vigoda Markov
chain extends to a stochastic flow on the whole state-space. Moreover, this flow
can be simulated in such a way that coalescence is easily detected: it is not hard to
show that if the 0,1,7 Markov chain, starting from the all-?’s state, ever reaches a
state in which there are no ?’s, then the Luby-Vigoda chain, using the same random
proposals, maps all initial states into the same final state. Hence we might want
to call the 0,1,7 Markov chain the “certification chain”, for it tells us when the
stochastic flow of primary interest has achieved coalescence.

One might fear that it would take exponentially long for the certification chain
to certify coalescence, but the proof that Luby and Vigoda give carries over straight-
forwardly to the three-valued setting, and shows that the number of ?’s tends to
shrink to zero in polynomial time (relative to the size of the system).

It should be mentioned that Haggstrom and Nelander [HN] have another ap-
proach to the hard-core model, in which only one vertex at a time needs to be
modified, and that their approach makes use of the very interesting notion of anti-
monotone CFTP which has its roots in the work of Kendall on repulsive point-
processes. Work of Randall and Tetali [RT], in conjunction with the Luby-Vigoda
result, implies that the single-site heat-bath Markov chain studied by Haggstrom
and Nelander is also rapidly mixing for A < ﬁ.

4. Point-processes with attractive or repulsive interaction

The states of this model are given by discrete subsets of a finite or infinite region
of a Euclidean space; for simplicity, we will focus on finite regions. Typically, such
processes are defined via a Radon-Nikodym density with respect to the unit-rate
Poisson process on the region, and the density rewards or penalizes configurations
in which points are close together. (One typical way of measuring clustering is to
take the volume of a union of balls of fixed radius, centered on the points in the
discrete set; the more the points cluster together, the smaller this volume will be.)

This might seem like an unpromising area for CFTP, since the state space is
uncountable. However, there is a kind of monotonicity in the model, and Kendall
[K] figured out a way to exploit this. (Strictly speaking, the system is monotonic
in the attractive case and anti-monotonic in the repulsive case; for now, we focus
on the attractive case.)

Kendall effectively constructs a continuous-time stochastic flow. This flow can
be modeled as a censored version of a birth/death process whose state at any instant
is a point process, and for which the behavior in time is that points get added to the
current state, remain alive for an exponentially-distributed random time, and then
die. Births are proposed in accordance with Poisson distribution in space-time, but
not all proposed births are accepted; proposals are accepted/rejected randomly,
with the probability of acceptance being higher when there are one or more “alive”
points nearby.

To apply CFTP, one picks an integer N and evolves the system from time — N
to time 0, using two different starting states. In one of these states, no particles are
present at time —N; the other state is generated by an interaction-free birth/death
process (call it P) conceived of as running from time —oo to time 0 with censorship



6 JAMES PROPP AND DAVID WILSON

turned off up until time —N. The two initial states are evolved in tandem, in
accordance with the rules for accepting or rejecting births, using the same random
proposals for birth and death events for both cases. If the two simulations agree
at time 0, then coalescence occurs over the time-interval [N, 0] and the state at
time 0 can be delivered as the unbiased CFTP sample. If the two simulations
disagree, then a larger window [— N’ 0] must be tried, using the same realization of
the Poisson birth/death process P (this time via its state at time —N’) and using
the same birth/death proposals on the interval [—N, 0] as before. In practice the
realization of the Poisson birth/death process on the window [—N’, 0] is built from
the one on the window [— N, 0] by simulating the process starting from the state at
time —N back into the past until time —N'.

Note that in effect one is doing monotone CFTP; the interesting wrinkle is
that the “top” state is itself a random variable. It is worth pointing out that in the
anti-monotone, repulsive case, a clever variant works, in which one makes a decision
about a birth for the fop simulation in accordance with the environment that the
proposed birth faces in the bottom simulation, and vice versa. This approach of
Kendall was further developed by Haggstrom and Nelander [HN]. Also, Haggstrom,
Van Lieshout, and Mgller [HLM] have proposed an algorithm for the special case
of penetrable spheres that is simpler than Kendall’s and works faster, though it is
not as amenable to generalization.

It should also be mentioned that CFTP may have theoretical as well as practical
significance for such models. For, it gives a way of coupling together different point-
processes (by having them hitch a ride on the same Poisson realization). Indeed,
what Kendall actually does is associate with each proposed birth a random number
chosen uniformly in [0, 1], and the proposal is accepted if and only if the random
number falls between 0 and a configuration-specific probability threshold. To get
an informative coupling between two models, one should use the same numbers
in [0, 1] (called “marks” by Kendall). Such joint realizations of two processes can
allow one to prove comparative assertions that might otherwise be quite difficult to
establish.

Finally, we mention that the article of Murdoch and Greene [MG] has other
interesting applications of CFTP to continuous state-spaces.

5. Spanning arborescences with specified root

Let G be a strongly connected directed finite graph with positive weights as-
sociated with its arcs. (These assumptions are convenient pedagogically, but they
are more stringent than the best theorems require.) A (spanning) arborescence in
G with root r is an acyclic directed subgraph of GG in which r has out-degree 0
and every other vertex has out-degree 1. We define the weight of an arborescence
as the product of the weights of its constituent arcs. This determines a unique
probability distribution 7 on the set of arborescences for which the probability of
each arborescence is proportional to its weight. Propp and Wilson [PW2] consider
the problem of sampling from this distribution =.

A much-studied Markov chain for arborescences can be defined in terms of
biased random walk on &, where the transition-probabilities from a vertex v to each
of its neighbors are proportional to the weights of the respective arcs connecting
v to those vertices. If the current arborescence is rooted at r, one can get a new
arborescence by adding an arc from r to s (where s is a random successor of r
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under the random walk on ) and deleting the arc that used to emanate from s. Tt
is well known that 7 is the unique stationary probability measure for this Markov
chain on the set of arborescences of GG. (This bit of folklore was first published by
Anantharam and Tsoucas [AT].)

If two arborescences have the same root, there is an obvious way to simulate
their future jointly, by having the root take the same random walk in G. This
coupling has the property that the two arborescences will continue to have the
same root. Moreover, this stochastic flow 1s rapidly coalescent if the cover-time
of the random walk on (' is not too large. To see this, note that at any instant,
the unique arc emanating from any vertex v other than the current root is the arc
that the random walk took on its most recent departure from v. Hence when the
random walk has visited all vertices, the two arborescences must have coalesced.

To cash in on this, we define a stochastic flow whose states are arborescences
of (G rooted at a fixed vertex r. To advance this flow, we perform a random walk
on G that starts at r and walks until it next encounters r; we call the walk a
random excursion from r to r. While this excursion 1s going on, we repeatedly
update each of the arborescences in the fashion already described, in accordance
with the latest step of the random walk. If the excursion happens to cover GG, then
all the updated arborescences will be identical; this is, the random map associated
with this excursion (a map from the set of arborescences rooted at r to itself) is a
collapsing map. More generally, if during a succession of excursions the root visits
every vertex of (¢, the corresponding composition of random maps is collapsing.

There is a simple way of describing the effect that an excursion F has on any
spanning arborescence A rooted at r. The effect of the excursion can be summarized
by an array f indexed by the vertices of the graph. We write f[v] when we think of
f as an array and wish to refer to the entry indexed by vertex v, and we write f(A)
when we think of f as the “tree-map” associated with the excursion ' and wish
to refer to the arborescence A’ that arises from A as a result of the excursion FE.
For all vertices v other than r that were visited during excursion E, let f[v] be the
vertex of G that was visited immediately following the last visit to ¥ made during
the excursion; for all other vertices v, let f[v] be undefined. If f[v] is undefined
(and v is not the root), then the excursion never visited v, so the arc out of v in A’
is the same as the arc out of v in A. If f[v] = w, then the last time the excursion
visited v, the next vertex was w, so the arc out of v in A’ leads to w. So the array f
does indeed contain all the information about the tree-map defined by the excursion
from the root to itself. The tree-map defined by any finite sequence of excursions
is similarly representable by an array indexed by the vertices of the graph.

To obtain a procedure for randomly generating spanning arborescences, one
needs not only a way to represent and randomly generate tree-maps, but also a
way to compose them, and a way to detect when a tree-map is a collapsing map.
Composing tree-maps is easy: The combined effect of two excursions with respective
tree-maps f and g (with the g-excursion preceding the f-excursion in time) is the
tree-map f o g, where the array entry (f o g)[v] is equal to f[v] unless f[v] was
undefined (corresponding to the situation in which the excursion associated with
f did not visit v), in which case (f o g)[v] is equal to g[v] (which may itself be
undefined). Finally, detecting when coalescence has occurred is simple: one merely
checks that f[v] is defined for all v other than the root. Hence we can use CFTP to
generate random rooted spanning trees, via prepended excursions; further details
can be found in [PW2].
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If one wants to use CFTP to generate a random spanning arborescence of a
graph without specifying a root, then one might think one needs a way to couple
histories in which two arborescences start out with different roots. That is, one
might try to do away with the notion of excursions and simply let the stochastic
flow advance one step at a time, so that eventually the roots coincide. Such an
approach might be workable, but we have proposed a different way. Specifically,
in [PW2] we suggest that one first choose a random vertex 7 to serve as the root,
where 7 is governed by the steady-state distribution for the random walk on G, and
then apply the procedure for finding a random arborescence with root r. A CFTP-
based procedure for choosing such an » is described in the next section (although
the non-CFTP-based method called cycle-popping, described in [PW2], is likely to
be superior in most applications).

We also mention that in the case where one knows the transition probabilities
for the time-reversal of the random walk on 7, the procedure for determining the
latest starting time —N that leads to coalescence by time 0 is simple: one simply
runs the walk backwards from time 0 into the past until all vertices have been
visited. Two such cases are (unweighted) random walk on an undirected graph and
(unweighted) random walk on an Eulerian directed graph (a directed graph in which
each vertex has its in-degree equal to its out-degree). In the first case, the CFTP
algorithm is effectively equivalent to the random walk method of Aldous [A1] and
Broder [B]; in the second case, the CFTP algorithm is effectively equivalent to the
random walk method of Kandel, Matias, Unger, and Winkler [KMUW].

Finally, we stress that CFTP is only one of many schemes for generating random
spanning arborescences; see [PW2] for others.

6. Random state of an unknown Markov chain

Now we come to a problem that in a sense encompasses all the cases we have
discussed so far: the problem of sampling from the steady-state distribution m(-) of
a general Markov chain. Of course, in the absence of further strictures this problem
admits a trivial “solution”: just solve for the steady-state distribution analytically!
In the case of the systems studied in sections 3 through 5, this is not practical,
since the state spaces are large. We now consider what happens if the state space
is small but the analytic method of simulation is barred by imposing the constraint
that the transition probabilities of the Markov chain are unknown: one merely has
access to a black box that simulates the transitions.

It might seem that, under this stipulation, no solution to the problem is possi-
ble, but in fact a solution was found by Asmussen, Glynn, and Thorisson [AGT].
However, their algorithm was not very efficient. Subsequently Aldous [A2] and
Lovész and Winkler [LW] found faster procedures (although the algorithm of Al-
dous involves controlled but non-zero error). The CFTP-based solution given below
is even faster than that of Lovasz and Winkler.

For pictorial concreteness, we envision the Markov chain as biased random
walk on some directed graph G whose arcs are labeled with weights, where the
transition probabilities from a given vertex are proportional to the weights of the
associated arcs (as in the preceding section). We denote the vertex set of G by X,
and denote the steady-state distribution on X by 7. Propp and Wilson [PW2] give
a CFTP-based algorithm that lets one sample from this distribution .
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Our goal is to define suitable random maps from X to X in which many states
are mapped into a single state. We might therefore define a random map from X to
itself by starting at some fixed vertex r, walking randomly for some large number N
of steps, and mapping all states in X to the particular state v that one has landed
in after N steps. However, v is subject to initialization bias, so this random map
procedure typically does not preserve 7w in the sense defined in section 2.

What actually works is a multi-phase scheme of the following sort: Start at
some vertex r and take a random walk for a random amount of time 77, ending
at some state v; then map every state that has been visited during that walk to v.
In the second phase, continue walking from v for a further random amount of time
Ty, ending at some new state v’; then map every state that was visited during the
second phase but not the first to v/. In the third phase, walk from v’ for a random
time to a new state v”, and map every hitherto-unvisited state that was visited
during that phase to the state v". And so on. Eventually, every state gets visited,
and every state gets mapped to some state. Such maps, like tree-maps, are easy
to compose, and it is easy to recognize when such a composition is coalescent (it
maps every state to one particular state).

There are two constraints that our random durations 77, T, ... must satisfy
if we are planning to use this scheme for CFTP. (For convenience we will assume
henceforth that they T;’s are i.i.d.) First, the distribution of each T; should have
the property that, at any point during the walk, the (conditional) expected time
until the walk terminates does not depend on where one is or how one got there.
This ensures that the stochastic flow determined by these random maps preserves .
Second, the time for the walk should be neither so short that only a few states get
visited by the time the walk ends nor so long that generating even a single random
map takes more time than an experimenter is willing to wait. Ideally, the expected
duration of the walk should be on the order of the cover-time for the random walk.
Propp and Wilson [PW2] show that by using the random walk itself to estimate its
own cover-time, one gets an algorithm that generates a random state distributed
according to 7 in expected time at most 15 times the cover time.

At the beginning of this section, we said that one has access to a black box that
simulates the transitions. This is, strictly speaking, ambiguous: Does the black box
have an “input port” so that we can ask it for a random transition from a specified
state? Or are we merely passively observing a Markov chain in which we have
no power to intervene? This ambiguity gives rise to two different versions of the
problem, of separate interest. Qur CFTP algorithm works for both of them.

For the “passive” version of the problem, it is not hard to show that no scheme
can work in expected time less than the expected cover time of the walk, so in this
setting our algorithm runs in time that is within a constant factor of optimal. It is
possible to do better in the active setting, but no good lower bounds are currently
known for this case.

7. Caveats

Of course a major warning that should come on the “packaging” of all al-
gorithms that purport to generate random objects is that we do not know of any
source of truly random bits, and that if we found one we would not be able to prove
that it was random. But leaving that deep issue aside, there are other matters that
need to be addressed.
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Any time one uses a sampling scheme in which the running time is random,
one runs the risk of introducing bias if one is not careful. CFTP is no different
in this regard than most other schemes for randomly generating combinatorial or
geometric objects. Clearly if the current run of the algorithm has been running for
1000 CPU hours and shows no sign of terminating, the experimenter would be likely
to abort the run; and, in effectively discarding the output that the procedure would
have generated, had it been allowed to run through to completion, the experimenter
would risk biasing his set of samples from X in favor of those for which the procedure
tends to finish more quickly.

One way of dealing with this problem would be to devise algorithms for which
the (random) running-time is independent (or nearly independent) of the running
time; interrupting such an algorithm and discarding the current output would then
contaminate one’s collection of samples with no (or hardly any) bias. For a signifi-
cant step in this direction, see the article of Fill [F].

Another way to address the problem of bias caused by user impatience is given
by work of Glynn and Heidelberger [GH]. Under their approach, an experimenter
generates as many samples ©1, Zs, ..., z, as she can during some pre-selected time-
interval, subject to the condition that if no samples at all were generated during
that interval, she must continue her simulation until one sample is generated (giving
n = 1). This approach avoids bias in the sense that, for any function f on the space
from which one is sampling, the sample-average (f(z1) + f(z2) + -+ f(2n))/n is
an unbiased estimate for the mean value of f(z).

We suggest that the thing to do when using algorithms in which the correlation
between output and running time is unknown is to handle the premature termi-
nation problem preventatively: one should perform preliminary assays that enable
one to design an experiment that is likely to finish tolerably soon. The probability
that the duration of the experiment will exceed one’s estimated running-time by a
factor of k falls off rapidly in k. Thus the experimenter can confidently commit her-
self to running the experiment through to completion. Of course, there is always a
chance that the experiment will take so long to finish that the experimenter, despite
her intentions, will go back on her word and abort (and re-design) the experiment.
However, this probability can be made as minuscule as the experimenter desires if
she takes the time to pre-test the design of the experiment.

Even in the case where a run is interrupted, through deliberate user impatience
or technical mishap, all 1s not lost. For instance, suppose one is using perfect
simulation as a way of estimating the mean value of some quantity f(xz) via the
sample-average (f(x1) + f(x2) + -+ f(zn))/n. If one is willing to replace the
sample-average by an interval estimate, one can replace the unknown value f(z,)
(corresponding to the run that was terminated prematurely) by the interval whose
endpoints are upper and lower bounds on this quantity; in many cases, good two-
sided bounds on f(z,) may be available from the terminated run. We suggest
that a user of coupling from the past take the point of view that a prematurely
terminated run is not a failed run but a run that determined partial information
about a particular random object, namely, the random object that she would have
obtained if the run had gone through to completion. Indeed, coupling from the
past can be envisioned as a process in which more and more information about
a random object is obtained until one finally has determined 1t completely; 1t 1s
natural to extend this to situations in which one is free to decide, adaptively, that
one’s partial information is sufficient for the purpose at hand.
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