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An abelian sandpile is a collection of indistin-
guishable chips distributed among the vertices of
a graph. More precisely, it is a function from the
vertices to the nonnegative integers, indicating
how many chips are at each vertex. A vertex is
called unstable if it has at least as many chips as
its degree, and an unstable vertex can topple by
sending one chip to each neighboring vertex. Note
that toppling one vertex may cause neighboring
vertices to become unstable. If the graph is con-
nected and infinite, and the number of chips is
finite, then all vertices become stable after finitely
many topplings. An easy lemma says that the final
stable configuration is independent of the order
of topplings (this is the reason for calling sand-
piles “abelian”). For instance, start with a large
pile of chips at the origin of the square grid Z

2

and perform topplings until every vertex is stable.
The process gives rise to a beautiful large-scale
pattern (Figure 1). More generally, one obtains dif-
ferent patterns by starting with a constant number
h ≤ 2d−2 of chips at each site in Z

d and adding n
chips at the origin; see Figure 3 for two examples.

Sandpile dynamics have been invented numer-
ous times, attached to such names as chip-firing,
the probabilistic abacus, and the dollar game. The
name “sandpile” comes from statistical physics,
in which the model was proposed in a famous
1987 paper of Bak, Tang, and Wiesenfeld as an
example of self-organized criticality, or the ten-
dency of physical systems to drive themselves
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toward critical, barely stable states. In the original

BTW model, chips are added at random vertices

of an N ×N grid in Z
2. Each time a chip is added,

it may cause an avalanche of topplings. If this

avalanche reaches the boundary, then topplings at

the boundary cause chips to disappear from the

system. In the stationary state, the distribution of

avalanche sizes has a power-law tail: very large

avalanches occur quite frequently (e.g., the ex-

pected number of topplings in an avalanche goes

to infinity with N).

To any finite connected graph G we can asso-

ciate an abelian group K(G), called the sandpile

group. This group is an isomorphism invariant

of the graph and reflects certain combinatorial

information about the graph. To define the group,

we single out one vertex of G as the sink and

ignore chips that fall into the sink. The operation

of addition followed by stabilization gives the

set M of all stable sandpiles on G the structure

of a commutative monoid. An ideal of M is a

subset J ⊂ M satisfying σJ ⊂ J for all σ ∈ M .

The sandpile group K(G) is the minimal ideal of

M (i.e., the intersection of all ideals). The minimal

ideal of a finite commutative monoid is always

a group. (We encourage readers unfamiliar with

this remarkable fact to prove it for themselves.)

K(G) is independent of the choice of sink up to

isomorphism.

One interesting feature of constructing a group

in this manner is that it is not at all obvious what

the identity element is! Indeed, for many graphs G

the identity element of K(G) is a highly nontrivial

object with intricate structure (Figure 2).

To realize the sandpile group in a more concrete

way, we can view sandpiles σ as elements of the

free abelian group Z
V , whereV is the set of nonsink
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vertices of G. Toppling a vertex v corresponds to

adding the vector ∆v to σ , where

∆v,w =





−d(v) if v = w ,

1 if v ∼ w ,

0 otherwise.

Here v ∼ w denotes adjacency in G, and d(v) is

the degree of vertex v . This observation suggests

that we view two vectors σ,τ ∈ Z
V as equivalent

if and only if their difference lies in the Z-linear

span of the vectors ∆v .
The sandpiles lying in the minimal ideal ofM are

called recurrent. It turns out that each equivalence

class in Z
V contains exactly one recurrent sandpile,

and hence

K(G) = Z
V/∆ Z

V .

The matrix ∆ = (∆v,w) is called the reduced

Laplacian of G (it is reduced because it does

not include the row and column corresponding

to the sink vertex). According to the matrix-tree

theorem, the determinant det∆ counts the number

of spanning trees of G. This determinant is also

the index of the subgroup ∆Z
V in Z

V , and so the

order of the sandpile group equals the number of
spanning trees.

A refinement relates sandpiles to the Tutte

polynomial T(x, y) of G. The number of spanning

trees of G equals T(1,1). By a theorem of Merino

López, T(1, y) equals the sum of y |σ |−m+δ over all

recurrent sandpiles σ , where δ is the degree of

the distinguished sink vertex, m is the number of

edges of G, and |σ | denotes the number of chips

in σ .

The sandpile group gives algebraic manifesta-
tions to many classical enumerations of spanning

trees. For example, Cayley’s formula nn−2 for the

number of spanning trees of the complete graph

Kn becomes

K(Kn) = (Zn)n−2,

and the formula mn−1nm−1 for the number of

spanning trees of the complete bipartite graph

becomes

K(Km,n) = Zmn × (Zm)n−2 × (Zn)m−2.

The name “sandpile group” is due to Dhar, who

used the group to analyze the BTW sandpile model.

A deep analogy between graphs and algebraic

curves can be traced back implicitly to a 1970

theorem of Raynaud, which relates the component

group of the Neron model of the Jacobian of a

curve to the Laplacian matrix of an associated
graph. In this analogy, the sandpile group of

the graph plays a role analogous to the Picard

group of the curve. Many of the authors who

explored this analogy chose different names for the

sandpile group, including “group of components”

(Lorenzini), “Jacobian group” (Bacher et al.) and

“critical group” (Biggs). Recent work of Baker and

Figure 1. Stable sandpile of n = 106n = 106n = 106 chips in Z
2

Z
2

Z
2.

Color scheme: sites colored blue have 333 chips,
purple 222 chips, red 111 chip, white 000 chips.

Figure 2. Identity element of the sandpile
group of the 523× 523523× 523523× 523 square grid graph, with
all boundary vertices identified and taken as
the sink. Color scheme: sites colored blue
have 333 chips, green 222 chips, red 111 chip,
orange 000 chips.

Norine carries the analogy further by proving a

Riemann-Roch theorem for graphs.

The odometer of a sandpile σ is the function

on vertices defined by

u(v) = # of times v topples

during the stabilization of σ.

The final stable configuration τ is given in terms

of σ and u by

τ = σ +∆u.
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Figure 3. Left: A two-dimensional slice through the origin of the sandpile of n = 5 · 106n = 5 · 106n = 5 · 106 particles in
Z

3
Z

3
Z

3 on background height h = 4h = 4h = 4. Right: The sandpile ofm = 47465m = 47465m = 47465 particles in Z
2

Z
2

Z
2 on background

height h = 2h = 2h = 2. Color scheme on left: sites colored blue have 555 particles, turquoise 444, yellow 333, red 222,
gray 111, white 000. On right: blue 333 particles, turquoise 222, yellow 111, red 000.

In particular, u obeys the inequalities

u ≥ 0,(1)

σ +∆u ≤ d − 1.(2)

One can show that the sandpile toppling rule
implies a kind of least action principle: the odome-

ter function is the pointwise minimum of all
integer-valued functions u satisfying (1) and (2).

The least action principle says that sandpiles
are “lazy” in a rather strong sense: even if we

allow “illegal” toppling sequences that result in
some vertices having a negative number of chips,

we cannot stabilize σ in fewer topplings than
occur in the sandpile dynamics. What is more,

sandpiles are locally lazy: not only is the total
number of topplings minimized, but each vertex

does the minimum amount of work required of it
to produce a stable final configuration.

The least action principle characterizes the
odometer function as the solution to a type of

variational problem in partial differential equa-
tions called an obstacle problem. The problem

takes its name from an equivalent formulation in
which one is given a function called the obstacle

and asked to find the smallest superharmonic
function lying above it.

The obstacle problem for the sandpile odome-
ter has one extra wrinkle, which is the constraint

that u be integer-valued. Relaxing this constraint
yields the odometer function for a different model

called the divisible sandpile, in which the discrete
chips are replaced by a continuous amount of mass

which may be subdivided arbitrarily finely during

topplings. The divisible sandpile has dramatically

different behavior: starting with mass m at the

origin in Z
2, one obtains a region Am of fully occu-

pied sites, bordered by a strip of partly filled sites.

The set Am is very nearly circular, reflecting the

rotational symmetry of the continuous Laplacian.

Amazingly, the anisotropy, as well as the intricate

patterns of Figure 1, arises entirely from the extra

integrality constraint.

Two fundamental features of sandpiles in lat-

tices Z
d remain unexplained by theorems. One is

scale invariance: large sandpiles look like scaled-

up small sandpiles. The picture in Figure 1,

rescaled by a factor of 1/
√
n, appears to have

a limit as n → ∞. The limit is a function f on the

unit square [0,1]2 which is locally constant on an

open dense subset. Each region where f is con-

stant corresponds to a patch on which the sandpile

configuration is periodic. The second unexplained

feature is dimensional reduction: d-dimensional

slices of (d + 1)-dimensional sandpiles look like

d-dimensional sandpiles, except in a region near

the origin. Figure 3 compares a sandpile in Z
2 with

a 2-dimensional slice of a sandpile in Z
3.

As a way of measuring avalanches, Dhar con-

sidered the odometer function associated with the

operation of adding a single chip to a sandpile.

Starting from the stationary state and adding a

single chip at v , let uv(w) be the expected number

of times w topples. When the system stabilizes, it

is again in the stationary state, so the expected net

change in height from topplings is∆uv(w) = −δv,w
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(here δ is Kronecker’s delta). In other words,

uv(w) = (−∆−1)v,w .

The entry (−∆−1)v,w of the inverse reduced Lapla-
cian matrix has a natural interpretation in terms
of random walks: it is the expected number of
visits to w by a random walk on G started at v and
stopped when it first visits the sink. For example,
if G is the cube of side length n in Z

d (d ≥ 3) with
sink at the boundary of the cube, then this ex-
pectation has order |v −w |2−d for v,w away from
the boundary. Summing over w , we see that the
expected number of topplings diverges as n →∞.
The situation is even more extreme for d = 2:
the expected number of times each individual site
near v topples goes to infinity with n.

References
[1] D. Dhar, Theoretical studies of self-organized

criticality, Physica A 369 (2006), 29–70.

[2] A. Holroyd, L. Levine, K. Mészáros, Y. Peres,

J. Propp, and D. B. Wilson, Chip-firing and

rotor-routing on directed graphs, 2008. http://

arxiv.org/abs/0801.3306

[3] F. Redig, Mathematical aspects of the abelian

sandpile model, Les Houches lecture notes, 2005.

http://www.math.leidenuniv.nl/~redig/

sandpilelectures.pdf

September 2010 Notices of the AMS 5


