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Coding, Information Theory (and
Advanced Modulation)

Prof. Jay Weitzen
Ball 411
Jay weltzen@uml.edu



Notes Coverage

e Course Introduction
 Definition of Information and Entropy
e Review of Conditional Probability



Class Coverage

* Fundamentals of Information Theory (4
weeks)

e Block Coding (3 weeks)

e Advanced Coding and modulation as a way
of achieving the Shannon Capacity bound:
Convolutional coding, trellis modulation,
and turbo modulation, space time coding (7
weeks)



Course Web Site

— Class notes, assignments, other materials on
web site

— Please check at least twice per week
— Lectures will be streamed, see course website



Prerequisites (What you need to
know to thrive In this class)

e 16.363 or 16.584 (A Probability class)
 Some Programming (C, VB, Matlab)
e Digital Communication Theory



Grading Policy

« 4 Mini-Projects (25% each project)
L_empel ziv compressor
 Cyclic Redundancy Check

e Convolutional Coder/Decoder soft
decision

e Trellis Modulator/Demodulator



Course Information and Text
Books

Coding and Information Theory by Wells,
plus his notes from University of Idaho

Digital Communication by Sklar, or Proakis
Book

Shannon’s original Paper (1948)
Other material on Web site



Claude Shannon Founds Science
of Information theory in 1948

In his 1948 paper,

," Claude E. Shannon formulated
the theory of data compression. Shannon
established that there is a to

data compression. This limit, called the
, Is denoted by H. The exact value of
H depends on the information source --- more

specifically, the of the source. It
IS possible to compress the source, in a lossless
manner, with close to H. It is

mathematically impossible to do better than H.
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Source Modeling

I1. Source Modeling

Cra Imagine that vou go to the ibraty. This library has a large selection of books --- say there are 100 mullion books i this ibrary. Each book in this ibraty iz
] NNON very thick --- say, for example, that each book has 100 million characters (or letters) i them. "When you get to this ibraty, vou will, in some random

: manner, select a book to check out. This chosen boolk is the information source to be compressed. The compressed book 15 then stored on your zip disk to
take home, or transmitted directly over the internet into wvour home, or whatever the case may be.

Iathematically, the bool you select iz denoted by
X = (X1, Xo, X3, X4y ...).

where A represents the whole book, X represents the first character in the bool, X represents the second character, and so on. Even though in reality

Amzi.:zbie af the length of the book is fintte, mathematically we assume that it has infinite length. The reasoning is that the book 13 5o long we can just inagine that it goes
e — on forever. Furthermore, the mathematics turn out to be surprisingly simpler if we assume an mfintte length boole, To simplify things a hittle, let us assume that

all the characters i all the bools are either a lower-case letter " a' through "2% or a SPACE (e e, cummings style of writing shall we zay). The source
alphabet, A | iz defined to be the set of all 27 possible vahies of the characters:

A = {a?b!c! d!e!f!g!h! i:Ij—! k? E!m? n? o!pl QE r?s?t! ul t:ll w!‘r'[‘:! y! z? SPAGE}'

MNoaw put yourself m the shoes of the engineer who designs the compression algorithm. She does not know m advance which bool yvou will select. A1l she knows 15 that you wall be
selecting a book from this library. From her perspective, the characters in the book (Xj, i = 1,2,...) are random variables which take values on the alphabet A . The whole

book, & is just an infinite sequence of randeom variables -- that is & is a random process. There are several ways in which this engineer can model the statistical properties of the
baoolk.

11



Zero order models

A Zero-Order Model: Each character is statistically ndependent of all other characters and the 27 possible values in the alphabet A are equally lkely to occur. If this medel
15 accurate, then a typical opening of a book would lock like this (all of these examples came directly from Shanmon's 1948 paper):

sfornl relchriffiug elpwcfiekey) fjevrkoqsghyd gqpaambkbzaacibelhjnd

This does not look like the writing of an inteligent being. In fact, it resembles the writing of a *"monkey sitting at a typewriter."

It has been said, that if you get enough monkeys, and sit them down at enough

typewriters, eventually they will complete the works of Shakespeare 1



First Order Model

B First-Order Model: We know that in the English language some letters ocour more frequently than others. For example, the letters "a' and "e' are more common than "o and
"2 Thus, in this model, the character are still mdependent of one another, but the probability distnbution of the characters are according to the first-order statistical
distribution of English testt A typical test for this model looks like this:

ocroh bl rgwer nimielwis eu ll nbnesebya th eet alhenhttpa cobttva nah brl

13



Higher Order Models

C. Second-Order Model: The previous two models assumed statistical independence from one character to the nest. This dees not accurately reflect the nature of the English
language. For exaftple, some letters in thi# sent#nce are mizsiftg. However, we are still able to Hgure out what those letters should have been by looking at the context. This
implies that there are some dependency between the characters. MNaturally, characters which are in close proximity are more dependent than those that are far from each
other. In this model, the present character X; depends on the previous character X; 1 but it is conditionally independent of all previous characters (X1, Xa,... , X; 2).

According to this model, the probability distribution of the character X wvaries according to what the previous character X;_1 is. For example, the letter "' rarely occurs

(probabiity=0.022). However, given that the previous character is "o, the probabdity of a "u' in the present character is much higher (probability=0.993). For a complete
dezcription, see the second-order statistical distibution of English text. A typical test for thiz model would look likee this:

of 18 antsoutinys are tinctore st be 5 deamy achin d donasive tucoowe at teasonare faso tizin andy tobe seace chishe

D Third-Order Model This is an extension of the previous model Here, the present character X depends on the previous two characters (X;_p, X 1) butitis
conditionally mdependent of all previous characters before those: (X, Xa,... , X;_3). Inthis model, the distribution of X; wvaries according to what (X;_2, X;_1) are.
=ee the third-order statistical distibution of English test. & typical test for this model would lock like this:

i 1o 15t lat whey cratict froure bars grocid pondencme of demonstures of the reptagin 1s regoactiona of cre

The resemblance to ordinary English test mereases quite noticeably at each of the above steps.

E  General Model: In this model, the book & is an arbitrary stationary random process. The statistical properties of this model are too complex to be deemed practical. This

model i3 interesting only from a theoretical point of wew.

14
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Definition of Entropy

Shannon used the ideas of randomness and entropy from the
study of thermodynamics to estimate the randomness (e.g.
Information content or entropy) of a process

M~

Evtropy & A H(A) 2 Z ’%z(ﬂ_,)
ant & H 3 o« bit”

Entropy Is a measure of predictability or randomness

23



Entropy in a nut-shell

Low Entropy High Entropy

..the values (locations
of soup) sampled
entirely from within
the soup bowl

..the values (locations of
soup) unpredictable...
almost uniformly sampled
throughout our dining room
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S
Example
A = §o,|
7 =3
H (A) = 4 ) e
) = 2’071(7}2)1"1'_‘ !oh T,'r;_)
= 2.-&!@’:(2) = | bi+




Quick Review: Working with
Logarithms

Unit Contveriions

_ ,@M(XI - lo 10(%)
09, [x) = O 1;};,0(2)

lo; (7(*\/) = ]ﬁg (%) + log ‘7)

log(%7) = )+l ()
log (1) =0 log(0) = -00
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Entropy of English Alphabet

E. First-Order Model: The characters are statistically independent. Let ™ be the size of the alphabet and let i be the probability of the i-th letter in the alphabet. The entropy

rate 13

H=- z p;log, p;  bits/character.
=1

TTsing the first-order distribution, the entropy rate of English text would have been 4.07 bits/character had thiz been the correct model

30



g.% University
ofldaho

Dy
sende M ewory less S
ource

(A
OS HA) S

| A={a
JqIJ"'JqH-;E ,Al';M

Fa =17
OJfJ'III‘
Loy Prlag a,]
) ‘=ﬂ'
4.}

o,

H(A)=
b i)




g‘.fé Universityofldaho
whet E’q Mo) il Res H(A’\ 7

M#Xeram;. H(A] lm,ahn .
JHA _ . 9HA
af’; J 95‘;‘1
Sub;ﬂ‘l" 4o & constraint

Z# =

a,eh

@




# Universityofldaho

H&ncf/ ‘nm; '»Lo kuow -

)= X+ dm(x)
dE - A mon] = e x4

&

. i (X)
‘7‘ Jmft)

= (X)) + |

R(4) = 2% los: ()

Q&A

o L el)

) q.ea




% Universityofldaho

Hiay= Ly 27 dnl )
3,

{ i%;
P o _
ja%..fc: 3P z

JH(4)
T{ = m‘_h(ﬂ +l




%fé Universityofldaho @
Wt about Coushmiat Zﬂ = ?

Y
Handy Jrick H(A) +0 = H(a)
M- ) bt am)r C.aﬂ.ﬁ"l"l-f.
Than
% -1) =0
(& -

Lagrange multi gl iers

W)= o5 Zekle) +3(Ze 1)

aeh Q:€A




S b wex mize H(A)
P-::ft :f'_::-‘. -.:ﬁ_‘ =

36



*Lhﬂverslwnﬂdaho
o woe H(4) = 27 3 loge (T
| a,€A
|Al=M

= M- loge (H) = lop M

auy DHS with |A]=M
O < H(A) ¢ loga (M)

)

%) |




| $% Universityorldaho -

Distusiion on set ﬂﬁ?f

o bJ"Len ‘ﬂamjs are UGVY f-om,‘/tcaw or
Vewy noulivear, Tlen resuler meth
(4.e. Caleulus, aljebrs, efc.) can be
hard +o use .

¢ Modern wut s Younded om Set m:r?f |

oo  we can wot Say 1t 1m ser
'nlewy, we Cannd Sﬂy T e
M;h'l l"' I”,

38



The entropy rate of a source 15 a number which depends only on the statistical nature of the source. If the source has a simple model, then this number
can be easily calculated. Here, we consider an arbitrary source:

while paying special attention to the case where & iz English text.

& Zero-Order Model The characters are statistically independent of each other and every letter of the alphabet, A | are equally likely to ocour.

Bounds on Entropy

X = (X1, X2, X3, Xy4,...),

Let M be the size of the alphabet. In this case, the entropy rate iz given by
H =log,m bits/character

For English text, the alphabet size 12 pe=27. Thus, f'thiz had been an accurate model for English text, then the entropy rate would have been .
H=logy 27=4.75 bitsicharacter. Sharmon in 1948

First-Order Model The characters are statistically independent. Let ™ be the size of the alphabet and let P be the probability of the i-th letter in the alphabet. The entropy

rate 15

H=-— Z p;log, p; bits/character.
i=1

TTsing the first-crder distribution, the entropy rate of English text would have been 4 .07 bits/character had this been the correct model
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Math 495 Micro-Teaching

Quick Review:
JOINT DENSITY OF
RANDOM VARIA



In this presentation, we’ll discuss the
joint density of two random variables.
This I1s a mathematical tool for

representing the interdependence of
two events.

First, we need some random
variables.

L_ots of those In Bedrock.



Let X be the number of days Fred
Flintstone Is late to work In a given
week. Then X Is a random variable;

here 1s Its density function:
-

'

N 1 [2 3
F(N)|.5 [.3].2 é??g- v

Amazingly, another resident of Bedrock is late with
exactly the same distribution. It’s...

Fred’s boss, Mr. Slate!




N 1 12 |3 Remember this means that
F(N) |.5 |.3 |.2 «/P(x:?»):.z.

Let Y be the number of days when Slate is late. Suppose we
want to record BOTH X and Y for a given week. How likely

are different pairs?

We’re talking about the joint density of X and Y, and we record
this information as a function of two variables, like this:

é%“ff
1 2 |3 This means that
35 .1 .05
15 11 [ 05° P(X=3 and Y=2) = .05.
'O :1 :1 We label it f(3,2).




N 1 |2 |3
F(N) |.5 |.3 |.2
- The first observation to make is that
Bl this joint probability function
contains all the information from
1 2 |3 the density functions for X and Y
1 (.35 [.1 |.05 | (which are the same here).
2 |.15 |.1 [.05 | Forexample, to recover P(X=3), we
3 |0 111 can add f(3,1)+f(3,2)+f(3,3).
5 The individual probability functions

recovered In this way are called
marginal.

Another observation here is that Slate is never late three days in

a week when Fred is only late once.

44



N [1 ]2 [3
F(N) |5 [.3 [.2

Since he rides to work with Fred (at least until the directing career
works out), Barney Rubble is late to work with the same probability
function too. What do you think the joint probability function for
Fred and Barney looks like?

It’s diagonal!
1 12 |3 This should make sense, since in any
week Fred and Barney are late the
f; 11510 |0 same number of days.
MR
%“F" 210 .30 This Is, In some sense, a maximum
310 (0 |2 amount of interaction: if you know

one, you know the other. P(Barney
late |Fred late)= 1 45



N

1

2

3

F(N)

S

3

2

A little-known fact: there is
actually another famous person

who is late to work like this. SPOCKI

(Pretty embarrassing for a Vulcan.)

Before you try to guess what the joint density function for Fred
and Spock Is, remember that Spock lives millions of miles (and
years) from Fred, so we wouldn’t expect these variables to

Influence each other at all.

In fact, they’re independent....




N 2 |3
F(N) |5 .3 [.2

3

15 1.1

.09 .06

.06 .04

Since we know the variables X
and Z (for Spock) are
Independent, we can calculate
each of the joint probabilities
by multiplying.

\ For example, f(2,3) = P(X=2 and Z=3)
= P(X=2)P(Z=3) = (.3)(.2) = .06.

This represents a minimal amount of
Interaction. P(spock|fred)=P(spock) 47



Dependence of two events means that knowledge of one gives
Information about the other.

Now we’ve seen that the joint density of two variables is able to
reveal that two events are independent (i and l ), completelv
dependent (.@ and 2 ), or somewhere in the middle (& and & ).

Later in the course we will learn ways to quantify dependence.
Stay tuned....
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Conditional Probability

® In many cases, we have only partial knowledge of the
outcome of an event

® Conditional probability 1s the situation in which the
probability of one event 1s influenced by that of
another event

® [t is written as

P[A/B] = “probability of event A given event B”

® Definition: The conditional probability of an event A

with respect to event B is given by

P(A|B) = Pé’?é?)
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Conditional Probability (cont’d)

® The conditional probability of B given A is
P(BIA)
® Note: P[A] 1s often called the a priori probability

P[A/B] 1s often called the a_posteriori probability

P[A/BE] is large P[A/B] 1s small
|
® The idea of conditional PIAIC] _ AC

P[C] C'.

probability can often be .
drawn out in the form of < [
a tree diagram il
i PID D<
P[B/D

(probability tree)
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Definition of conditional probability

e If P(B) is not equal to zero, then the conditional probability of A
relative to B, namely, the probability of A given B, is

P(A N B)
P(B)

P(AIB) =

P(AnB) = P(B) e P(A|B)
or
P(AnB) = P(A) e P(B|A)
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Conditional Probability

P(AN B) 025

P(A)=0.25+0.25=0.50 P(A|B) = = — 0357
P(B) =0.45+ 0.25=0.70 P(B) 0.70

P(A’) =1-0.50=0.50 P(An B) 025

P(B’)= 1-0.70 =0.30 P(B|A) = =——=05

P(A) 050
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Some Observations:

* In previous Slides P(Fred late and Spock
late) were independent
— Therefore P(Fred|Spock)
=P(Fred)P(spock)/P(spock)=P(Fred)
* P(Fred late and Barney late) are totally
dependent
— P(Fred|Barney)=1

58



Law of Total Probability

IfB,, B,,......, and B, are mutually exclusive events of which
one must occur, then for any event A

P(A) = P(B,)- P(A[B,) + P(B,)-P(A|B,)+.....+P(B,)- P(A|B,)

Special case of rule of Total Probability

P(A) = P(B)-P(A|B)+P(B)-P(AB)
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Bayes Theorem

Useful Probability Relationships
P(4+ B)=P(A)+ P(B)- P(4B)
P(AB)
P(B)
« This is known as Conditional Probability. It

simply gives us the probability that event A4
occurs GIVEN that B occurred. Likewise, we

n
ave P(o14)- P(AB)(: P(AB)P(B)}

P(4) P(4)

P(4B)=

* This is known as “Bayes Rule”.

* Finally, 4 and B are gstatistically independent iff
P(4AB)= P(4)P(B)



Useftul Properties
 Chain Rule for Probabilities:

PUA Ay A= P4 | A A)P(A | A A). P4, | 4)P(A,)

* Alsoifanevents=J 4, with A being disjoint
(Le., the events A; form a partition of B). Then

m m

P(B)=) P(Bn4,)=) P(B|4)P(4)

Law of total Probability
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Generalized Bayes’ theorem

If B,, B,,....and B, are mutually exclusive events of which
one must occur, then

P(B)-P(A/B)
P(B)-P(A/B)+P(B)-P(A/B))+.....+P(B)-P(A/B)

fori=1,2,......, K.

P(B/A)=

62



Urn Problems

« Applications of Bayes Theorem

e Begin to think about concepts of Maximum
likelihood and MAP detections, which we
will use throughout codind theory

63
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End of Notes 1
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