16.548 Notes 15:

Concatenated Codes, Turbo
Codes and
lterative Processing

Outline

= Introduction
¢ Pushing the Bounds on Channel Capacity
¢ Theory of Iterative Decoding
¢ Recursive Convolutional Coding
¢ Theory of Concatenated codes
« Turbo codes
¢ Encoding
¢ Decoding
¢ Performance analysis
¢ Applications
= Other applications of iterative processing
¢ Joint equalization/FEC
¢ Joint multiuser detection/FEC

Shannon Capacity Theorem

1 2R E
C =—log,(1+—=%)
2 N,
C
RJ. < From the converse
1— H;_; (E') to the coding theorem

Find (P,, E /N, pair —» Limit for given code rate

Capacity as a function of Code
rate

Example: Binary-input (+/- A), AWGN channel

p(ylA)
p(y)

p(yl—A)
py)

dy

R B 1T
C_EJMﬂAM%E ﬁ+EIM}|AN%3

Motivation: Performance
of Turbo Codes.

| le— Theoretical Limit!

10 o = Comparison:

| R ¢ Rate 1/2 Codes.
1~ - (2. 1. 14y Convolatiomnol

\ s g o8 ¢ K=5 turbo code.

wiblidy

_ \ ¢ K=14 convolutional code.
| ¥ _

.. Free Distance ™| = Plotis from:

— e, (2114 L. Perez, “Turbo Codes”, chapter 8
| of Trellis Coding by C. Schlegel.

i > IEEE Press, 1997.

Bit Error Prod

|
[
|
|
|
|
[
|
|
|
|'.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
]
.
|
I-

i g
. | Frpe Diistance Asymiptote Turiao
) I —
0 | 0.5
|
|
|

Gain of almost 2 dB!

Figure B.1 Sipulaed performaond @ of e omg
Estance asympeote and the simulaied performance of the |

Power Efficiency of Existing
Standards

Code Rate, r, versus E /N

U|:-i."'h'
1.0 o 1
)
=3 O
@ oo™
s ?"'54"'
L L .
M)

’ ot
= %)
E“
..ll". L
= Sarka Codea
& f Pl f00E { *Pionoer %,
= 0.5 _ ! o
o Voyagers .
- g ?. Planetary Standard

/' Gallege /Y0
Jl,r ¢ WAarinmer
/
{
.-"I
0.0 4

20 -0 0.0 1.0 2.0 3.0 4.0 3.0 .1 7.0 8.0 0.0 10
E /N, (dB)

Error Correction Coding

= Channel coding adds structured redundancy to a
transmission.

m Channel

- 7 Encoder >

¢ The input message m is composed of K symbols.
¢ The output code word x is composed of N symbols.
¢ Since N > K there is redundancy in the output.
¢ The coderate isr = K/N.
= Coding can be used to:

¢ Detect errors: ARQ
& Correct errors: FEC

Traditional Coding Techniques

o Block Codes

— Long Codes
— Hard desisjon

— Good at low bit error
rates (104 and down)
— Many types
« Ex. Hamming, Golay,
Reed-Muller, Reed
Solomon, BCH, etc
— Used for instance in CD
players (RS), Intelsat
(RS), Voyager (Golay)

o Convolutional Codes

Short Codes

Soft desisjon (Viterbi)
Good at high bit-error
rates (103-104)

Used in Inmarsat, 3G and
various wireless systems

Long constraint length
codes with sequential
decoding

The Turbo-Principle/lterative
Decoding

= Turbo codes get their name because the decoder uses
feedback, like a turbo engine.

Theory of Iterative Coding

L(d|x)= log lffgf;_:tllh))]: log
_ p(x|d = +1)
Lid|x) lﬂg[p[l’ d=-1)

Lid|x)= Lix|d)+ L(d)

p(x|d = +1) P(d = +1) 6)
p(x|d ==1) P(d = -1)

P(d = (7)

+1)
' Iﬂg[P[a’ —1]]

(8)

where L(x|d) is the LLR of the test statistic x obtained by measurements of the
channel output x under the alternate conditions that ¢ = +1 or d = -1 may have been
transmitted, and L(d) is the a priori LLR of the data bit 4.

To simplify the notation, Equation (8) is rewritten as follows:

L(d)= Ldx)+ L(d)

(92)

where the notation L.(x) emphasizes that this LLR term is the result of a channel

measurement made at the receiver.

Theory of Iterative Coding(2)

For a systematic code, it can be shown [3] that the
LLR (soft output) L(d) out of the decoder is equal to Equation 10:

Lid)= L(d) + [.Ad) (10)

where L’{c;’) 1s the LLR of a data bit out of the demodulator (input to the decoder),

and [.(d), called the extrinsic LLR, represents extra knowledge gleaned from the

decoding process. The output sequence of a systematic decoder is made up of
values representing data bits and parity bits. From Equations (9) and (10), the

output LLR L{a}} of the decoder i1s now written as follows:

Ld)= L)+ Ld)+ LAd) (11)

Theory of Iterative Coding(3)

Equation (11) shows that the output LLR of a systematic decoder can be
represented as having three LLR elements—a channel measurement, a priori
knowledge of the data, and an extrinsic LLR stemming solely from the decoder. To

yield the final L(d), each of the individual LLRs can be added as shown in Equation
(11), because the three terms are statistically independent |3, 5]. This soft decoder

output L{nﬁf) 15 a real number that provides a hard decision as well as the reliability of
that decision, The sign of L(d) denotes the hard decision; that is, for positive values
of L[f:?} decide that d = +1, and for negative values decide that = -1. The

magnitude of L{.::-'] denotes the reliability of that decision. Often, the value of [e:;’}
due to the decoding has the same sign as L.(x) + L(d), and therefore acts to improve

the reliability of L(d).

Theory of Iterative Coding (4)

Feedback for the next iteration

r=——-- —"'"—---I
! [
| L(d) 1
'f a priori t
l value in |
| |
e — S S——
L.(d)
extrinsic
lori ; value out
Detacltj;{ avpa};:i‘s;enorl sSc}Oftf-t{-)Ith Output LLR value
L'@d)=L.x)+L(d) |decoder L(d)=L'd) + Ld)
h _h- .
L(x) L'(d)
channel a posteriori

value in value out

Log Likelihood Algebra

New Operator Modulo 2 %dition

\

L(d)) B L(d) & L(d, ® d2) = log,

[el ld) 4 ,L(d2)]

[+ L@ L) (12)

=~ (-1) x sgn [L(d1)] x sgn [L(d>)] x min (| L(d1) |, | L(d2) |) (13)

Example: Product Code

k2 na — ks
columns columns
k1 rows d DPh Lon
nq—kq rows Dy Extrinsic
horizontal
LEU
Extrinsic

vertical

-3

lterative Product Decoding

Set the a priori LLR L(d) = 0 (unless the a priori probabilities of the data
bits are other than equally likely).

Decode horizontally, and using Equation (11) obtain the horizontal
extrinsic LLR as shown below:

Lld) = L(d)=LAx)~L(d)
Set L{d) = Lﬁ.;r{:;’) for the vertical decoding of step 4.

Decode vertically, and using Equation (11) obtain the vertical extrinsic
LLR as shown below:

Set Lid) = _{,i.,.[:;') and repeat steps 2 through 5.

After enough iterations (that 1s, repetitions of steps 2 through 5) to yield a
reliable decision, go to step 7.

The soft output is

-

L(d) = L(x)+Loy(d)+ Lo(d) (14)

4@ d=p (15

where © denotes modulo-2 addition. The transmitted bits are represented by the
sequence d| dx ds dy pr2 pas pr3 pas. At the receiver input, the noise-corrupted bits
are represented by the sequence {x;}, {x;}, where x; = d; + n for each received data
bit, x;; = p; + n for each received parity bit, and »n represents the noise contribution
that is statistically independent for both &; and p;;. The indices i and j represent

_ p(xildy =+1)
Le(xx) lﬂgf[p(x“d& =—1):| (72

l ex lrx_ll
om |27 o
\ (17b)

2
[:u- T I] _ % 2 (17¢)

(18)

Consider the following example, where the data sequence d, @ d; dy is made up of
the binary digits 1 00 1, as shown in Figure 4. By the use of Equation (15), it is
seen that the parity sequence pi2 psq pi3 p24 must be equal to the digits 111 1.
Thus, the transmitted sequence is

(d ipt=10011111 (19)

When the data bits are expressed as bipolar voltage values of +1 and -1
corresponding to the binary logic levels 1 and 0, the transmitted sequence is

{dif, Apst =+1 -1 =141 +]1 +1+1 +]

Assume now that the noise transforms this data-plus-parity sequence into the received
sequence

{xi}, dxg = 0.75,0.05,0.10,0.15, 1.25, 1.0, 3.0, 0.5 (20)

where the members of {x;}, {x;} positionally correspond to the data and parity
td;}, {py} that was transmitted. Thus, in terms of the positional subscripts, the
received sequence can be denoted as

1}, X} = X0, X2, X3, X4, X102, X34, X173, X24
From Equation (18), the assumed channel measurements yield the LLR values

(Lx)}, {Lx,)} = 1.5,0.1,0.20, 0.3, 2.5, 2.0, 6.0, 1.0 (21)

These values are shown in Figure 4b as the decoder input measurements. [t should
be noted that, given equal prior probabilities for the transmitted data, if hard
decisions are made based on the {x;} or the {L{x;)} values shown above, such a
process would result in two errors, since o; and o; would each be incorrectly
classified as binary 1,

di=1|dz2=0p12=1

di=0|da=1|pas=1

pua=1|pa=1

{a) Encoder output binary digits

Lo (1) =158 | Ly{x3) = 0.1 | L, (2q2) =25
Lelx2) =02 | Lo(x4)=0.3 | L. (x34) = 2.0
Ly (x13) = 6.0 | Le (x24] = 1.0

(bl Dacoder input log-likelihood ratios Le (x)

For the product-code example in Figure 4, we use Equation (11) to express the soft
output L(,) for the received signal corresponding to data d), as follows.

Lig) = Le(x) T L(dD) T L (x2) T L(d2)] B Ldxin)) (22)

where the terms {[L.(x2) + L{dh)] B L.(x)2)} represent the extrinsic LLR
contributed by the code (that is, the reception corresponding to data 4> and its a
priori probability, in conjunction with the reception corresponding to parity p2). In
general, the soft output L(:;’;) for the received signal corresponding to data d; 1s

L [{}‘] = L [IJ’}+ L{da}_l- {[Lr.'{-r_.f]-i_ L{d;” H LL'{-TJ_:."}} [23}

where LJx;), LAx;), and L.(x;) are the channel LLR measurements of the reception
corresponding to d,. d;, and p;, respectively. L{d;) and L(d;) are the LLRs of the a
priori probabilities of d; and 4, respectively, and {[LAx;) + L(d;)] B Lx;)} is the

extrinsic LLR contribution from the code. Equations (22) and (23) can best be
understood in the context of Figure 4b. For this example, assuming equally-likely

signaling, the soft output L{ﬂ"rl) is represented by the detector LLR measurement of

LAx1) = 1.5 for the reception corresponding to data d,, plus the extrinsic LLR of
[LAx2)=0.1] B [LAx)2) = 2.5] gleaned from the fact that the data > and the parity
2 also provide knowledge about the data d. as seen from Equations (15) and
(16).

For the example in Figure 4, the horizontal calculations for Lm(ﬁ}) and the vertical

calculations for ,{,‘.,[.:;’) are expressed as follows:

Lea(d)= [Le(x)) ¥ L(d)] B Lo(x,) (24a)
Leo(d)= [Le(x)+ L{d)] B Le(x,) (24b)
Lop(dy)= [Le(x)+L(d,)] B Le(x,) (25a)
Loo(d)= [Le(x)+ L(d,)] B Lo(x) (25b)
Len(dy)= [Le(x)+L{d)] B Lo(x,) (26a)
Lo(d)= [Le(x)+L(d)] B Lc(x,) (26b)
Ln(di)= [Le(x)+ L{d)] B Lo(x,) (27a)
Loo(d,)= [Le(w)t L{d,)] B Lo(x,) (27b)

The LLR values shown in Figure 4 are entered into the Lt,;,(a:.:‘) expressions in
Equations (24) through (27) and, assuming equally-likely signaling, the L(d) values
are initially set equal to zero, yielding

Lo g,) = (0.1+0) B 2.5= —0.1 = new L(d,) (28)

Ldd,) = (1.5+0) B 2.5=~1.5= new L(d,) (29)
Lelgy) = (03+0) B 2.0=-0.3 = new L(d;) (30)
Leld,) = (0.2+0) B 2.0=-0.2 = new L(dy) (31)

where the log-likelihood addition has been calculated using the approximation in
Equation (13). Next, we proceed to obtain the first vertical calculations using the

Lol d) expressions in Equations (24) through (27). Now, the values of L(d) can be
refined by using the new L(¢/) values gleaned from the first horizontal calculations,
shown in Equations (28) through (31). That is,

Lolg) = (02-03) B 60= 0.1 = new L(d)) (32)

Lold,) = (03-02) 8 1.0= —0.1 = new L (d>) (33)
Lol = (15=0.1) B 6.0= 1.4 = new L(d-) (34)
Lefg,) = (0.1-1.5) @ 1.0= 1.0 = new L{d,) (35)

The results of the first full iteration of the two decoding steps (horizontal and
vertical) are shown below.

Original L(x;) measurements

1.5 0.1 -0.1 -1.5

0.2 0.3 -0.3 -0.2

L-u{:;’) after first
horizontal decoding

0.1 -0.1

-1.4 1.0

L{.,J[:;"} after first vertical
decoding

Equation (14). The original LLR plus the horizontal extrinsic LLRs vields the
following improvement (the extrinsic vertical terms are not yet being considered):

Improved LLRs due to L.F,{-:;’)

1.4 -1.4

-0.1 0.1

The original LLR plus both the horizontal and vertical extrinsic LLRs vield the
following improvement:

Improved LLRs due to L-Ir{li'}} + Lﬂ{r} }

1.5 -1.5

-1.5 1.1

La(g) = (0.1-0.1) B 2.5~ 0 = new L(d,)
La(G,) = (1540.1) B 25~ —1.6 = new L(d,)
Lo(Gy) = (03+1.0) B 2.0~ —1.3 = new L(d5)

La(j) = (02-14) B 20~ 1.2 = new L(dy)

Lo(G) = (02-13) B 6.0~ 1.1 = new L ()
Le(G,) = (03+12) B 1.0~ —1.0 = new L (d>)
Le(Jy) = (1.540) B 6.0= —1.5= new L(d5)

Lo(G) = (0.1-1.6) B 1.0~ 1.0 = new L ()

(36)
(37)
(38)

(39)

(40)
(41)
(42)

(43)

L(d) = LAx) + Lafd) + LAd) (44)

The horizontal and vertical extrinsic LLRs of Equations (36) through (43) and the
resulting decoder LLRs are displayed below. For this example, the second
horizontal and vertical iteration (yielding a total of four iterations) suggests a
modest improvement over a single horizontal and vertical iteration. The results
show a balancing of the confidence values among each of the four data decisions,

Original L.{x) measurements
1.5 0.1 0 -1.6
0.2 0.3 -1.3 1.2

Li(d) after second
horizontal decoding

1.1 -1.0

-1.5 1.0

Lo(d) after second
vertical decoding

The soft output 1s

L(d) = L(x)+ Lo(d) + Lo(d)

which after a total of four iterations yields the values for L(d) of

-2.5

-2.6

2.5

Observe that correct decisions about the four data bits will result, and the level of
confidence about these decisions is high. The iterative decoding of turbo codes is
similar to the process used when solving a crossword puzzle. The first pass through
the puzzle is likely to contain a few errors. Some words seem to fit, but when the
letters intersecting a row and column do not match, it is necessary to go back and

correct the first-pass answers.

RSC vs NSC

| It is well known that at large E+/Ny values, the

error performance of an NSC is better than that of a systematic code having the
same memory. At small £,/N, values, it is generally the other way around [3]. A
class of infinite impulse response (11R) convolutional codes [3] has been proposed
as building blocks for a turbo code. Such building blocks are also referred to as

recursive systematic convolutional (RSC) codes because previously encoded
information bits are continually fed back to the encoder’s input. For high code
rates, RSC codes result in better error performance than the best NSC codes at any
value of £,/Ny. A binary, rate 1/2, RSC code is obtained from an NSC code by
using a feedback loop and setting one of the two outputs (u; or v;) equal to .
Figure 6(a) illustrates an example of such an RSC code. with K = 3. where a; is
recursively calculated as

|
ar=di+), g ar; mod?2 (47)
I

i

and g’ is respectively equal to gy; if wy = di. and to gy, if vi = d}. Figure 6(b) shows
the trellis structure for the RSC code in Figure 6(a).

Recursive/Systematic Convolutional Coding

o |L0g]

[y} —e—t oy o oy ey - 2

\[j - [l'-'.H

Figure 5

Monsvstematic convolutional (INSC) code.

|ds] e

—

- U]

Ficure 6(a)

Becursive svsiemalic convolutional { K50 code

Table 1

Validation of the Figure 6(b) Trellis Section

Input bit | Current Starting state Code bits Ending state
di = bit a, -y -2 iVi dy -1
0 0 0 00 () 0

0 I I 0 01 I I

| () | 00 I ()

0 I | 01 () I

I () 0 | 1 I ()

j () I 0 I 0 () I

0 () | | 1 () ()

I I I | 0 I I

Branch word

uv
State
a =00
b=10
c =01
d=11

Figure 6(b)

Trellis structure for the RSC code in Figure 6(a).

Concatenated Coding

= A single error correction code does not always provide
enough error protection with reasonable complexity.

= Solution: Concatenate two (or more) codes
¢ This creates a much more powerful code.
= Serial Concatenation (Forney, 1966)

Outer Block Inner
Encoder Interleaver Encoder

Channel

Outer ~ De- Inner
Decoder interleaver Decoder

Concatenated Codes (2)

RS Convolutional Viterbi RS
encoder Encoder Decoder decoder

 Traditional scheme for very low error rate
« Typically RS + Convolutional

* Viterbi - soft decisions

« RS burst error correction

« Viterbi gives moderate BER where RS
takes over and brings it further down

* Long Code with practical complexityNE.R /C)

£ Nera Research/F. Orten

Alternative to Concatenated
Coding

Use a very long
constraint length (K)
convolutional code

Typically - K=30-50
Error rate decreases
exponentially with
constraint length

Viterbi decoding:

— 230 ~ 10%states

NOT IMPLEMENTABLE

« Solution: Sequential
Decoding

— Limited but smart
search

— Search the most likely
paths

— Complexity depends
on channel conditions

— Can calculate

conditions for when
decoding is possible

Interleaver/Deinterleaver

input data

[1]2[3[4]s[6][7]8]0]

L

3

4

7

8

interleaver

(m)

interleaved data

de-interleaved data

[1]2]3[4]s[6][7]8]0]

4

de-interleaver

()

| 1]5|913|17] 2| 6 [10]14]

Concatenated interleaver and De-
Interleaver

p| Outer

inner
eeeeee n encoder
ccccccc

ddddddd

Structure of Concatenated
Interleaver system

~ - n,
4 -

i

Fig. 6 Pattern of received errors ("O’) in codeword array, with errors introduced
by inner (column) decoder (*X’) and outer (row) decoder ("+’)

lterative concatenated decoding

data

encader 1

3

i = code

=1

E
encoder 2
a

Fig. 8 Parallel concatenation: (a) encoder structure; (b) code array

{dl » [ag)
Y
Th [Tk %0 -2 Hscc.!uda
i {9
-

Intarleavear

I ag aQp -1 dg -2 O‘\.— e
d’g

Figure 7

Parallel concatenation of two BRSC codes.

i {vagl
-

c2
RSC code

Turbo Codes

« Backgound

¢ Turbo codes were proposed by Berrou and Glavieux in the
1993 International Conference in Communications.

¢ Performance within 0.5 dB of the channel capacity limit for
BPSK was demonstrated.

=« Features of turbo codes
¢ Parallel concatenated coding
¢ Recursive convolutional encoders
¢ Pseudo-random interleaving
¢ lterative decoding

The building blocks of turbo
codes

= Recursive systematic codes
« Parallel Concatenation plus puncturing
= Interleaving

4ﬁ
m |p LD

Recursive Systematic
Convolutional Encoding

x(©

f]

2<.Xi >

x Xi(l)I

Constraint Length K= 3

Xi(O)

At

An RSC encoder can be
constructed from a standard
convolutional encoder by
feeding back one of the
outputs.

An RSC encoder has an
Infinite impulse response.

An arbitrary input will cause
a “good” (high weight)
output with high probability.
Some inputs will cause
“bad” (low weight) outputs.

Parallel Concatenated Codes

= Instead of concatenating in serial, codes can also be
concatenated in parallel.

= The original turbo code is a parallel concatenation of two
recursive systematic convolutional (RSC) codes.

¢ systematic: one of the outputs is the input.

Encoder
#1

Systematic Output

>

—»

MUX

—

Parity

Encoder
#2

=
Interleaver <i§§

o

Output

Parallel Concatenation of RSC codes

Consider the parallel concatenation of two RSC encoders of the type shown in
Figure 6. Good turbo codes have been constructed from component codes having
short constraint lengths (K = 3 to 5). An example of a such a turbo encoder is
shown in Figure 7. where the switch yvielding v; provides puncturing, making the
overall code rate 1/2. Without the switch, the code would be rate 1/3. There is no limit
1o the number of encoders that may be concatenated. and in general the component
codes need not be identical with regard to constraint length and rate. The goal in
designing turbo codes is to choose the best component codes by maximizing the
effective free distance of the code [7]. At large values of £,/Ny, this is tantamount to
maximizing the minimum-weight codeword. However, at low values of £,/N, (the
region of greatest interest), optimizing the weight distribution of the codewords is
more important than maximizing the minimum-weight codeword [6].

The turbo encoder in Figure 7 produces codewords Irom each of two component
encoders. The weight distribution for the codewords out of this parallel
concatenation depends on how the codewords from one of the component encoders
are combined with codewords from the other encoder. Intuitively. we should avoid
pairing low-weight codewords from one encoder with low-weight codewords from
the other encoder. Many such pairings can be avoided by proper design of the
interleaver. An interleaver that permutes the data in a random fashion provides
better performance than the familiar block interleaver [§].

If the component encoders are not recursive, the unit weight input sequence
00...00100...00 will always generate a low-weight codeword at the input of
a second encoder for any interleaver design. In other words, the interleaver would
not influence the output-codeword weight distribution if the component codes were
not recursive. However if the component codes are recursive, a weight-1 input
sequence generates an infinite impulse response (infinite-weight output).
Therefore, for the case of recursive codes. the weight-1 input sequence does not
yield the minimum-weight codeword out of the encoder. The encoded output
welght 1s Kept finite only by trellis termination, a process that forces the coded

sequence to terminate in such a way that the encoder returns to the zero state. In
effect, the convolutional code is converted to a block code.

For the encoder of Figure 7. the minimum-weight codeword for each component
encoder is generated by the weight-3 input sequence (00 ...001 11000 ...00)
with three consecutive 1s. Another input that produces fairly low-weight
codewords is the weight-2 sequence (00 ... 00100100 ... 00). However, after
the permutations introduced by an interleaver, either of these deleterious input
patterns 1s unlikely to appear again at the input to another encoder, making it
unlikely that a minimum-weight codeword will be combined with another
minimum-weight codeword.

The important aspect of the building blocks used in turbo codes is that they are
recursive (the systematic aspect is merely incidental). It is the RSC code’s IIR
property that protects against the generation of low-weight codewords that cannot
be remedied by an interleaver. One can argue that turbo code performance is
largely influenced by minimum-weight codewords that result from the weight-2
input sequence. The argument is that weight-1 inputs can be ignored, since they
vield large codeword weights due to the 1IR encoder structure. For input sequences
having weight-3 and larger. a properly designed interleaver makes the occurrence
of low-weight output codewords relatively rare [7-11].

Pseudo-random Interleaving

=« The coding dilemma:

4 Shannon showed that large block-length random codes achieve
channel capacity.

¢ However, codes must have structure that permits decoding with
reasonable complexity.

¢ Codes with structure don’t perform as well as random codes.
¢ “Almost all codes are good, except those that we can think of.”

=« Solution:

¢ Make the code appear random, while maintaining enough
structure to permit decoding.

¢ This is the purpose of the pseudo-random interleaver.
¢ Turbo codes possess random-like properties.

¢ However, since the interleaving pattern is known, decoding is
possible.

Why Interleaving and
Recursive Encoding?

In a coded systems:
¢ Performance is dominated by low weight code words.

A “good” code:
¢ will produce low weight outputs with very low probability.

An RSC code:
¢ Produces low weight outputs with fairly low probability.
¢ However, some inputs still cause low weight outputs.

Because of the interleaver:

¢ The probability that both encoders have inputs that cause
low weight outputs is very low.

¢ Therefore the parallel concatenation of both encoders will
produce a “good” code.

data

5

iy
+
o

| \1)

on

punctura

multiplexer

code saquance

Fig. 11 Turbo-encoder with puncturing

Theory of Turbo-decoding

The Viterbi algorithm (VA) is an optimal decoding method for minimizing the
probability of sequence error. Unfortunately, the VA is not suited to generate the a
posteriori probability (APP) or sofi-decision output for each decoded bit. A
relevant algorithm for doing this has been proposed by Bahl et al. [12] The Bahl
algorithm was modified by Berrou, et al. [3] for use in decoding RSC codes. The
APP of a decoded data bit ¢, can be derived from the joint probability 1"," defined
by

}‘I..I.I"f s :r:dﬁ = f1 -":-'. = J'J'J'lRI"' : HPE}

. " . | ’ "
where §; is the encoder state at time &, and R, is a received binary sequence from
time & = 1 through some time N,

Thus, the APP for a decoded data bit d,. represented as a binary digit, 1s equal to

Plac=i|RY} = X7 i=0.1 @)

(L]

Turbo decoding (2)

The log-likelihood ratio (LLR) is written as the logarithm of the ratio of APPs, as
follows:

[Lo |
_ E A h)

il .|F|. ||:
i

The decoder makes a decision, known as the maximum a posteriori (MAP)
decision rule, by comparing L(,7,) to a zero threshold. That is.

4:=1 if L{g,) =10

d,=0 if L(g) <0

For a systematic code, the LLR L(,j,) associated with each decoded bit d, can be

described as the sum of the LLR of .:}_5 out of the demodulator and of other LLRs
generated by the decoder (extrinsic information), as expressed in Equations (12)
and (13). Consider the detection of a noisy data sequence that stems from the
encoder of Figure 7, with the use of a decoder shown in Figure 8. Assume binary
modulation and a discrete memoryless Gaussian channel. The decoder input is
made up of a set R; of two random variables x; and v;. For the bits d; and v; at time
k, expressed as binary numbers (1, 0), the conversion to received bipolar (+1. -1)
pulses can be expressed as follows:

X —{Eﬁ’; - 1)+ flg {53}
vi=(2vi- 1)+ gy (33)

where 7 and g are two statistically-independent random variables with the same
variance o, accounting for the noise contribution. The redundant information. vy,

is demultiplexed and sent to decoder DECT as vy when v, = vy, and to decoder
DEC2 as vy when v = vai. When the redundant information of a given encoder (C1
or C2) is not emitted, the corresponding decoder input is set to zero. Note that the
output of DEC1 has an interleaver structure identical to the one used at the
transmitter between the two encoders. This is because the information processed by
DECT is the noninterleaved output of C1 (corrupted by channel noise). Conversely,
the information processed by DEC2 is the noisy output of C2 whose input is the
same data going into C1. however permuted by the interleaver. DEC2 makes use of
the DEC1 output. provided that this output is time-ordered in the same way as the

input to C2 (that 1s, the two sequences into DEC2 must appear “in step™ with
respect to the positional arrangement of the signals in each sequence).

.

Lk

Feedback loop

)) . J Lez (dp)
Ly (dp) L1 (dy) Deinter-
o leaving
> Decoder Inter- Decoder
DEC1 leaving DEC2 3
_LDeinter— L2 (dg)
leaving

Yk

Y2k

Figure 8

Feedback decoder.

Decoded output
dp

terative Decoding

Deinterleaver [
APP
APP
—> ——»! Interleaver—p
systematic R Decoder Decoder
deta #1 #2 hard bit
parity DeMUX — P P decisions
data e
»| Interleaver

= There is one decoder for each elementary encoder.

Each decoder estimates the a posteriori probability (APP) of
each data bit.

The APP’s are used as a priori information by the other
decoder.

Decoding continues for a set number of iterations.

& Performance generally improves from iteration to iteration, but
follows a law of diminishing returns.

Sy

The log-MAP algorithm

1/10 U(S) V(S - S+1) /B(Sﬂ)

The log-MAP agorithm:
Performs arithmetic in the log domain
Multiplies become additions
Additions use the Jacobian Logarithm:

In(e* +e¥) = max(x, y) +In(L+e ™)

Decoding with a feedback loop

We rewrite Equation (11) for the soft-decision output at time &, with the a priori
LLR L(d,) initially set to zero. This follows from the assumption that the data bits
are equally likely. Therefore,

L{d,) = Ldxe)+LAd,)

- log f”-“"""*_”}m{*} (54
s L?‘{.w_ 4 =0y | Fed]

where L(,) is the soft-decision output at the decoder, and L.(x;) is the LLR

channel measurement, stemming from the ratio of likelihood functions p(x|d; = i)
associated with the discrete memoryless channel model. L..{Eh)= L{f}ﬁ_) .. gisa

function of the redundant information. It is the extrinsic information supplied by
the decoder. and does not depend on the decoder input x;. Ideally, L.(x;) and
LA,) are corrupted by uncorrelated noise, and thus [.(7,) may be used as a new
observation of ¢ by another decoder for an iterative process. The fundamental
principle for feeding back information to another decoder is that a decoder should
never be supplied with information that stems from itself (because the input and
output corruption will be highly correlated).

For the Gaussian channel. the natural logarithm in Equation (54) is used to describe
the channel LLR, L (x;), as in Equations (17a-¢). We rewrite the Equation (17¢)
LLR result below:

o a

§F e e A ek TN B X
J,L-<,1~,;}——;["*]+;['“]——;.n (55)

Both decoders. DEC] and DEC2. use the modified Bahl algorithm [12]. If the
inputs Ly(,7,) and vz to decoder DEC2 are statistically independent, the LLR

Ll 7,) at the output of DEC2 can be written as

LAd) = STEdg)] = Ll d,) (56)

with

»
Lilg,)= ? xr + Leld,) (37)

il

where f[+] indicates a functional relationship. The extrinsic information [.»(4,)
out of DEC2 is a function of the sequence {£,(7)}, . Since £,(,7,) depends on
the observation R, . the extrinsic information L. g,) 1s correlated with

observations x; and vy:. Nevertheless, the greater | n-k | is. the less correlated are
Li(,4,) and the observations x;. vi. Thus, due to the interleaving between DECI

and DEC2, the extrinsic information [.,(4,) and the observations x;., v are
weakly correlated. Therefore. they can be jointly used for the decoding of bit ¢,. In
Figure 8. the parameter z; = L-:'[:;’H feeding into DEC] acts as a diversity effect in
an iterative process. In general. [..(7,) will have the same sign as d,. Therefore,
Lo 4,) may increase the associated LLR and thus improve the reliability of each
decoded data bit.

The algorithmic details for computing the LLR. L(,). of the a posteriori

probability (APP) for each data bit has been described by several authors [3-4.16].
Suggestions for decreasing the implementational complexity of the algorithms can
be found in [13-17]. A reasonable way to think of the process that produces APP
values for each data bit is to imagine implementing a maximume-likelihood

lterative Turbo Decoder

e - o
1 S deo:der _____ o e deo;:n-der a— =]
+ +
]
! ! | n
data
1 2
o
=
input 3 buffer
E parity 2
-g 1 o buffer —‘
parily 1 1 2
received information . ———-—--—- — extrinsic information

Fig. 12 Iterative turbo-decoder

10O 3 E
gl _
10 =%~
P\ Y Y A 1 iteration]
v -
107) v } 3
; [. - A 2 iterations]
107 O v .
A h
[a e]
LU]
o
-4 Q.. .
10 6 iterations 3 iterations 3
5 _ _
10 3 10 iterations S
10° 3 18 iterations 3
i NN]
107 ' >
0.5 1 1.5

Performance as a Function of
Number of Iterations

E,/N indB
b o

= K=5
= =1/2
= L=65,536

Another Example

10-3

Figure 9

T T TTTIT

T T Ty

[teration 1

L

Eu o 1dB)

Bit-crror probability as a function of £x/'No and multiple iterations.

Performance Factors
and Tradeoffs

Complexity vs. performance
¢ Decoding algorithm.

¢ Number of iterations.

¢ Encoder constraint length
Latency vs. performance

& Frame size.
Spectral efficiency vs. performance
¢ Overall code rate
Other factors

¢ Interleaver design.

¢ Puncture pattern.

¢ Trellis termination.

Performance Bounds for
Linear Block Codes

Union bound for soft-decision decoding:
2w 2rE,
P S;WQ[d, . j

o

For convolutional and turbo codes this becomes:

n(m+N) vy
p<S N, W, Q{ derbj

d=d free N N

o

The free-distance asymptote is the first term of the sum:

N eeWireo 2rE
R=—1 Q[\/dﬂee Nb]

o

For convolutional codes N is unbounded and:

2rE
I:)b :WdOQ[\/dfree N bj

o

BER

Free-distance Asymptotes

10 | | | | | |

#—+ Conwlutional Code =« For convolutional code:
-------- CC free distance asymptote | 1
G—=© Turbo Code ¢ d... =18
-------- TC free distance asymptote
& W, =187
Eb
P, =187Q 18—
NO
« Forturbo code
. * dfree - 6
* I\Ifree - 3
~~~~~~~~ ] 4 Wiree = 2
_______________________ 32 E
~~~~~~~~~~ :\:-‘:, . F)b = Q 6—b
D 65536 N,

0.5 1 1.5 2 2.5 3 3.5 4

Application: Turbo Codes for
Wireless Multimedia

= Multimedia systems require varying quality of service.
¢ QoS
¢ Latency
+ Low latency for voice, teleconferencing
¢ Bit/frame error rate (BER, FER)
- Low BER for data transmission.
= The tradeoffs inherent in turbo codes match with the
tradeoffs required by multimedia systems.
¢ Data: use large frame sizes
- Low BER, but long latency
¢ Voice: use small frame sizes
+ Short latency, but higher BER

Influence of Interleaver Size

= Constraint Length 5.
« Rater=1/2.

=« Log-MAP decoding.
] = 18 iterations.

i1 = AWGN Channel.

I *Voice

1 L Video
f Conferencing

. Replayed
¥ | Video

! Data

Application: Turbo Codes for
Fading Channels

= The turbo decoding algorithm requires accurate
estimates of channel parameters:

& Branch metric:
y(s - s.) =InP[m]+2z°x> + z°xP

[4ai*ES) 2 .
Z = h=—ha
N, g

¢ Average signal-to-noise ratio (SNR).
¢ Fading amplitude.
¢ Phase.

= Because turbo codes operate at low SNR, conventional
methods for channel estimation often fail.

¢ Therefore channel estimation and tracking is a critical issue
with turbo codes.

Fading Channel Model

= Antipodal modulation:

S ={-1+1%
= Gaussian Noise:
_ N,
" 2E
Turbo Channel BPSK S S
Encoder | |Interleaver| "|Modulator = Complex Fading: |
a =(a+X)+]Y,
A & q is a constant.
- =0 for Rayleigh Fading
n, = o>0 for Rician Fading
¢ XandY are Gaussian
Turbo [| De- | | BPSK random processes with
Decoder | |interleaver™ | Demod autocorrelation:

R(k) = ‘Jo (Zn:dek)

Pilot Symbol Assisted
Modulation

= Pilot symbols:

¢

¢

Known values that are periodically inserted into the transmitted
code stream.

Used to assist the operation of a channel estimator at the
receiver.

Allow for coherent detection over channels that are unknown and
time varying.
segment #1 segment #2
A A
' I ' I
symboI: : | ; symbol symboI: : | ; symbol
| | M, | | M,
| | | | | |
symboll ' pilot | | Isymbol symboll ' pilot | | Isymbol
#1 : Isymboh : #M, #1 : Isymboh : #M,

pilot symbols added here

Pilot Symbol Assisted
Turbo Decoding

Turbo
Encoder

Channel
Interleaver

.

X

Insert
Pilot
Symbols

2

%é« Re {J

e

Delay

Filter

Compare
to
Threshold

(a)
Rl

Channel
Interleaver

Insert
Pilot
Symbols

)

Remove
Filot
Symbols

o(a)
Yi

Channel
Deinterleaver

Turbo
Decoder

Desired statistic:

2 .
Re{? rkak}

Initial estimates are
found using pilot
symbols only.

Estimates for later
iterations also use
data decoded with
high reliability.

“Decision directed”

BER

Performance of
Pllot Symbol Assisted Decoding

— DPSK with differential detection
E—F] BPSK with estimation prior to decoding
6—oO BPSK with refined estimation

10° L — BPSK with perfect channel estimates

E /N, indB
o

10

Simulation parameters:
¢ Rayleigh flat-fading.
r=1/2, K=3
1,024 bit random interleaver.
8 iterations of log-MAP.
f, T, = .005
¢ M,=16
Estimation prior to decoding
degrades performance by 2.5 dB.

Estimation during decoding only
degrades performance by 1.5 dB.

Noncoherent reception degrades
performance by 5 dB.

* 6 o o

Other Applications
of Turbo Decoding

The turbo-principle is more general than merely its
application to the decoding of turbo codes.

The “Turbo Principle” can be described as:

¢ “Never discard information prematurely that may be useful
In making a decision until all decisions related to that
information have been completed.”
-Andrew Viterbi
¢ “It is a capital mistake to theorize before you have all the
evidence. It biases the judgement.”
-Sir Arthur Conan Doyle

Can be used to improve the interface in systems that
employ multiple trellis-based algorithms.

Aprplications of the
urbo Principle

« Other applications of the turbo principle include:
¢ Decoding serially concatenated codes.
¢ Combined equalization and error correction decoding.

¢ Combined multiuser detection and error correction
decoding.

¢ (Spatial) diversity combining for coded systems in the
presence of MAI or ISI.

Serial Concatenated Codes

= The turbo decoder can also be used to decode serially
concatenated codes.

¢ Typically two convolutional codes.

n(t)
Outer Inner AWEN
Data —{Convolutional— interleaver ——Convolutional
Encoder Encoder
interleaver |« EDL%[)%%
APP i
Inner : Outer Estimated
> Decoder —» deinterleaver —»

Decoder ™ Data

Performance of Serial
Concatenated Turbo Code

0.2 0.4 0.6 I]:E II

€, /Ny (dB)

Plot is from:

S. Benedetto, et al “Serial Concatenation
of Interleaved Codes: Performance
Analysis, Design, and Iterative Decoding”
Proc., Int. Symp. on Info. Theory, 1997.

Rate r=1/3.
Interleaver size L = 16,384.
K = 3 encoders.

Serial concatenated codes
do not seem to have a bit
error rate floor.

Turbo Equalization

= The “Iinner code” of a serial concatenation could be an
Intersymbol Interference (ISI) channel.

¢ ISI channel can be interpreted as a rate 1 code defined
over the field of real numbers.

n(t)
(Outer) AWGN
Data —®|Convolutional— interleaver ——» IS|
Encoder Channel
interleaver |« Egﬁéﬁger
APP |
(Outer) | .

SISO | deinterleaver —» SISO ., Estimated

< Equalizer Decoder 4§_> Data

Performance of Turbo Equalizer

0 1 2 3 4 5 B8 7 8 0 10EMN,dB
— # Turbo-Egualization === BPSK With Symbol Detection
and Without Encoding
- rBII'ni-I"‘,' (Hard) Output -o- BFSK With Encoding and Without
Uetechon and Encoding ISI on a Gaussian Channe

Fig. 6 - Performance of wrbo-equalization over a gaussian channel
iconvolutional encoding with K = 5)

Plot is from:

C. Douillard,et al “Iterative Correction of
Intersymbol Interference: Turbo-
Equaliztion”, European Transactions on
Telecommuications, Sept./Oct. 1997.

M=5 independent
multipaths.

¢ Symbol spaced paths

¢ Stationary channel.

¢ Perfectly known channel.

(2,1,5) convolutional code.

Turbo Multiuser Detection

= The “Inner code” of a serial concatenation could be a
multiple-access interference (MAI) channel.

& MAI channel describes the interaction between K
nonorthogonal users sharing the same channel.

¢ MAI channel can be thought of as a time varying ISI
channel.

¢ MAI channel is a rate 1 code with time-varying coefficients
over the field of real numbers.

¢ The input to the MAI channel consists of the encoded and
interleaved sequences of all K users in the system.

= MAI channel can be:
¢ CDMA: Code Division Multiple Access
¢ TDMA: Time Division Multiple Access

System Diagram

“multiuser interleaver”

d, [Convolutional b, !
——>»{ Encoder —interleaver #1
i . e
o i i
o ! i Parallel | b MAI T
| to ——» —»@4—
. : e | Seria | | | Channel ()
g | |_' ; AWGN
k_j|Convolutional| b i
Encoder ——interleaver #K < ;
#K ! :
LTI Turbo
| (a) (a) . MUD
! A multiuser | A
interleaver !
5 _A;PP | ;
i SISO \II(Q) . II](CI) Bank of i a(q)
Ly - » muliuser =] K SISO |
Ly MUD deinterleaver Decoders : >
; . Estimated

Data

Bit Error Rate

Simulation Results:
MAI Channel w/ AWGN

T T T Y T 7 —
— -‘|_ _ Itaretions K—m
L TS -
I B L — | Asyne
Vo R .
YoM H'ﬁ-. TTm——
10" = : [-
r "-.\(f e
]
[
I
" \
| ' \ h,
' i ", i, ' N,
109 =Thearelical .K.‘\.—E!_-‘_.
F Capacity ‘x\ oo
I.l \‘\'\ ! .I..'..
."I A b 4
e Optirmal % 5)
Single Usar A 4
Percmance
LI §
| ':'.a.
N
Wyl
o= | L
ad 1 2 3 4 5

= From:

¢ M. Moher, “An iterative algorithm
for asynchronous coded multiuser
detection,” IEEE Comm. Letters,
Aug.1998.

= Generic MA system

¢ K=3 asynchronous users.

< |dentical pulse shapes.

¢ Each user has its own interleaver.
= Convolutionally coded.

¢ Constraint length 3.

¢ Code rate 1/2.

= |terative decoder.

Conclusion

Turbo code advantages:

¢ Remarkable power efficiency in AWGN and flat-fading
channels for moderately low BER.

¢ Deign tradeoffs suitable for delivery of multimedia services.

Turbo code disadvantages:
¢ Long latency.
¢ Poor performance at very low BER.
¢ Because turbo codes operate at very low SNR, channel
estimation and tracking is a critical issue.
The principle of iterative or “turbo” processing can be
applied to other problems.

¢ Turbo-multiuser detection can improve performance of
coded multiple-access systems.

