
n  this  second  part [ 11, a  synopsis of the  present  state of I the,art  in trellis-coded modulation  (TCM) is  given  for 
the  more  interested  reader.  First,  the  general  structure of 
TCM  schemes  and the  principles of code  construction 
are  reviewed.  Next,  the effects of carrier-phase offset in 
carrier-modulated  TCM  systems  are  discussed.  The  topic 
i s  important, since TCM  schemes  turn  out to  be more 
sensitive  to  phase offset than  uncoded  modulation 
systems.  Also, TCM schemes  are  generally  not  phase 
invariant to the  same  extent  as  their  signal  sets.  Finally, 
recent  advances  in  TCM  schemes  that use signal sets 
defined  in  more  than  two  dimensions  are  described,  and 
other  work  related  to  trellis-coded  modulation  is  men- 
tioned.  The best codes  currently  known  for  one-,  two-, 
four-,  and  eight-dimensional  signal sets  are given  in  an 
Appendix. 

Design of Trellis-Coded 
Modulation Schemes 

The  trellis  structure of the  early  hand-designed TCM 
schemes  and  the  heuristic  rules  used to assign  signals to 
trellis  transitions  suggested  that  TCM  schemes  should 
have an  interpretation  in  terms of convolutional codes 
with  a  special  signal  mapping.  This  mapping  should be 
based on  grouping  signals  into  subsets  with  large 
distance  between  the  subset  signals.  Attempts  to  explain 
TCM  schemes  in  this  manner led  to  the general  structure 
of TCM  encoders/modulators  depicted  in  Fig. 1. Accord- 
ing to  this  figure,  TCM  signals  are  generated  as  follows: 
When  m  bits  are to be transmitted  per  encoder/modulator 
operation, m 5 m bits  are  expanded by a rate-rYd(m -t 1) 
binary  convolutional  encoder  into rii -t 1 coded  bits. 
These  bits  are  used  to select one of 2‘“ + I subsets of a 
redundant 2’11+1-ary  signal  set. The  remaining  m - m 
uncoded  bits  determine  which of the 2”’-’” signals  in  this 
subset is to be transmitted. 

Set  Partitioning 
The  concept of set partitioning is of central  significance 

for TCM  schemes.  Figure 2 shows  this  concept  for  a 
32-CROSS  signal set [ 11, a  signal set of lattice  type “Z2”. 
Generally,  the  notation “Zk” is  used  to  denote an  infinite 
“lattice” of points  in  k-dimensional  space  with  integer 
coordinates.  Lattice-type  signal sets  are finite  subsets of 
lattice  points,  which  are  centered  around  the  origin  and 
have  a  minimum  spacing of A,. 

Set partitioning  divides a signal set successively into 
smaller  subsets  with  maximally  increasing  smallest 
intra-set  distances A ; ,  i = 0,1, ... . Each  partition is 
two-way. The  partitioning is  repeated iii 4- 1 times  until 
A,,+ ,  is equal to or greater  than  the  desired free distance of 
the  TCM  scheme  to be designed. The  finally  obtained 
subsets,  labeled DO, Dl ,  ... D7 in the  case of Fig. 2, will 
henceforth be referred  to  as  the “subsets.”The  labeling of 
branches  in  the  partition tree by the fi -t 1 coded  bits z:“, 
... , z:, in  the  order  as  shown  in  Fig. 2, results  in  a  label z,, 
- [z::, ... z t ]  for  each  subset. The label  reflects  the position 
of the  subset  in  the tree. 

This  labeling leads  to an  important  property. If the 
labels of two  subsets  agree  in  the  last q positions,  but  not 
in  the  bit z:!, then  the  signals of the  two  subsets  are 
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Fig. I .  Genernl  structure of encoderlmodulalor  for  trellzs-coded 
modulalzon.  

elements of the  same  subset at  level q in the  partition tree; 
thus they  have a t  least  distance A<,. This  distance  bound 
can be  stated in  a  "set-partitioning  lemma"  and  will be 
used in the  next  subsection. 

The  m - m uncoded  bits x::', .... x:" are used  to choose 
a  signal  from  the selected subset.  The specific  labeling of 
subset  signals by these bits is not  particularly  important 
at  this  point of the  discussion.  In  the  code  trellis,  the 
signals of the  subsets  become  associated  with 2""'i' 
parallel  transitions. 

The free Euclidean  distance of a  TCM code can  now be 
expressed as 

dl,,,, = Min[A,j?+), dirrr (&)] ,  

where A,,+ ,  is  the  minimum  distance between  parallel 
transitions  and di,?,.(r5) denotes  the  minimum  distance 
between  nonparallel  paths  in  the  TCM  trellis  diagram. 
In  the  special case of fi = m,  the  subsets  contain  only  one 
signal,  and hence  there  are no  parallel  transitions. 

Conuolutional  Codes for Trellis-Coded 
Modula t ion  

At every time  n,  the  rate-G/(fi + 1)  convolutional 
encoder  depicted  in  Fig. 1 receives fi input  bits,  and 
generates fi f 1  coded  bits  which serve as  the  subset 
labels z,, = [z::, ... z:]. The set of all  possible  sequences 
{zJ, which  the  encoder  can  generate,  forms  a  convo- 
lutional  code.  A  linear  convolutional  code of rate rh/ 
(5 + 1) is most  compactly  defined by a parity-check 
equation  which  puts  a  constraint  on  the code  bits in  a 
sliding  time  window of length u + 1: 

x(h ;#z ; t -z#  @ h;r,z;l-z,+, @ ... h;z:,) = 0. 

In  this ;;'Lation, @ denotes  modulo-2  addition.  The 
quantity  vis  called  theconstraint  length.  The  quantities 
hi, v 2 P 2 0; 0 5 i f rh, are  the  binary  parity-check 
coefficients of the  code.  Valid  code  sequences  satisfy  this 
equation  at  all times n.  The  equation defines  only  the 
code  sequences, not  the  inputloutput  relation of an  
encoder.  A  later  subsection  deals  with  minimal  encoder 
realizations  with Y binary  storage  elements,  which  is 
equivalent to saying  that  the  code  has 2" trellis  states. 

From  the  parity-check  equation,  one  can  observe  that 
code  sequences { z , ~ }  can have  arbitrary  values  for  each 
rh-tuple [z:, ... z,',] with  an  appropriate  choice of the 
sequence (z!] so that  the  parity-check  equation  is 
satisfied. This  property  can be expressed in  a  "rate-m/ 
(15 + 1) code  lemma." 

Let  now {z,,) and {&) = { z , ~  @ e,,] be twocode  sequences, 

where (e_,,) denotes  the  error  sequence by which these 
sequences  differ.  Since  the  convolutional  code is linear, 
{e,,} is  also a code  sequence.  It  follows  from  the "set- 
partitioning  lemma"  mentioned  in  the  preceding  sub- 
section  and  the  "rate-fi/(fi + 1) code lemma"  that  the 
squared free distance between non-parallel  paths  in  the 
TCM trellis  is  bounded by [2] 

Here q(e_,,) is the  number of trailing zeros in e,, , that  is, 
the  number of trailing  positions  in  which  two  subset 
labels z,, and zb =z,, @ g,, agree.  For  example, q(e,,r= 2, if 
- e,, = [e::', .... e:,,l,O,O]..The "set-partitioning  lemma" states 
that  the  distance  between  signals  in  the  subsets selected 
by z,, and z;, is  lower-bounded by A,,,,,,,. One  must take 
A,,,,, = 0, not A,:,+,. Minimization  has  to be carried out 
over all  non-zero  code  (error)  sequences {e,,} that  deviate 
at, say, time 0 from  the  all-zero  sequence { Q }  and remerge 
with  itata  later  time.  The  "rate-rh/(m + 1)code  lemma" 
assures  that  for  any  given  sequence (e,,) there  exist  two 
coded  signal  sequences  whose  signals  have at  any  time  n 
the  smallest  possible  distance between  the signals  of 
subsets  whose  labels  differ by el,. Usually,  this  smallest 
distance  equals A , , , , , ,  for  all c,!. If this  is  the  case,  the  above 
bound  on d,,,,,,(fi)  becomes an  equation.  (Only  when the 
signal  subsets  contain very  few signals  may  the  bound 
not be satisfied  with  equality. A similar  always  true 
equation  can  then be used to  compute  drtlf.(fi)  [2].) 

This  equation is of key importance  in the  search  for 
optimum  TCM codes.  It  states that free Euclidean 
distance  can be determined  in  much  the  same way as free 
Hamming  distance is found  in  linear  binary codes,  even 
though  linearity does not  hold  for  TCM  signal  sequences. 
It  is only necessary  to  replace the  Hamming  weights of 
the e,, (number of 1's in e,,) by the  Euclidean  weights 
A&,,). It  is  not necessary (as  some  authors seem to think) 
to compute  distance  between every pair of TCM  signal 
sequences. 

Search for O p t i m u m   T C M   C o d e s  
For  the  one-  and  two-dimensional  signal sets depicted 

in  Fig. 1 of Part  I [ 11, the  minimum intra-set distances are 
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as  follows.  For 4AM,  8-AM, ... (signal sets of type “Z,’’), 
Ai+, = ZA,, i = 0.1, ... . For 16-QASK 32-CROSS, ... 
(signal sets of lattice  type  “z,”), ni+, = & A ~ ,  i = 0,1, ... . 
The  non-lattice type signal sets  8-PSK and 16-PSK  have 
special  sequences of intra-set  distances. The  intra-set 
distances  for  higher-dimensional  signal sets will be 
given  when  multi-dimensional  TCM  schemes  are  dis- 
cussed later  in  this  article. 

For  a  given  sequence of minimum  intra-set  distances 
A, 4 A ,  4 ... A,,, and  a  chosen  value of u ,  a  convolutional 
code with  the  largest  possible  value of dcrrv(r%) can be 
found by a  code-search program described in [Z]. The  
program  performs  the  search  for  the (v + 1)  (6 + 1) 
binary  parity-check  coefficients  in  a  particular  order  and 
with  a set of code-rejection  rules  such  that  explicit  checks 
on the  value of dCnl(r%) are very frequently  avoided. 

Tables of optimum codes  for  one-,  two-,  four-, and 
eight-dimensional  TCM schemes are  shown  in  the 
Appendix.  Parity-check  coefficients  are  specified in octal 
form,  for  example, [hg, ... , h!] = [1,0,0,0,1,0,1]  is written 
as bo = 105x.  Equivalent  codes  in  terms of free distance 
will be obtained if the  parity-check  coefficients of h‘ are 
added  modulo-2 to the  coefficients of,bk, for  i > k [Z]. If 
A; = A,, hi and hh may  also be interchanged.  When  in the 
code  tables  the free distance of a  code  is  marked by an  
asterisk (*), df,,,,,(m) exceeds A,,+,  ,and hence  the free distance 
occurs  only  between  the  subset  signals  assigned to 
parallel  transitions.  These  schemes  have  the  smallest 
numbers of nearest  neighbors.  For  example,  the 256-state 
code  for  “ZI”-type  signals  has  this  property.  For  large 
values of m,  this code attains  a  full  6  dB  coding  gain  with 
only  two  nearest  neighbors. 

Two Encoder  Realizations 
The  parity-check  equation  specifies  only  the  convolu- 

tional  code.  Encoders  for  the  same  code  can  differ  in  the 
input/output  relation  which they  realize. Figure  3 
illustrates  two  encoders  for  the  8-state  linear  code 
specified in  Tables I1 and I11 ( v  = 3)  in  the  Appendix. 
One is called  a  systematic  encoder  with  feedback,  the 
other  a feedback-free  encoder.  Both  encoders are  minimal, 
that is,  they are realized with v binary  storage  elements. 
The  transformation of one  minimal  encoder  into  the 
other  follows  from  the  structural  properties of convolu- 
tional codes  described in [3]. With  a  systematic  encoder, 
the  input bits  appear  unchanged  at  the  output.  Therefore, 
a  systematic  encoder  cannot  generate  a  catastrophic code, 
i.e.,  a  code  with no  distance  increase  between  two  trellis 
paths  that  remain  distinct  for  an  unbounded  length. 
This  is  also  true,  although  far  from  being  obvious,  for  an 
equivalent  minimal feedback-free encoder [3]. 

The  forward  and  backward  connections  in the  syste- 
matic  encoder  are  specified by the  parity-check  coeffi- 
cients of the  code. All  codes  presented  in  the  Appendix 
have hjj = h: = 1. This  guarantees  the  realizability of an  
encoder  in  the  form  shown  in  Fig.  3a.  The reader 
familiar  with recursive digital  filters  will see that  the 
parity-check  equation  is used (almost  directly) to 
compute  the  bit z! from  the  other  uncoded  bits. 
Furthermore,  all  codes  have  ht = h;, = 0, for  i > 0. This  
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Fig. 3. Two  encoders   f o r  a linear 8-slale conuolulronal  code  wilh 
parily-check  coefficients h’ = [O,l ,O,O], b’ = [O,O,l ,O],  bo = [ l , O , O , l ]  
(c f .   Tables  I1 and I I I  in ihe   Appendix) . ,  (a)  Minimal   sys lemalzc  
encoder  with  feedback.  (b)  Minzmal  feedback-free  encoder.  

ensures  that  at  time  n  the  uncoded  bits  have  no  influence 
on  the  bit z!, nor  on  the  input to the  first  binary  storage 
element  in  the  encoder.  Hence,  whenever  in  the  code 
trellis  two  paths  diverge from or merge into a common 
state,  the  bit z! must be the  same  for these transitions, 
whereas  the  other  bits  differ  in  at  least  one  bit.  Signals 
associated  with  diverging  and  merging  transitions 
therefore  have at least  distance A,  between them,  which 
reflects the  second  heuristic  rule  for  good  TCM  codes 
mentioned  in  Part I [l]. 

TCM schemes  for  twoidimensional  carrier  modulation 
(with 8-PSK  signal  setsand  “Z1”-type  signal  sets)  have u p  
to the  present  time  attracted  the  most  attention.  Practical 
realizations of these  systems indicated  that  the effects of 
transmission  impairments  other  than  additive  Gaussian 
noise on their  performance need to be studied,  in 
particular  those of carrier offset. 

Effects of Carrier-Phase Offset 
This  section  addresses  the  problems  that  arise  when  a 

carrier-modulated  two-dimensional  TCM  signal  is  de- 
modulated  with  a  phase offset A 4 .  The  soft-decision 
decoder  then  operates on a sequence of complex-valued 
signals  {r,,} = {a,, . exp(jA4) + wn}, where  the  a,,  are 
transmitted  TCM  signals  and  the w,, denote  additive 
Gaussian  noise.  The  phase offset A 4  could be caused,  for 
instance, by disturbances of the  carrier  phase of the 
received signal  which  the  phase-tracking  scheme of the 
receiver cannot track  instantly. 

14 
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Fig. 4 .  Error  performance of coded 8-PSK and  uncoded 4-PSK in 

the  presence of carrier-phase offset Ab. 

Performance  Degradation 
The  error  performance of 4-state and  8-state coded 

8-PSK  systems in  the  presence of phase offset  (based on 
unpublished  work) is illustrated  in  Fig. 4. The  figure 
shows  the  signal-to-noise  ratio needed  to sustain  an 
error-event  probability of lo-' as a function of A+. For 
the  coded  8-PSK  systems,  the  required  signal-to-noise 
ratio  increases  with  increasing  values of A+ until  both 
systems  fail at A 4  = 22.5", even in  the absence of noise. In 
contrast,  uncoded  4-PSK  requires  a  higher  signal-to- 
noise  ratio  at  small  phase offsets, but  has  an  operating 
range u p  to A 4  = 45" in  the absence of noise.  These 
results  are  typical for TCM schemes. 

The  greater  susceptibility of TCM schemes  to  phase 
offset can be explained  as  follows.  In  the  trellis  diagrams 
of TCM schemes,  there  exist  long  distinct  paths  with  low 
growth of signal  distance  between  them,  that is, paths 
which  have  either  the  same  signals  or  signals  with 
smallest  distance A,, assigned  to  concurrent  transitions. 
In  the  absence of phase offset,  the non-zero  squared 
distances Ai and the  squared  larger  distances of diverging 
or  merging  transitions  add  up to at  least  the  squared free 
distance.  However, if phase offset  rotates  the received 
signals  such  that received signals  become  located 
halfway  between the  signals of the original  signal set,  the 
difference in  distance  between received signals  and  the 
signals  on  distinct  transitions  that  are A,, apart  may be 
reduced  to zero. There may  then be no  difference in 
distance  between  a  long  segment of received signals  and 
two  distinct  trellis  paths,  just as though  the  code were 
catastrophic. At this  point,  the  decoder  begins  to  fail. 

Behauior of Carrier-Phase  Tracking Loops 
Nowadays,  in  most  digital  carrier-modulation systems, 

decision-directed  loops  are  employed  for  carrier-phase 

15 

tracking.  In  these  loops,  the  phase offset is estimated 
from  the received signal  and  the  decoder  decisions. The  
estimated  phase offset controls  the  demodulating  carrier 
phase.  In  a  TCM receiver, if the  phase offset  exceeds a 
critical  value,  for  example, 22.5" in  the case of coded 
8-PSK,  the  decoder  decisions  become  essentially  uncorre- 
lated  with  the received signal  and  the  mean  value of the 
phase  estimate  drops to zero. Figure 5 illustrates,  for 
4-state  coded  8-PSK [Z], the  mean  estimate of A 4  ("S- 
curve")  and  its variance  as  a  function of the  actual  value 
of the  phase  offset. A vanishing  mean  estimate,  as  occurs 
for A 4  between 22.5" and 157.5", leaves the  carrier-phase 
tracking loop in  an  undriven  random-walk  situation 
which  can  last  for  long  periods.  Eventually,  the system 
resynchronizes  when  the  randomly-fluctuating  demod- 
ulating  carrier  phase  approaches  a  value  for  which  the 
received signal  again  resembles  a  valid  TCM  sequence. 
This  behavior  is  in  significant  contrast to the  short  phase 
skips  and  rapid recovery observed in  uncoded 4-PSK or 
8-PSK  systems.  It  suggests  that in  some cases TCM 
systems may  require  special  methods  to force rapid 
resynchronization. 

Inuariance of Two-Dimens iona l   TCM  Codes  
under  Phase  Rotation 

TCM codes  are  not  usually  invariant  to  all  phase 
rotations  under  which  the  signal set is phase  invariant. 
Figure 5 indicates  a  phase  symmetry of 4-state  coded 
8-PSK  only  at A 4  = 180". but  not  at  other  multiples of 
45". This  symmetry  can be verified by inspection of the 
code  trellis  presented in  Fig. 2b of Part I [ 11. Coded  8-PSK 
schemes  which  are  invariant to phase  shifts of all 
multiples of 45" have been found [4], but these  schemes 
require  more  than  four  states  to  achieve  a  coding  gain of 
3 dB. 

In  general,  it is desirable  that  TCM codes  have as  many 
phase  symmetries  as  possible  to  ensure  rapid  carrier- 
phase  resynchronization  after  temporary loss of syn- 
chronization.  On  the  other  hand,  such  phase  invariances 
must be made  transparent  to  the  transmitted user 
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Fig. 5. Mean  ("S-curve")  and  variance of the  estzmated  phase  offset 
A$ in a decision-dzrecled  carrier-phase  tracking loop f o r  ./-.slate 
coded 8-PSK versus  the  actual  phase offset A+, a t  a s ignal- to-noise  
ratio of 13 dB  (tentative  decisions  used  with  zero  delay).  
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Fig. 6 .  Nonlrnear  8-stale  encoderlmodulator with 32-CROSS signal 
.ret and dijjerentral  encoding, a s  in C C Z T T  Recomnzendalzon V.32. 

information by some fo.rm of differential  encoding  and 
decoding. If loss of phase  synchronization is very 
unlikely,  one may argue  that  TCM codes without  phase 
invariances  may  have  the  advantage  that  the receiver can 
establish  absolute  phase  from  the received signal, so that 
no  differential  encoding/decoding is required. 

The  problems of phase  invariance  and  differential 
encoding/decoding  attracted  considerable  attention  in 
work  toward  a  TCM  code  for use in  CCITT  Recommen- 
dations  for  voice-band  modems  operating  full-duplex  at 
u p  to  9.6  kbit/s  over  two-wire  telephone  circuits,  and  at 
u p  to 14.4 kbit/s  over  four-wire  circuits.  There was 
considerable  interest  in  a  two-dimensional  8-state  code 
that  can  achieve,  with  90"-symmetric  QASKand  CROSS 
signal sets,  a  coding  gain of about  4 dB over  uncoded 
modulation.  With  the  known  linear code  (cf. Table 111 in 
the  Appendix, v = 3),  it  was only  possible  (by  adding 
parity-check  coefficients  in  a way which  does  not  change 
free distance,  as  mentioned  in  the  subsection  on 
optimum-code  search) to  have  either  no  phase  symmetry 
or  a  symmetry  at 180" [5],  [4,  Part I]. A  breakthrough was 
finally  accomplished by L.F. Wei,  who  introduced 
nonlinear  elements  into  theconvolutional  encoder of the 
8-state  code.  This  made  the  code  invariant  to 90" 
rotations  while  maintaining  its  coding  gain of 4 dB [6], 
[5,  Part I]. Figure  6  shows  the  resulting  encoder/modu- 
lator  with  its  differential  encoder,  nonlinear  convo- 
lutio'nal  encoder,  and  signal  mapping for  a  32-CROSS 
signal set (m = 4), as  finally  adopted  in  the  CCITT V.32 
Recommendation [7, Part I]. The  labeling of subsets 
differs  slightly  from  that  indicated  in  Fig.  2,  but  the 
subsets  are  the  same.  The  same  code  was  also  chosen  for 

the CCITT V.33 Draft  Recommendation  [8,  Part I], but 
with 64-QASK and  128-CROSS  signal sets (m = 5,6). In 
the  limit of large  signal sets, the  number of nearest 
neighbors  in  the  8-state  linear  and  the  CCITT  nonlinear 
code  is 16. 

In  a  late  contribution to  the CCITT [ 7 ] ,  illustrated  in 
Fig. 7,  an  alternative  8-state  nonlinear  encoder  with  the 
differential-encoding  function  integrated  into  the  en- 
coder was proposed.  The  coding  gain  and  the  number of 
nearest  neighbors  are  identical  to  those of the  other  8- 
state  schemes. The  trellis diagram of the  alternative 
nonlinear code  was shown  in  Fig.  6 of Part I [I] .  
Differential  decoding  requires  that  the receiver compute 
x,', = z:', CB z!+, . Subsets  are  labeled  as  indicated  in  Fig. 2. 
The selection of signals  within  the  subsets by the 
uncoded  bits x,', , x: is worth  mentioning. If x:, = 0, only 
signals of the  inner 16-QASK set are  transmitted  (m = 3 ) .  
With  non-zero  values of x:,, outer  signals of the  larger 
32-CROSS set are  also selected ( I n  =4).  Extension of this 
concept  to  larger  signal sets  resulted in  one  general 
signal  mapping for all  data  rates, e.g. ,  for  3 5 m 5 7 [7]. 
The  mapping  has  the  additional  property  that i t  can  just 
a s  well be used for  uncoded  modulation  with  modulo-4 
differential  encoding of the  bits z f , ,  zii. 

The  nonlinear 8-state TCM codes appear to be special 
cases. Similar  nonlinear  phase-invariant codes with 16 
and  more states  can be constructed.  However,  at least  for 
16 states, i t  does  not seem possible  to  find  a  code  with  the 
same 4.8 dB  coding  gain  as  can be obtained  with  a  linear 
code. 
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Multi-Dimensional  Trellis Codes 
Recently,  there  have been a  number of investigations 

into  trellis  coding  with  signal sets  defined in  more  than 
two  dimensions [ 3 ,  Part I], [8-111. In  practical  systems, 
multi-dimensional  signals  can be transmitted  as se- 
quences of constituent  one-  or  two-dimensional  (I-D  or 
2-D) signals.  In  this  section,  2K-D  TCM  schemes  are 
considered  which  transmit  m  bits  per  constituent  2-D 
signal,  and  hence m K  bits  pcr2K-D  signal.  The  principle 
of using a redundant  signal set of twice  the size needed  for 
uncoded  modulation  is  maintained.  Thus, 2K-D TCM 
schemes use  2‘;”’+’-ary  sets of 2K-D  signals.  Compared to 
2-D TCM schemes,  this  results in less signal  redundancy 
i n  the  constituent  2-D  signal sets. 

For  2-D TCM schemes  with  “Z,”-type  signal sets,  the 
minimum  signal  spacing A,, must be reduced by 
approximately the  factor a(- 3 dB) to have  the  same 
average  signal  power as for  uncoded  modulation.  This 
loss in  signal  spacing  needs to be more  than  compensated 
for by coding to obtain  an  overall  improvement  in free 
distance. The  lower  signal  redundancy of multi-dimen- 
sional  TCM schemes  with  “ZYn”-type  signal sets results 
only  in  a  reduction of the  minimum  signal  spacing by 
the  2K-th  root of 2 (-1.5 dB  for K =2;  and - 0.75 dB  for K 
= 4), so coding  has to contribute less than  in  the  case of 
2-D  TCM to obtain the  same  gain  in free distance. The  
larger  signal  spacing  should  also  make  multi-dimen- 
sional  TCM systems less sensitive to phase offset. 
Finally, i t  has been found  that  multi-dimensional  TCM 
schemes  with 90’ phase  invariance  can be obtained  with 
linear  codes. 

Four-Dimensional  Trell is-Coded  Modulation 
T h e  4-D  TCM  schemes ( K  = 2) described  in  this 

subsection  employ  compact sets of 2‘“‘+’ signals  chosen 
from a lattice of type “Z,”  with  minimum  signal  spacing 
A,,.  Figure  8  illustrates  the set partitioning of a  signal set 
A‘: of type “ Z , ” .  The,  general idea  is to derive  the set 
partitioning of a  higher-dimensional  signal set from  the 
sct partitioningof  constituent  lower-dimensional  signal 
sets. In  the  present  case, A‘: and  its  subsets  arc  character- 
ized by twoconstituent “Z,”-type  signal sets A0 and  their 

AO”A$ ‘2; n, 

SIGNAL 
M A P P I ~ G  

subsets,  such as introduced  in  Fig. 2. This  leads to a 
partition tree with  signal sets of types “Z,” - “D.1” - 
d i s t a n c e s A o , A , = A . = ~ A o . A ~ = A l = ~ A o . e t c . T h e  
next  paragraph describes  the  details of the partitioning 
process  (and  may be skipped by readers without specific 
interest in this  process). 

Set partitioning  begins by writing A‘! = A0 X A0 (X 
denotes  set-product  operation:  the  product set consists of 
all  concatenations of elements of the  first  set with  the 
elements of the  second  set).  Substitution of A0 =BO U B1 
(U  denotes set union) yields A‘; = (BOUBl)X(BOUBl) = 
(BOXBO)U(BOXB1)U(BlXBO)U(B1XBl). The  first parti- 
tion  divides A!! into  the  two  subsets BY = (BOXB0)U 
(BIXBl)  and Bj = (BOXBl)U(BlXBO).  These  subsets  are 
of type “Dl” ,  where “ D l ”  denotes  the  densest  lattice 
known  in  4-D  space [12]. The  minimum intra-set 
distance  in B!; and B j  is fl A,,, which is  the  minimum 
distance  between  constituent  2-D  signals in BO or B1, and 
also  between  one 4-D signal  in BOXBO and  another  in 
BlXBl.  On the  next  binary  partition,  e.g.,  when B‘; is 
partitioned  into  subsets BOXBO and  BlXBl,  no  distance 
increase  is  obtained.  These  subsets  are of type “Z.,”, like 
A!, from  which they  differ only  in  their  orientation, 
position  with respect to the origin,  and  scaling.  Hence, 
their  partitioning is conceptually  similar to that of A‘:. 
The  minimum  intra-set  distance increases to &A,, 
when,  e.g., BOXBO is  split  into  subsets Cy = (COXC0)U 
(C2XC2) and  Ci = (COXC2)U(C2XCO), which  are  now 
again of type “D.,”. 

Optimum  convolutional codes  are  found by using the 
obtained  sequence of minimum  intra-set  distances  in  the 
code-search  program  mentioned  earlier. The  codes and 
their  asymptotic  coding  gains over uncoded  modulation 
with  “Z,”-type  signals  are  given  in  Table IV in the 
Appendix.  The  gains  are valid  for  large  signal sets which 
fill  the  same  volume  in  signal  space a s  the  signal sets used 
for  uncoded  modulation.  Thus,  the  comparison  is  made 
for  the  same  average  signal  power  and  the  same  peak 
powef of ,2-D  signals. 

It may be helpful to discuss  the  16-state  code of Table 
IV, which  achieves an  asymptotic  coding  gain o f  4.52 dB, 
in  more  detail.  The code uses the eight  4-D  subsets C!;, ... 
C: shown  in  Fig.  8,  and  has 64 distinct  transitions  in  its 
trellis diagram.  The  only  nearest-neighbor  signals  are 
those  associated  with  parallel  transitions,  and  their 
number  at  any  transition is 24 (the  number of nearest 
neighbors  in  a “Dl”  lattice).  Figure  9depicts  one  possible 
realization of an  encoder/modulator  with  differential 

“ Z , ”  4 “D.,” - “ Z , ” ,  etc.,  with  minimum  intra-set 
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Fig. 10. Set  parti t ioning of eight-dimensional  signal  sets of lattice 
type “Zj”, also  showing  ihe  effect  of a 90” rolation. 

encoding.  The code  from  Table IV was  first  made 
invariant  to  inversion of the  bit z:, by interchanging  the 
parity-check  coefficient vectors h’ and h‘. Invariance to 
90” rotations  and  the  required  differential  encoding 
follow  from  the 90” symmetries  indicated in  Fig. 8,  which 
in  turn  are based on  the90” symmetries in  theconstituent 
2-D  signal  subsets. The  subsets Cy, ... C:, each  composed 
of two  subsets  CiXCk,  must be chosen  individually  for 
each  value  of  m. The  subset  C0XC0 contains 22’”-S 
signals,  and may be constructed  first.  The  other  subsets 
CiXCk  are  then  obtained by 90” rotations of the  two 
constituent  subsets C0 in COXCO. For  the  specific  case of 
m = 4.5, C0XC0 contains  8x8  signals,  and  hence  the 
8-ary  subset C0 of Fig. 2 can be used. This  construction of 
the  4-D  subsets  also  suggests an efficient  subset-decoding 
method  that  begins  with  signal  decisions  within  the 
constituent  2-D  subsets C0, ... C3. In  general,  the  design 
of signal sets can be more  complicated. References  [3, 
Part  I]  and [ 111 discuss mapping  techniques for cases 
where  signal-set sizes are  not  powers of 2. 

Eight-Dimensional   Trel l is-Coded  Modulat ion 
The  technique of set partitioning of a higher- 

dimensional  signal set based on  the  known  partitioning 
of lower-dimensional sets  is now  applied to 8-D  signal 
sets (K=4) of type “Zx” = “Z., X Z.,”. Figure 10 illustrates 
the  details.  The  sequence of minimum  intra-set  distances 
A,,, A ,  = A 2 = A ,  = J2 A,,, A ,  = A, = A, = A, = f i A , , ,  
etc.,  is  obtained,  corresponding  to  a  chain of lattice types 

where  “Ex”  denotes  the  famous  Gosset  lattice,  the  densest 
lattice  known  in  8-D  space [12]. (The  nomenclature 
“DEx’’ was introduced  in [9]; [ 111 uses “DLx”.) 

Codes  obtained by the  code-search  program  are  given 
in  Table V in  the  Appendix.  The  codes use 2’”’+’ 8-D 
signals  partitioned  into 16 subsets C!, ... C15 of type “Ex”. 
In  the  limit of large  signal  sets,  the  codes  achieve  an 
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“ZX” -. “DX” - “D,  X D,,”-  “DEx”-. “Ex” - “Dx”,  etc., 

asymptotic  coding  gain of 5.27 dB over uncoded ‘*Z2”- 
type modulation. If code  complexity is  increased  to 64 
states,  the  only  nearest  neighbors  are  those  associated 
with  parallel  transitions,  and  their  number is 240, which 
is  the  number of nearest  neighbors  in  an “Ex” lattice. The  
“Ex”-type  subsets  can be further  partitioned  into  two 
subsets  with 90” symmetries  as  indicated  in  Fig. 10. This 
property  can be verified by observing  the 90” symmetries 
among  the  constituent  4-D  signals as shown  in  Fig. 8. 
Hence,  8-D  codes  are  inherently 90” phase  invariant, 
because their  subsets  have  this  property.  Differential 
encoding/decoding  can be performed  entirely  within  the 
subsets,  decoupled  from  the  convolutional  encoding 
function. 

Other  8-D  TCM schemes are  obtained by choosing  the 

chain of types encountered  in  Fig. 10, and  performing 
the  code  search  for  the  sequence of minimum  intra-set 
distances  that  originates  from  this  type.  Codes  with 
signals  from  “DEx”  or  “Es”  are of some  interest [9]-[ 111, 
although  it  does  not seem that these  codes exhibit 
significant  advantages  over  the  “Zx”-type  codes, if code 
complexities,  asymptotic  coding  gains,  and  numbers of 
nearest  neighbors  are  compared.  This is also  true  for  4-D 
codes  with  “D,”  signals, as compared  to codes with “Z4” 
signals. 

21”’+1 signals  from  another  lattice  type  than “Zs” in  the 

Discussion 
The  number of distinct  transitions  in  the  trellis 

diagrams of TCM codes  is 2”””. This  so-called  “trellis 
complexity”  represents  a  measure of code  (decoding) 
complexity.  A  fair  comparison of TCM schemes  with 
different  signal  dimensionalities  requires  normalization 
of trellis  complexities  and  numbers of nearest  neighbors 
to  the  same  number of signal  dimensions.  In  the 
following’,  normalization  to  two  dimensions is assumed. 
Hence,  normalized trellis complexity  specifies the num- 
ber of distinct  trellis  transitions to be dealt  with by the 
dqcoder  per  2-D  signal  or  two  1-D  signals received. 
Similarly,  a  normalized  number of nearest  neighbors 
indicates  the  number of error  events  with free distance 
that  could  start  (on  average)  during  the  same  time 
interval. 

In  Fig. 11,  asymptotic  coding  gains of TCM schemes 
with  large  1-D ( K  = 0.5) to 8-D ( K  = 4)  signal sets are 
plotted  versus  normalized  trellis  complexity, 2”+’”/K. 
Normalized  numbers of nearest  neighbors, N,,,,,,/K, are 
given  in  parentheses. At a  normalized  trellis  complexity 
of 8, the  “Z2”-type  4-state  code is without  competition. 
The  “Z,”-type 16-state  code,  whose  encoder/modulator 
was  illustrated  in  Fig. 9,  shows a 0.5,dB  advantage  overa 
“Z,”-type  8-state  code,  e.g.,  the  nonlinear  CCITT  code, 
and  also  a  slightly reduced number of nearest  neighbors, 
at  the  same  normalized  complexity of 32. Next in the 
order of increasing  complexities,  the  “Z,”-type 16-state 
code  may be of interest,  but  it  cannot be made  invariant 
to 90” rotations. At a  normalized  complexity of 128, i.e., 
four times  the  complexity of the  CCITT  code,  the “Zx”-  
and  “Ex”-type 64-state  codes  are  found  as  attractive 90” 
phase-invariant codes. Finally,  at  a 32 times  higher 
complexity  than  the  CCITTcode,  the  “Zl”-type256-state 
code  stands  out  for  its  asymptotic  coding  gain  and  low 
number of nearest  neighbors. 
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Fig. 11. Asymptotic coding gains uersus lrellis compkxi iy  per 2 - 0  
signal (ZUt’”lK)for large 2K-D signal sels of t ype  “Z2s”for K = 
0.5.1.2. f ;”E~~”;and“DE~~”.Numbersof?zenrestneighbor.sperZ-D 
. s i g n c r ~  ( I V , ~ ? ~ / K )  are gir~en i n  parentheses. 

The  asymptotic  coding  gain of the  “DEx” codes 
exceeds that of the “Zx” and  “E,” codes by 0.75 dB, but the 
“DEx” codes also  have  many  more  nearest  neighbors. 
Hence,  one  may  question  their  usefulness.  Similarly,  the 
“Z ,”-type 128-state  code with  the  highest  asymptotic  cod- 
ing  gain of 6.28 dB  shown  in  Fig. 11 may  not be of prac- 
tical  interest,  because of its  large  number of nearest 
neighbors. 

Figure 11 gives important  information  about  the 
ranking of TCM codes.  However,  the  picture  also 
remains  somewhat  incomplete.  Real  coding  gains  at 
given  error  probabilities,  considering  nearest  and  next- 
nearest  neighbors  and  the  boundary effect of finite  signal 
sets,  are  not  included.  In  first  approximation,  one  may 
use the  rule  that  for  error  rates  around lo-’ the  real 
coding  gain is  reduced by 0.2 dB for every increase in the 
number of nearest  neighbors by the  factor of 2. There  is 
also very little  published  information  about  the  carrier- 
phase  sensitivity (a possible  advantage of the multi- 
dimensional  TCM  schemes) of the  TCM schemes  under 
discussion.  The  complexity of subset  decoding  and 
decoder-memory  requirements  are  further  important 
aspects  that need to be considered. 

In  general,  one  can  make  the  following  observations. 
At low  complexity,  higher-dimensional  TCM  schemes 
exhibit  larger  asymptotic  coding  gains  than  the  lower- 
dimensional schemes,  however, these coding  gains  are 
compromised by large  numbers of nearest  neighbors.  In 
the  mid-range,.  4-D  and  8-D  TCM schemes  achieve 
slightly  larger  real  coding  gains  than  the  1-D  and  2-D 
schemes.  Finally,  at  high  trellis  complexities  lower- 
dimensional  TCM schemes  will eventually  prevail  in 
performance.  This  can be explained by the fact that these 
schemes  have  more  signal  redundancy  available for 
coding  than  higher-dimensional  TCM schemes.  Overall, 
the  differences in real coding  gains  are  not very large, 
that is, they are  smaller  than  1  dB  for  the  range of com- 
plexities  considered. 

19 

Other Recent Work 
Trellis codes  have also been  designed  for  1-D and 

2-D  signal sets with  nonequally-spaced  (“asymmetric”) 
signals [6, Part I], [13]. Some  modest  coding  gains 
compared to schemes with  equally-spaced  signals  are 
achieved  when  the codes have few states and  small  sig- 
nal sets. These  gains  disappear  for  larger  signal sets 
and  higher code  complexity.  There  are  open  questions 
about  the  number of nearest  neighbors  and  sensitivity 
to  carrier  phase offset when  signals  are  nonequally 
spaced. 

While  TCM schemes  have  been  designed  for  linear 
modulation  channels,  similar  developments  took  place 
in  the field of continuous  phase  modulation  (CPM)  for 
channels  requiring  constant  envelope  signals.  A  sum- 
mary on  CPM schemes  is  given in [14]. 

Conclusion 
It is probably  fair to state  that  in recent  years  the 

theory of trellis-coded  modulation  has  matured  to  the 
point  where  the  achievement of further  major  gains 
seem less likely.  However,  there  are  still  open  ques- 
tions  concerning  real  coding  gains,  performance  under 
channel  impairments  other  than  Gaussian  noise,  and 
actual  implementation  complexities. 

T h e  8-state  CCITT  scheme was  established  only  two 
years ago  (1984).  In  the  meanwhile,  many  manufactur- 
ers of voice-band  modems  and  other  transmission 
equipment have  adopted  the  new  combined  coding 
and  modulation  technique. At least one  manufacturer 
has  already realized the  sophisticated  “Z,”-type  64-state 
T C M  scheme  in a commercial  product.  In  the  struggle 
toward  higher  coding  gains,  application of more  com- 
plexity is met  with  diminishing  returns.  For  channels 
with  Gaussian  noise,  the  so-called  “cut-off  rate” R,,, 
which is smaller  than  channel  capacity by the  equiva- 
lent of about  3  dB,  has been  suggested as a more  realis- 
tic limit [15]. TCM schemes  have  reached  this  barrier. 
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Appendix: Code Tables 
Tables 1-111 are  largely  reproduced  from [2]. Tables 

IV and V have not been published  previously; however, 
similar codes with  up  to 64 states  were  found by L.F. 
Wei [9]. In  the tables, an  asterisk (*) indicates  that free 
distance  occurs  only  among  parallel  transitions, i.e., 
d r b c c ( G )  > A;,+, . 
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TABLE I 
CODES FOR AMPLITUDE MODULATION WITH "z1" SIGNALS, 

{Ai, 0 5 i I 2) = &,2&,  4&. 

No. of Parity  check Asympt. coding gain [dB] 
states coefficients G4AM/2AM  GBAM/4AM 

2" fi h' hn d L /  4 (m = 1 )  - - (m = 2) (m-m)  (m-") 
Gd" Nfrec 

4 1 2 5 9.0 2.55 3.31 3.52 4 
8 1 04 13 10.0 3.01 3.77 3.97 4 

16 1 04 23 11.0 3.42 4.18 4.39 8 
32 1 10 45 13.0 4.15 4.91 5.1 1 12 
64 1 024 103 14.0 4.47 5.23 5.44  36 

128 1 126 235 16.0 5.05 5.81 6.02 66 
256 1 362 515 16.0X - 5.81 6.02 2 
256 1 362 515 17.0 5.30 - - 

TABLE I1 
CODES FOR PHASE MODULATION 

8-PSK: {A,, 0 I i 5 2 )  = 2 sin(?r/8), 2; 
16-PSK: {Ai, 0 I i 5 3 )  = 2 sin(?r/l6), 2 sin(?r/S),*, 2. 

No. of Asympt. coding  gain [dB] 
states Parity-check coefficients GBPSW~PSK  GI~PSWBPSK Nfree 

2' m - h* - h' - hn d?ree/A$ (m=2) (m=3) ( m - 9  

4 1 - 2 5 4,.000* 3.01 - 1 
8 2 04 02 11 4.586 3.60 - 2 

16 2 16 04 23  5.172 4.13 
32 2 16 45 .5.758 4.59 - 4 34 
64 2 066 030 103 6.343 5.01 

128 2 122 277 6.586 5.17 054 
256 

- -2.3 

=5.3 
-0.5 

- 
- 

2 130 072 435 7.515 5.75 - =I .5 

4 2 5 1.324 - 3.54 4 
8 1 04 13 1.476 - 4.01 4 

16 1 - 04 23 1.628 - 4.44 8 
32 1 - 10 45 1.910 - 5.13 8 
64 1 - 024 103 2,000" - 5.33 2 

128 1 - 024 203 2,000" - 5.33 2 
256 2 374 176 427 2.085 - 5.51 =8 .O 

~ _ _ _ _ _  

1 - 
- 

~~ 

TABLE I11 

{ A ~ ,  o 5 i 5 3) = A,,, & A ~ ,  ,/'Tab, & A ~ .  
CODES FOR TWO-DIMENSIONAL MODULATION WITH "z2" SIGNALS, 

No. of Asympt. coding  gain [dB] 
states  Parity-check coefficients GI6QA/BPSK G ~ Z C R / I ~ Q A   G ~ ~ Q A / ~ Z C R  Gc/u 

2' 
Ntree 

6 -  h2 - h' - hn dTree/A$ (m=3) (m=4) (m=5) (m-00) (m-w) 

4 1 - 2 5 4.0" 4.36 3.01 2.80 3.01 4 
8 2 04 02 1 1  5.0 5.33 3.98 3.77 3.98 16 

16 2 16 04 23 6.0 6.12 4.77 4.56 4.77 56 
32 2 I O  06 41 6.0 6.12 4.77 4.56 4.77 16 
64 ' 2 064 016 101 7 .O 6.79 5.44 5.23 5.44 56 

128 2 042 014 203 8.0 7.37 6.02 5.81 6.02 344 
256 2 304 056 40 1 8.0 7.37 6.02 5.81 6.02 44 
512 2 0510 0346 1001 8.0X 7.37 6.02 5.81 6.02 4 
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TABLE IV 

{Ai, 0 I i 5 5 )  = All, &All, &-A,, &Ao, &All, &A,. 
CODES FOR FOUR-DIMENSIONAL MODULATION  WITH “zq” SIGNALS, 

No. of Parity-check  coefficients Asympt. coding 
states gain [dB] Nfree 

2’ I% h4 - h3 h2 - h’ h0 &/A8 (m-m) (m-m) 

8 2 - - 04 02 11 4.0 4.52 88 
16 2 - - 14 02 21 4.0” 4.52 24 
32 3 - 30 14 02 41 4 .Ox 4.52 8 
64 4 050  030 014 002 101 5.0 5.48 144 

128 4 120 050 022 006 203 6.0 6.28 

TABLE V 
CODES FOR EIGHT-DIMENSIONAL MODULATION WITH “Zg” SIGNALS, 

{a i ,  o I i I 51 = A,, &A,, *A,,  *A,, &A,, &A,,. 

No. of Parity-check  coefficients Asympt. coding 
states gain [dB] Nfree 

2’ I% h4 h3 h‘ - h’ - ho dfree/Af (m-w) (m-“o) 

16 ‘ 3  - 10 04 02 21 4.0 5.27 
32 3 - 10 04 02 41 4.0 5.27  496 
64 3 - 044 014  002 101 4.0” 5.27 240 

128 4 120 044 014 002 20 1 4.0” 5.27  112 

V.M. Eyuboglu  and G.D. Forney [ 161 discovered typo- 
graphical  errors  in  the  earlier  published “ Z I ” -  and 
“Z2”-type  256-state  codes [ Z ] ,  which   have   now  been   cor -  
rected in  Tables I and 111. 

Some of the  8-PSK  codes of Table I1 were improved, 
compared to those  published  in [2], by using  the  exact 
expression  for  df,rc(r%)  in  the  code  search. The  16-PSK 
codes of Table I1 are  new. 

The  exact  numbers of nearest  neighbors, N,,,,,,, given in 
the  tables were taken  from  various  sources, in  particular 
[ l l ]   a n d  [17]. The  approximate  values of Nl,,,,,, given  for 
some  codes  in  Table 11, are  average  values recently 
determined by the  author. 
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