
Applied Discrete Structures

Applied Discrete Structures

Al Doerr
University of Massachusetts Lowell

Ken Levasseur
University of Massachusetts Lowell

May 21, 2023

Edition: 3rd Edition - version 10

Website: discretemath.org

©2023 Al Doerr, Ken Levasseur

Applied Discrete Structures by Alan Doerr and Kenneth Levasseur is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United
States License. You are free to Share: copy and redistribute the material in
any medium or format; Adapt: remix, transform, and build upon the material.
You may not use the material for commercial purposes. The licensor cannot
revoke these freedoms as long as you follow the license terms.

http:\protect /\penalty \exhyphenpenalty {}\protect /\penalty \exhyphenpenalty {}discretemath.org

To our families

Donna, Christopher, Melissa, and Patrick Doerr

Karen, Joseph, Kathryn, and Matthew Levasseur

Acknowledgements

We would like to acknowledge the following instructors for their
helpful comments and suggestions.

• Tibor Beke, UMass Lowell
• Alex DeCourcy, UMass

Lowell
• Vince DiChiacchio
• Warren Grieff, UMass Low-

ell
• Matthew Haner, Mansfield

University (PA)
• Dan Klain, UMass Lowell
• Sitansu Mittra, UMass Low-

ell

• Ravi Montenegro, UMass
Lowell

• Tony Penta, UMass Lowell

• Jim Propp, UMass Lowell

• Ivan Temesvari, Oakton
College

• Thao Tran, UMass Lowell

• Richard Voss, Florida At-
lantic U.

I’d like to particularly single out Jim Propp for his close scrutiny,
along with that of his students, many of whom are listed below.

I would like to thank Rob Beezer, David Farmer, Karl-Dieter Crisman and
other participants on the pretext-xml-support group for their guidance and
work on MathBook XML, which has now been renamed PreTeXt. Thanks to
the Pedagogy Subcommittee of the UMass Lowell Transformational Education
Committee for their financial assistance in helping getting this project started.

Many students have provided feedback and pointed out typos in
several editions of this book. They are listed below. Students with
no affiliation listed are from UMass Lowell.

• Ryan Allen
• Rebecca Alves
• Anonymous student from

Florida Atlantic U.
• David Arakelian
• Junaid Baig
• Anju Balaji
• Carlos Barrientos
• Raymond Berger, Eckerd

College

• Ron Burkey, Independant
Contributor

• Chris Berns
• Brianne Bindas
• Nicholas Bishop
• Nathan Blood
• Cameron Bolduc
• Sam Bouchard
• Amber Breslau
• Rachel Bryan
• Nam Bui

v

https://groups.google.com/forum/m/?fromgroups#!forum/pretext-support

vi

• Courtney Caldwell
• Joseph Calles
• Rebecca Campbelli
• AJ Capone
• Eric Carey
• Emily Cashman
• Cora Casteel
• Rachel Chaiser, U. of Puget

Sound
• Sam Chambers
• Vanessa Chen
• Hannah Chiodo
• Sofya Chow
• David Connolly
• Sean Cummings
• Alex DeCourcy
• Ryan Delosh
• Hillari Denny
• Matthew Edwards
• John El-Helou
• Adam Espinola
• Josh Everett
• Christian Franco
• Anthony Gaeta
• David Genis
• Lisa Gieng
• Holly Goodreau
• Lilia Heimold
• Kevin Holmes
• Benjamin Houle
• Alexa Hyde
• Michael Ingemi
• Eunji Jang
• Matthew Jarek
• Kyle Joaquim
• Mathew John
• Devin Johnson
• Jeremy Joubert
• William Jozefczyk
• Joel Keaton
• Antony Kellermann
• Yorgo A. Kennos

• Thomas Kiley
• Cody Kingman
• Leant Seu Kim
• Jessica Kramer
• John Kuczynski
• Auris Kveraga
• Justin LaGree
• Daven Lagu
• Kendra Lansing
• Gregory Lawrence
• Pearl Laxague
• Kevin Le
• Thien Tran Le
• Matt LeBlanc
• Maxwell Leduc
• Ariel Leva
• Robert Liana
• Tammy Liu
• Anson Lu
• Laura Lucaciu
• Kelly Ly
• Kevin Mackie, Learning As-

sistant
• Alexandra Mai
• Andrew Magee
• Matthew Malone
• Logan Mann
• Sam Marquis
• Amy Mazzucotelli
• Colby Mei
• Adam Melle
• Jason McAdam
• Nick McArdle
• Christine McCarthy
• Shelbylynn McCoy
• Conor McNierney
• Albara Mehene
• Joshua Michaud
• Max Mints
• Charles Mirabile
• Timothy Miskell
• Genevieve Moore
• Mike Morley

vii

• Zach Mulcahy
• Tessa Munoz
• Zachary Murphy
• Logan Nadeau
• Carol Nguyen
• Hung Nguyen
• Tam Nguyen
• Shelly Noll
• Steven Oslan, the champion

typo finder!
• Harsh Patel
• Beck Peterson
• Donna Petitti
• Paola Pevzner
• Zach Phillips
• Sam Pizette
• Angelo Pocoli
• Samantha Poirier
• Roshan Ravi
• Ian Roberts
• John Raisbeck
• Adelia Reid
• Derek Ross
• Tyler Ross
• Jacob Rothmel
• Zach Rush
• Ryan Saadah
• Steve Sadler, Bellevue Col-

lege (WA)
• Doug Salvati
• Chita Sano
• Noah Schultz
• Anna Sergienko
• Ben Shipman
• Florens Shosho

• Lorraine Sill
• Jonathan Silva
• Joshua Simard
• Mason Sirois
• Gabriel Shahrouzi
• Sana Shaikh
• Joel Slebodnick
• Greg Smelkov
• Andrew Somerville
• Samuel Stanley
• Alicia Stransky
• Brandon Swanberg
• Joshua Sullivan
• James Tan
• Steven Tang
• Amitha Thalanki
• Bunchhoung Tiv
• Andy Tran
• Tina Tran
• Mary Tsykora
• Joanel Vasquez
• Rolando Vera
• Anh Vo
• Nick Wackowski
• Ryan Wallace
• Uriah Wardlaw
• Phoebe Watkins
• Zach Weaver
• Steve Werren
• Laura Wikoff
• Henry Zhu
• Several students at Luzurne

County Community College
(PA)

Preface

Applied Discrete Structures is designed for use in a university course in discrete
mathematics spanning up to two semesters. Its original design was for computer
science majors to be introduced to the mathematical topics that are useful in
computer science. It can also serve the same purpose for mathematics majors,
providing a first exposure to many essential topics.

We embarked on this open-source project in 2010, twenty-one years after
the publication of the 2nd edition of Applied Discrete Structures for Computer
Science in 1989. We had signed a contract for the second edition with Science
Research Associates in 1988 but by the time the book was ready to print, SRA
had been sold to MacMillan. Soon after, the rights had been passed on to
Pearson Education, Inc. In 2010, the long-term future of printed textbooks was
uncertain. In the meantime, textbook prices (both printed and e-books) had
increased and a growing open source textbook movement had started. One of
our objectives in revisiting this text is to make it available to our students in
an affordable format. In its original form, the text was peer-reviewed and was
adopted for use at several universities throughout the country. For this reason,
we see Applied Discrete Structures as not only an inexpensive alternative, but
a high quality alternative.

The current version of Applied Discrete Structures has been developed
using PreTeXt, a lightweight XML application for authors of scientific articles,
textbooks and monographs initiated by Rob Beezer, U. of Puget Sound. When
the PreTeXt project was launched, it was the natural next step. The features
of PreTeXt make it far more readable, with easy production of web, pdf and
print formats.

The current computing landscape is very different from the 1980’s and this
accounts for the most significant changes in the text. One of the most common
programming languages of the 1980’s was Pascal. We used it to illustrate many
of the concepts in the text. Although it isn’t totally dead, Pascal is far from
the mainstream of computing in the 21st century. The open source software
movement was just starting in the late 1980’s and in 2005, the first version of
Sage (later renamed SageMath), an open-source computer algebra system, was
first released. In Applied Discrete Structures we have replaced "Pascal Notes"
with "SageMath Notes."

Many of the concepts introduced in this text are illustrated using SageMath
code. SageMath (sagemath.org1) is a free, open source, software system for
advanced mathematics. Sage can be used either on your own computer, a local
server, or on SageMathCloud (https://cloud.sagemath.com).

Ken Levasseur
Lowell, MA

1sagemath.org

viii

http://sagemath.org
https://cloud.sagemath.com

Contents

Acknowledgements v

Preface viii

1 Set Theory 1

1.1 Set Notation and Relations 1
1.2 Basic Set Operations 5
1.3 Cartesian Products and Power Sets 11
1.4 Binary Representation of Positive Integers 13
1.5 Summation Notation and Generalizations 16

2 Combinatorics 20

2.1 Basic Counting Techniques - The Rule of Products. 20
2.2 Permutations 24
2.3 Partitions of Sets and the Law of Addition. 28
2.4 Combinations and the Binomial Theorem 33

3 Logic 39

3.1 Propositions and Logical Operators 39
3.2 Truth Tables and Propositions Generated by a Set 44
3.3 Equivalence and Implication 46
3.4 The Laws of Logic 49
3.5 Mathematical Systems and Proofs 51
3.6 Propositions over a Universe 56
3.7 Mathematical Induction 59
3.8 Quantifiers . 65
3.9 A Review of Methods of Proof 70

4 More on Sets 74

4.1 Methods of Proof for Sets 74
4.2 Laws of Set Theory 79
4.3 Minsets . 82
4.4 The Duality Principle 85

ix

CONTENTS x

5 Introduction to Matrix Algebra 87

5.1 Basic Definitions and Operations 87
5.2 Special Types of Matrices 93
5.3 Laws of Matrix Algebra 97
5.4 Matrix Oddities 98

6 Relations 101

6.1 Basic Definitions101
6.2 Graphs of Relations on a Set.104
6.3 Properties of Relations107
6.4 Matrices of Relations116
6.5 Closure Operations on Relations120

7 Functions 125

7.1 Definition and Notation125
7.2 Properties of Functions129
7.3 Function Composition133

8 Recursion and Recurrence Relations 139

8.1 The Many Faces of Recursion139
8.2 Sequences .145
8.3 Recurrence Relations148
8.4 Some Common Recurrence Relations158
8.5 Generating Functions166

9 Graph Theory 181

9.1 Graphs - General Introduction181
9.2 Data Structures for Graphs192
9.3 Connectivity196
9.4 Traversals: Eulerian and Hamiltonian Graphs206
9.5 Graph Optimization216
9.6 Planarity and Colorings228

10 Trees 237

10.1 What Is a Tree?237
10.2 Spanning Trees.240
10.3 Rooted Trees247
10.4 Binary Trees253

11 Algebraic Structures 264

11.1 Operations .264
11.2 Algebraic Systems268
11.3 Some General Properties of Groups273
11.4 Greatest Common Divisors and the Integers Modulo n278
11.5 Subsystems .287
11.6 Direct Products292
11.7 Isomorphisms298

CONTENTS xi

12 More Matrix Algebra 306

12.1 Systems of Linear Equations306
12.2 Matrix Inversion315
12.3 An Introduction to Vector Spaces319
12.4 The Diagonalization Process326
12.5 Some Applications334
12.6 Linear Equations over the Integers Mod 2340

13 Boolean Algebra 343

13.1 Posets Revisited345
13.2 Lattices .349
13.3 Boolean Algebras351
13.4 Atoms of a Boolean Algebra354
13.5 Finite Boolean Algebras as n-tuples of 0’s and 1’s358
13.6 Boolean Expressions359
13.7 A Brief Introduction to Switching Theory and Logic Design . .363

14 Monoids and Automata 370

14.1 Monoids .370
14.2 Free Monoids and Languages373
14.3 Automata, Finite-State Machines379
14.4 The Monoid of a Finite-State Machine384
14.5 The Machine of a Monoid387

15 Group Theory and Applications 390

15.1 Cyclic Groups390
15.2 Cosets and Factor Groups.396
15.3 Permutation Groups402
15.4 Normal Subgroups and Group Homomorphisms411
15.5 Coding Theory, Linear Codes418

16 An Introduction to Rings and Fields 428

16.1 Rings, Basic Definitions and Concepts428
16.2 Fields .436
16.3 Polynomial Rings440
16.4 Field Extensions445
16.5 Power Series.449

Appendices

A Algorithms 454

A.1 An Introduction to Algorithms454
A.2 The Invariant Relation Theorem458

B Python and SageMath 461

B.1 Python Iterators461
B.2 Dictionaries .462

CONTENTS xii

C Determinants 465

C.1 Definition. .465
C.2 Computation467

D Hints and Solutions to Selected Exercises 469

E Notation 551

F Glossary 555

An Informal Glossary of Terms555

Back Matter

References 557

Index 560

Chapter 1

Set Theory

empty set

Betty’s math teacher said, in a sweat:
"I will teach you some set theory yet!"

But his best efforts failed,
And at Betty he railed:

"Your insights? A true empty set!"

SheilaB, The Omnificent English Dictionary In Limerick Form

We begin this chapter with a brief description of discrete mathematics. We then
cover some of the basic set language and notation that will be used throughout
the text. Venn diagrams will be introduced in order to give the reader a clear
picture of set operations. In addition, we will describe the binary representation
of positive integers and introduce summation notation and its generalizations.

1.1 Set Notation and Relations

1.1.1 The notion of a set
The term set is intuitively understood by most people to mean a collection of
objects that are called elements (of the set). This concept is the starting point
on which we will build more complex ideas, much as in geometry where the
concepts of point and line are left undefined. Because a set is such a simple
notion, you may be surprised to learn that it is one of the most difficult concepts
for mathematicians to define to their own liking. For example, the description
above is not a proper definition because it requires the definition of a collection.
(How would you define “collection”?) Even deeper problems arise when you
consider the possibility that a set could contain itself. Although these problems
are of real concern to some mathematicians, they will not be of any concern to
us. Our first concern will be how to describe a set; that is, how do we most
conveniently describe a set and the elements that are in it? If we are going to
discuss a set for any length of time, we usually give it a name in the form of
a capital letter (or occasionally some other symbol). In discussing set A, if x
is an element of A, then we will write x ∈ A. On the other hand, if x is not
an element of A, we write x /∈ A. The most convenient way of describing the
elements of a set will vary depending on the specific set.

Enumeration. When the elements of a set are enumerated (or listed) it is
traditional to enclose them in braces. For example, the set of binary digits is

1

CHAPTER 1. SET THEORY 2

{0, 1} and the set of decimal digits is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The choice of a
name for these sets would be arbitrary; but it would be “logical” to call them
B and D, respectively. The choice of a set name is much like the choice of an
identifier name in programming. Some large sets can be enumerated without
actually listing all the elements. For example, the letters of the alphabet and
the integers from 1 to 100 could be described as A = {a, b, c, . . . , x, y, z}, and
G = {1, 2, . . . , 99, 100}. The three consecutive “dots” are called an ellipsis. We
use them when it is clear what elements are included but not listed. An ellipsis
is used in two other situations. To enumerate the positive integers, we would
write {1, 2, 3, . . .}, indicating that the list goes on infinitely. If we want to
list a more general set such as the integers between 1 and n, where n is some
undetermined positive integer, we might write {1, . . . , n}.

Standard Symbols. Sets that are frequently encountered are usually given
symbols that are reserved for them alone. For example, since we will be referring
to the positive integers throughout this book, we will use the symbol P instead
of writing {1, 2, 3, . . .}. A few of the other sets of numbers that we will use
frequently are:

• P: the positive integers, {1, 2, 3, 4, . . .}

• N: the natural numbers, {0, 1, 2, 3, . . .}

• Z: the integers, {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

• Q: the rational numbers

• R: the real numbers

• C: the complex numbers

Caution: Some people (roughly half of the world?) call the set {1, 2, 3, 4, . . .}
the natural numbers. We are not among them. We take the pythonic approach
that assumes that starting with zero is more natural than starting at one.

Set-Builder Notation. Another way of describing sets is to use set-builder
notation. For example, we could define the rational numbers as

Q = {a/b | a, b ∈ Z, b ̸= 0}.

Note that in the set-builder description for the rational numbers:

• a/b indicates that a typical element of the set is a “fraction.”

• The vertical line, |, is read “such that” or “where,” and is used inter-
changeably with a colon.

• a, b ∈ Z is an abbreviated way of saying a and b are integers.

• Commas in mathematics are read as “and.”

The important fact to keep in mind in set notation, or in any mathematical
notation, is that it is meant to be a help, not a hindrance. We hope that
notation will assist us in a more complete understanding of the collection
of objects under consideration and will enable us to describe it in a concise
manner. However, brevity of notation is not the aim of sets. If you prefer
to write a ∈ Z and b ∈ Z instead of a, b ∈ Z, you should do so. Also, there
are frequently many different, and equally good, ways of describing sets. For
example, {x ∈ R | x2 − 5x + 6 = 0} and {x | x ∈ R, x2 − 5x + 6 = 0} both
describe the solution set {2, 3}.

CHAPTER 1. SET THEORY 3

A proper definition of the real numbers is beyond the scope of this text. It
is sufficient to think of the real numbers as the set of points on a number line.
The complex numbers can be defined using set-builder notation as C = {a + bi :
a, b ∈ R}, where i2 = −1.

In the following definition we will leave the word “finite” undefined.

Definition 1.1.1 Finite Set. A set is a finite set if it has a finite number of
elements. Any set that is not finite is an infinite set. ♢

Definition 1.1.2 Cardinality. Let A be a finite set. The number of different
elements in A is called its cardinality. The cardinality of a finite set A is denoted
|A|. ♢

As we will see later, there are different infinite cardinalities. We can’t make
this distinction until Chapter 7, so we will restrict cardinality to finite sets for
now.

1.1.2 Subsets
Definition 1.1.3 Subset. Let A and B be sets. We say that A is a subset
of B if and only if every element of A is an element of B. We write A ⊆ B to
denote the fact that A is a subset of B. ♢

Example 1.1.4 Some Subsets.
(a) If A = {3, 5, 8} and B = {5, 8, 3, 2, 6}, then A ⊆ B.

(b) N ⊆ Z ⊆ Q ⊆ R ⊆ C

(c) If S = {3, 5, 8} and T = {5, 3, 8}, then S ⊆ T and T ⊆ S.

□

Definition 1.1.5 Set Equality. Let A and B be sets. We say that A is equal
to B (notation A = B) if and only if every element of A is an element of B and
conversely every element of B is an element of A; that is, A ⊆ B and B ⊆ A.

♢

Example 1.1.6 Examples illustrating set equality.
(a) In Example 1.1.4, S = T . Note that the ordering of the elements is

unimportant.

(b) The number of times that an element appears in an enumeration doesn’t
affect a set. For example, if A = {1, 5, 3, 5} and B = {1, 5, 3}, then A = B.
Warning to readers of other texts: Some books introduce the concept of a
multiset, in which the number of occurrences of an element matters.

□
A few comments are in order about the expression “if and only if” as used

in our definitions. This expression means “is equivalent to saying,” or more
exactly, that the word (or concept) being defined can at any time be replaced
by the defining expression. Conversely, the expression that defines the word (or
concept) can be replaced by the word.

Occasionally there is need to discuss the set that contains no elements,
namely the empty set, which is denoted by ∅. This set is also called the null
set.

It is clear, we hope, from the definition of a subset, that given any set A
we have A ⊆ A and ∅ ⊆ A. If A is nonempty, then A is called an improper
subset of A. All other subsets of A, including the empty set, are called proper
subsets of A. The empty set is an improper subset of itself.

CHAPTER 1. SET THEORY 4

Note 1.1.7 Not everyone is in agreement on whether the empty set is a proper
subset of any set. In fact earlier editions of this book sided with those who
considered the empty set an improper subset. However, we bow to the emerging
consensus at this time.

1.1.3 Exercises
1. List four elements of each of the following sets:

(a) {k ∈ P | k − 1 is a multiple of 7}

(b) {x | x is a fruit and its skin is normally eaten}

(c) {x ∈ Q | 1
x
∈ Z}

(d) {2n | n ∈ Z, n < 0}

(e) {s | s = 1 + 2 + · · ·+ n for some n ∈ P}
2. List all elements of the following sets:

(a) { 1
n
| n ∈ {3, 4, 5, 6}}

(b) {α ∈ the alphabet | α precedes F}

(c) {x ∈ Z | x = x + 1}

(d) {n2 | n = −2,−1, 0, 1, 2}

(e) {n ∈ P | n is a factor of 24 }
3. Describe the following sets using set-builder notation.

(a) {5, 7, 9, . . . , 77, 79}

(b) the rational numbers that are strictly between −1 and 1

(c) the even integers

(d) {−18,−9, 0, 9, 18, 27, . . . }
4. Use set-builder notation to describe the following sets:

(a) {1, 2, 3, 4, 5, 6, 7}

(b) {1, 10, 100, 1000, 10000}

(c) {1, 1/2, 1/3, 1/4, 1/5, ...}

(d) {0}
5. Let A = {0, 2, 3}, B = {2, 3}, and C = {1, 5, 9}. Determine which of the

following statements are true. Give reasons for your answers.
(a) 3 ∈ A

(b) {3} ∈ A

(c) {3} ⊆ A

(d) B ⊆ A

(e) A ⊆ B

(f) ∅ ⊆ C

(g) ∅ ∈ A

(h) A ⊆ A

6. (From [28]) Explain why there is no set A which satisfies A = {2, |A|}.
7. One reason that we left the definition of a set vague is Russell’s Paradox.

Many mathematics and logic books contain an account of this paradox.
Two references are [42] and [37]. Find one such reference and read it.

CHAPTER 1. SET THEORY 5

1.2 Basic Set Operations

1.2.1 Definitions
Definition 1.2.1 Intersection. Let A and B be sets. The intersection of A
and B (denoted by A ∩B) is the set of all elements that are in both A and B.
That is, A ∩B = {x : x ∈ A and x ∈ B}. ♢

Example 1.2.2 Some Intersections.
• Let A = {1, 3, 8} and B = {−9, 22, 3}. Then A ∩B = {3}.

• Solving a system of simultaneous equations such as x+y = 7 and x−y = 3
can be viewed as an intersection. Let A = {(x, y) : x + y = 7, x, y ∈ R}
and B = {(x, y) : x − y = 3, x, y ∈ R}. These two sets are lines in the
plane and their intersection, A ∩ B = {(5, 2)}, is the solution to the
system.

• Z ∩Q = Z.

• If A = {3, 5, 9} and B = {−5, 8}, then A ∩B = ∅.

□

Definition 1.2.3 Disjoint Sets. Two sets are disjoint if they have no elements
in common. That is, A and B are disjoint if A ∩B = ∅. ♢

Definition 1.2.4 Union. Let A and B be sets. The union of A and B
(denoted by A∪B) is the set of all elements that are in A or in B or in both A
and B. That is, A ∪B = {x : x ∈ A or x ∈ B}. ♢

It is important to note in the set-builder notation for A ∪B, the word “or”
is used in the inclusive sense; it includes the case where x is in both A and B.

Example 1.2.5 Some Unions.
• If A = {2, 5, 8} and B = {7, 5, 22}, then A ∪B = {2, 5, 8, 7, 22}.

• Z ∪Q = Q.

• A ∪ ∅ = A for any set A.

□
Frequently, when doing mathematics, we need to establish a universe or set

of elements under discussion. For example, the set A = {x : 81x4 − 16 = 0}
contains different elements depending on what kinds of numbers we allow
ourselves to use in solving the equation 81x4 − 16 = 0. This set of numbers
would be our universe. For example, if the universe is the integers, then A is
empty. If our universe is the rational numbers, then A is {2/3,−2/3} and if
the universe is the complex numbers, then A is {2/3,−2/3, 2i/3,−2i/3}.

Definition 1.2.6 Universe. The universe, or universal set, is the set of
all elements under discussion for possible membership in a set. We normally
reserve the letter U for a universe in general discussions. ♢

1.2.2 Set Operations and their Venn Diagrams
When working with sets, as in other branches of mathematics, it is often
quite useful to be able to draw a picture or diagram of the situation under
consideration. A diagram of a set is called a Venn diagram. The universal set

CHAPTER 1. SET THEORY 6

U is represented by the interior of a rectangle and the sets by disks inside the
rectangle.

Example 1.2.7 Venn Diagram Examples. A ∩ B is illustrated in Fig-
ure 1.2.8 by shading the appropriate region.

Figure 1.2.8 Venn Diagram for the Intersection of Two Sets
The union A ∪B is illustrated in Figure 1.2.9.

Figure 1.2.9 Venn Diagram for the Union A ∪B

In a Venn diagram, the region representing A ∩B does not appear empty;
however, in some instances it will represent the empty set. The same is true for
any other region in a Venn diagram. □

Definition 1.2.10 Complement of a set. Let A and B be sets. The
complement of A relative to B (notation B − A) is the set of elements that
are in B and not in A. That is, B − A = {x : x ∈ B and x /∈ A}. If U is the
universal set, then U −A is denoted by Ac and is called simply the complement
of A. Ac = {x ∈ U : x /∈ A}. ♢

CHAPTER 1. SET THEORY 7

Figure 1.2.11 Venn Diagram for B −A

Example 1.2.12 Some Complements.
(a) Let U = {1, 2, 3, ..., 10} and A = {2, 4, 6, 8, 10}. Then U−A = {1, 3, 5, 7, 9}

and A− U = ∅.

(b) If U = R, then the complement of the set of rational numbers is the set
of irrational numbers.

(c) U c = ∅ and ∅c = U .

(d) The Venn diagram of B −A is represented in Figure 1.2.11.

(e) The Venn diagram of Ac is represented in Figure 1.2.13.

(f) If B ⊆ A, then the Venn diagram of A−B is as shown in Figure 1.2.14.

(g) In the universe of integers, the set of even integers, {. . . ,−4,−2, 0, 2, 4, . . .},
has the set of odd integers as its complement.

Figure 1.2.13 Venn Diagram for Ac

CHAPTER 1. SET THEORY 8

Figure 1.2.14 Venn Diagram for A−B when B is a subset of A

□

Definition 1.2.15 Symmetric Difference. Let A and B be sets. The
symmetric difference of A and B (denoted by A⊕B) is the set of all elements
that are in A and B but not in both. That is, A⊕B = (A ∪B)− (A ∩B). ♢

Example 1.2.16 Some Symmetric Differences.
(a) Let A = {1, 3, 8} and B = {2, 4, 8}. Then A⊕B = {1, 2, 3, 4}.

(b) A⊕ ∅ = A and A⊕A = ∅ for any set A.

(c) R⊕Q is the set of irrational numbers.

(d) The Venn diagram of A⊕B is represented in Figure 1.2.17.

Figure 1.2.17 Venn Diagram for the symmetric difference A⊕B

□

Why Venn? Venn diagrams are named after the logician John Venn, who
introduced them in a paper in 1880. In his paper, he acknowledged that they
were not new. In fact he referred to them as Euler Circles, because the famous
mathematician Leonhard Euler (pronounced Oy-ler) introduced them in the
1700’s. Don’t feel bad for Euler though. He has plenty of other things named
after him, including some we see later in this book.

1.2.3 SageMath Note: Sets
To work with sets in Sage, a set is an expression of the form Set(list). By
wrapping a list with Set(), the order of elements appearing in the list and
their duplication are ignored. For example, L1 and L2 are two different lists,
but notice how as sets they are considered equal:

CHAPTER 1. SET THEORY 9

L1=[3,6,9,0,3]
L2=[9,6,3,0,9]
[L1==L2, Set(L1)==Set(L2)]

[False , True]

The standard set operations are all methods and/or functions that can act
on Sage sets. You need to evaluate the following cell to use the subsequent cell.

A=Set(srange (5,50,5))
B=Set(srange (6,50,6))
[A,B]

[{35, 5, 40, 10, 45, 15, 20, 25, 30}, {36, 6, 42, 12, 48,
18, 24, 30}]

We can test membership, asking whether 10 is in each of the sets:

[10 in A, 10 in B]

[True , False]

The ampersand is used for the intersection of sets. Change it to the vertical
bar, |, for union.

A & B

{30}

Symmetric difference and set complement are defined as “methods” in Sage.
Here is how to compute the symmetric difference of A with B, followed by their
differences.

[A.symmetric_difference(B),A.difference(B),B.difference(A)]

[{35, 36, 5, 6, 40, 42, 12, 45, 15, 48, 18, 20, 24, 25, 10},
{35, 5, 40, 10, 45, 15, 20, 25},
{48, 18, 36, 6, 24, 42, 12}]

1.2.4 Exercises
1. Let A = {0, 2, 3}, B = {2, 3}, C = {1, 5, 9}, and let the universal set be

U = {0, 1, 2, ..., 9}. Determine:
(a) A ∩B

(b) A ∪B

(c) B ∪A

(d) A ∪ C

(e) A−B

(f) B −A

(g) Ac

(h) Cc

(i) A ∩ C

(j) A⊕B

2. Let A, B, and C be as in Exercise 1, let D = {3, 2}, and let E = {2, 3, 2}.
Determine which of the following are true. Give reasons for your decisions.

(a) A = B

(b) B = C

(c) B = D

(d) E = D

(e) A ∩B = B ∩A

(f) A ∪B = B ∪A

(g) A−B = B −A

(h) A⊕B = B ⊕A

CHAPTER 1. SET THEORY 10

3. Let U = {1, 2, 3, ..., 9}. Give examples of sets A, B, and C for which:
(a) A ∩ (B ∩ C) = (A ∩B) ∩ C

(b) A∩(B∪C) = (A∩B)∪(A∩C)

(c) (A ∪B)c = Ac ∩Bc

(d) A ∪Ac = U

(e) A ⊆ A ∪B

(f) A ∩B ⊆ A

4. Let U = {1, 2, 3, ..., 9}. Give examples to illustrate the following facts:
(a) If A ⊆ B and B ⊆ C, then A ⊆ C.

(b) There are sets A and B such that A−B ̸= B −A

(c) If U = A ∪B and A ∩B = ∅, it always follows that A = U −B.
5. What can you say about A if U = {1, 2, 3, 4, 5}, B = {2, 3}, and (sepa-

rately)
(a) A ∪B = {1, 2, 3, 4}

(b) A ∩B = {2}

(c) A⊕B = {3, 4, 5}
6. Suppose that U is an infinite universal set, and A and B are infinite subsets

of U . Answer the following questions with a brief explanation.
(a) Must Ac be finite?

(b) Must A ∪B be infinite?

(c) Must A ∩B be infinite?
7. Given that U = all students at a university, D = day students, M =

mathematics majors, and G = graduate students. Draw Venn diagrams
illustrating this situation and shade in the following sets:

(a) evening students

(b) undergraduate mathematics
majors

(c) non-math graduate students

(d) non-math undergraduate stu-
dents

8. Let the sets D, M , G, and U be as in exercise 7. Let |U | = 16, 000,
|D| = 9, 000, |M | = 300, and |G| = 1, 000. Also assume that the number of
day students who are mathematics majors is 250, 50 of whom are graduate
students, that there are 95 graduate mathematics majors, and that the
total number of day graduate students is 700. Determine the number of
students who are:

(a) evening students

(b) nonmathematics majors

(c) undergraduates (day or
evening)

(d) day graduate nonmathematics
majors

(e) evening graduate students

(f) evening graduate mathematics
majors

(g) evening undergraduate non-
mathematics majors

CHAPTER 1. SET THEORY 11

1.3 Cartesian Products and Power Sets

1.3.1 Cartesian Products
Definition 1.3.1 Cartesian Product. Let A and B be sets. The Cartesian
product of A and B, denoted by A×B, is defined as follows: A×B = {(a, b) |
a ∈ A and b ∈ B}, that is, A × B is the set of all possible ordered pairs
whose first component comes from A and whose second component comes from
B. ♢

Example 1.3.2 Some Cartesian Products. Notation in mathematics is
often developed for good reason. In this case, a few examples will make clear
why the symbol × is used for Cartesian products.

• Let A = {1, 2, 3} and B = {4, 5}. Then A×B = {(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}.
Note that |A×B| = 6 = |A| × |B|.

• A×A = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}. Note
that |A×A| = 9 = |A|2.

□
These two examples illustrate the general rule that if A and B are finite

sets, then |A×B| = |A| × |B|.
We can define the Cartesian product of three (or more) sets similarly. For

example, A×B × C = {(a, b, c) : a ∈ A, b ∈ B, c ∈ C}.
It is common to use exponents if the sets in a Cartesian product are the

same:
A2 = A×A

A3 = A×A×A

and in general,
An = A×A× . . .×A

n factors
.

1.3.2 Power Sets
Definition 1.3.3 Power Set. If A is any set, the power set of A is the set of
all subsets of A, denoted P(A). ♢

The two extreme cases, the empty set and all of A, are both included in
P(A).

Example 1.3.4 Some Power Sets.
• P(∅) = {∅}

• P({1}) = {∅, {1}}

• P({1, 2}) = {∅, {1}, {2}, {1, 2}}.

We will leave it to you to guess at a general formula for the number of
elements in the power set of a finite set. In Chapter 2, we will discuss counting
rules that will help us derive this formula. □

1.3.3 SageMath Note: Cartesian Products and Power Sets
Here is a simple example of a cartesian product of two sets:

CHAPTER 1. SET THEORY 12

A=Set([0,1,2])
B=Set(['a','b'])
P=cartesian_product ([A,B]);P

The Cartesian product of ({0, 1, 2}, {'a', 'b'})

Here is the cardinality of the cartesian product.

P.cardinality ()

6

The power set of a set is an iterable, as you can see from the output of this
next cell

U=Set([0,1,2,3])
subsets(U)

<generator object powerset at 0x7fec5ffd33c0 >

You can iterate over a powerset. Here is a trivial example.

for a in subsets(U):
print(str(a)+ "␣has␣" +str(len(a))+"␣elements.")

[] has 0 elements.
[0] has 1 elements.
[1] has 1 elements.
[0, 1] has 2 elements.
[2] has 1 elements.
[0, 2] has 2 elements.
[1, 2] has 2 elements.
[0, 1, 2] has 3 elements.
[3] has 1 elements.
[0, 3] has 2 elements.
[1, 3] has 2 elements.
[0, 1, 3] has 3 elements.
[2, 3] has 2 elements.
[0, 2, 3] has 3 elements.
[1, 2, 3] has 3 elements.
[0, 1, 2, 3] has 4 elements.

1.3.4 Exercises
1. Let A = {0, 2, 3}, B = {2, 3}, C = {1, 4}, and let the universal set be

U = {0, 1, 2, 3, 4}. List the elements of
(a) A×B

(b) B ×A

(c) A×B × C

(d) U × ∅

(e) A×Ac

(f) B2

(g) B3

(h) B × P(B)
2. Suppose that you are about to flip a coin and then roll a die. Let A =

{HEADS, TAILS} and B = {1, 2, 3, 4, 5, 6}.
(a) What is |A×B|?

(b) How could you interpret the set A×B ?

CHAPTER 1. SET THEORY 13

3. List all two-element sets in P({a, b, c, d})
4. List all three-element sets in P({a, b, c, d}).
5. How many singleton (one-element) sets are there in P(A) if |A| = n ?
6. A person has four coins in his pocket: a penny, a nickel, a dime, and a

quarter. How many different sums of money can he take out if he removes
3 coins at a time?

7. Let A = {+,−} and B = {00, 01, 10, 11}.
(a) List the elements of A×B

(b) How many elements do A4 and (A×B)3 have?
8. Let A = {•,□,⊗} and B = {□,⊖, •}.

(a) List the elements of A×B and B ×A. The parentheses and comma
in an ordered pair are not necessary in cases such as this where the
elements of each set are individual symbols.

(b) Identify the intersection of A×B and B×A for the case above, and
then guess at a general rule for the intersection of A×B and B ×A,
where A and B are any two sets.

9. Let A and B be nonempty sets. When are A×B and B ×A equal?

1.4 Binary Representation of Positive Integers

1.4.1 Grouping by Twos
Recall that the set of positive integers, P, is {1, 2, 3, ...}. Positive integers are
naturally used to count things. There are many ways to count and many ways
to record, or represent, the results of counting. For example, if we wanted to
count five hundred twenty-three apples, we might group the apples by tens.
There would be fifty-two groups of ten with three single apples left over. The
fifty-two groups of ten could be put into five groups of ten tens (hundreds),
with two tens left over. The five hundreds, two tens, and three units is recorded
as 523. This system of counting is called the base ten positional system, or
decimal system. It is quite natural for us to do grouping by tens, hundreds,
thousands, . . . since it is the method that all of us use in everyday life.

The term positional refers to the fact that each digit in the decimal repre-
sentation of a number has a significance based on its position. Of course this
means that rearranging digits will change the number being described. You
may have learned of numeration systems in which the position of symbols does
not have any significance (e.g., the ancient Egyptian system). Most of these
systems are merely curiosities to us now.

The binary number system differs from the decimal number system in that
units are grouped by twos, fours, eights, etc. That is, the group sizes are powers
of two instead of powers of ten. For example, twenty-three can be grouped into
eleven groups of two with one left over. The eleven twos can be grouped into
five groups of four with one group of two left over. Continuing along the same
lines, we find that twenty-three can be described as one sixteen, zero eights,
one four, one two, and one one, which is abbreviated 10111two, or simply 10111
if the context is clear.

CHAPTER 1. SET THEORY 14

1.4.2 A Conversion Algorithm
The process that we used to determine the binary representation of 23 can
be described in general terms to determine the binary representation of any
positive integer n. A general description of a process such as this one is called
an algorithm. Since this is the first algorithm in the book, we will first write it
out using less formal language than usual, and then introduce some “algorithmic
notation.” If you are unfamiliar with algorithms, we refer you to Section A.1

(1) Start with an empty list of bits.

(2) Assign the variable k the value n.

(3) While k’s value is positive, continue performing the following three steps
until k becomes zero and then stop.

(a) divide k by 2, obtaining a quotient q (often denoted k div 2) and a
remainder r (denoted (k mod 2)).

(b) attach r to the left-hand side of the list of bits.
(c) assign the variable k the value q.

Example 1.4.1 An example of conversion to binary. To determine the
binary representation of 41 we take the following steps:

• 41 = 2× 20 + 1 List = 1

• 20 = 2× 10 + 0 List = 01

• 10 = 2× 5 + 0 List = 001

• 5 = 2× 2 + 1 List = 1001

• 2 = 2× 1 + 0 List = 01001

• 1 = 2× 0+1 List = 101001

Therefore, 41 = 101001two □
The notation that we will use to describe this algorithm and all others is called
pseudocode, an informal variation of the instructions that are commonly used in
many computer languages. Read the following description carefully, comparing
it with the informal description above. Appendix B, which contains a general
discussion of the components of the algorithms in this book, should clear up
any lingering questions. Anything after // are comments.

Algorithm 1.4.2 Binary Conversion Algorithm. An algorithm for
determining the binary representation of a positive integer.

Input: a positive integer n.
Output: the binary representation of n in the form of a list of bits, with

units bit last, twos bit next to last, etc.
(1) k := n //initialize k

(2) L := { } //initialize L to an empty list

(3) While k > 0 do

(a) q := k div 2 //divide k by 2
(b) r:= k mod 2
(c) L: = prepend r to L //add r to the front of L
(d) k:= q //reassign k

CHAPTER 1. SET THEORY 15

Here is a Sage version of the algorithm with two alterations. It outputs the
binary representation as a string, and it handles all integers, not just positive
ones.

def binary_rep(n):
if n==0:

return '0'
else:

k=abs(n)
s=''
while k>0:

s=str(k%2)+s
k=k//2

if n < 0:
s='-'+s

return s

binary_rep (41)

'101001 '

Now that you’ve read this section, you should get this joke.

Figure 1.4.3 With permission from Randall Munroe, http://xkcd.com.

CHAPTER 1. SET THEORY 16

1.4.3 Exercises
1. Find the binary representation of each of the following positive integers by

working through the algorithm by hand. You can check your answer using
the sage cell above.

(a) 31

(b) 32

(c) 10

(d) 100
2. Find the binary representation of each of the following positive integers by

working through the algorithm by hand. You can check your answer using
the sage cell above.

(a) 64

(b) 67

(c) 28

(d) 256
3. What positive integers have the following binary representations?

(a) 10010

(b) 10011

(c) 101010

(d) 10011110000
4. What positive integers have the following binary representations?

(a) 100001

(b) 1001001

(c) 1000000000

(d) 1001110000
5. The number of bits in the binary representations of integers increases by

one as the numbers double. Using this fact, determine how many bits
the binary representations of the following decimal numbers have without
actually doing the full conversion.

(a) 2017 (b) 4000 (c) 4500 (d) 250

6. Let m be a positive integer with n-bit binary representation: an−1an−2 · · · a1a0
with an−1 = 1 What are the smallest and largest values that m could
have?

7. If a positive integer is a multiple of 100, we can identify this fact from its
decimal representation, since it will end with two zeros. What can you say
about a positive integer if its binary representation ends with two zeros?
What if it ends in k zeros?

8. Can a multiple of ten be easily identified from its binary representation?

1.5 Summation Notation and Generalizations

1.5.1 Sums
Most operations such as addition of numbers are introduced as binary operations.
That is, we are taught that two numbers may be added together to give us
a single number. Before long, we run into situations where more than two
numbers are to be added. For example, if four numbers, a1, a2, a3, and a4
are to be added, their sum may be written down in several ways, such as
((a1 + a2) + a3) + a4 or (a1 + a2) + (a3 + a4). In the first expression, the first
two numbers are added, the result is added to the third number, and that
result is added to the fourth number. In the second expression the first two
numbers and the last two numbers are added and the results of these additions
are added. Of course, we know that the final results will be the same. This
is due to the fact that addition of numbers is an associative operation. For
such operations, there is no need to describe how more than two objects will
be operated on. A sum of numbers such as a1 + a2 + a3 + a4 is called a series
and is often written

∑4
k=1 ak in what is called summation notation.

CHAPTER 1. SET THEORY 17

We first recall some basic facts about series that you probably have seen
before. A more formal treatment of sequences and series is covered in Chapter
8. The purpose here is to give the reader a working knowledge of summation
notation and to carry this notation through to intersection and union of sets
and other mathematical operations.

A finite series is an expression such as a1 + a2 + a3 + · · ·+ an =
∑n

k=1 ak

In the expression
∑n

k=1 ak:

• The variable k is referred to as the index, or the index of summation.

• The expression ak is the general term of the series. It defines the numbers
that are being added together in the series.

• The value of k below the summation symbol is the initial index and the
value above the summation symbol is the terminal index.

• It is understood that the series is a sum of the general terms where the
index start with the initial index and increases by one up to and including
the terminal index.

Example 1.5.1 Some finite series.

(a)
4∑

i=1
ai = a1 + a2 + a3 + a4

(b)
5∑

k=0
bk = b0 + b1 + b2 + b3 + b4 + b5

(c)
2∑

i=−2
ci = c−2 + c−1 + c0 + c1 + c2

□

Example 1.5.2 More finite series. If the general terms in a series are more
specific, the sum can often be simplified. For example,

(a)
4∑

i=1
i2 = 12 + 22 + 32 + 42 = 30

(b)

5∑
i=1

(2i− 1) = (2 · 1− 1) + (2 · 2− 1) + (2 · 3− 1) + (2 · 4− 1) + (2 · 5− 1)

= 1 + 3 + 5 + 7 + 9
= 25

.

□

1.5.2 Generalizations
Summation notation can be generalized to many mathematical operations, for
example, A1 ∩A2 ∩A3 ∩A4 =

4
∩

i=1
Ai

Definition 1.5.3 Generalized Set Operations. Let A1, A2, . . . , An be sets.
Then:

(a) A1 ∩A2 ∩ · · · ∩An =
n
∩

i=1
Ai

CHAPTER 1. SET THEORY 18

(b) A1 ∪A2 ∪ · · · ∪An =
n
∪

i=1
Ai

(c) A1 ×A2 × · · · ×An =
n
×

i=1
Ai

(d) A1 ⊕A2 ⊕ · · · ⊕An =
n
⊕

i=1
Ai

♢

Example 1.5.4 Some generalized operations. If A1 = {0, 2, 3}, A2 =
{1, 2, 3, 6}, and A3 = {−1, 0, 3, 9}, then

3
∩

i=1
Ai = A1 ∩A2 ∩A3 = {3}

and
3
∪

i=1
Ai = A1 ∪A2 ∪A3 = {−1, 0, 1, 2, 3, 6, 9}.

With this notation it is quite easy to write lengthy expressions in a fairly
compact form. For example, the statement

A ∩ (B1 ∪B2 ∪ · · · ∪Bn) = (A ∩B1) ∪ (A ∩B2) ∪ · · · ∪ (A ∩Bn)

becomes
A ∩

(
n
∪

i=1
Bi

)
=

n
∪

i=1
(A ∩Bi) .

□

1.5.3 Exercises
1. Calculate the following series:

(a)
3∑

i=1
(2 + 3i)

(b)
1∑

i=−2
i2

(c)
∑n

j=0 2j for n = 1, 2, 3, 4

(d)
∑n

k=1(2k− 1) for n = 1, 2, 3, 4

2. Calculate the following series:
(a)

∑3
k=1 kn for n = 1, 2, 3, 4

(b)
5∑

i=1
20

(c)
∑3

j=0
(
nj + 1

)
for n = 1, 2, 3, 4

(d)
∑n

k=−n k for n = 1, 2, 3, 4
3.

(a) Express the formula
∑n

i=1
1

i(i+1) = n
n+1 without using summation

notation.

(b) Verify this formula for n = 3.

(c) Repeat parts (a) and (b) for
∑n

i=1 i3 = n2(n+1)2

4

4. Verify the following properties for n = 3.

CHAPTER 1. SET THEORY 19

(a)
n∑

i=1
(ai + bi) =

n∑
i=1

ai +
n∑

i=1
bi

(b) c

(
n∑

i=1
ai

)
=

n∑
i=1

cai

5. Rewrite the following without summation sign for n = 3. It is not necessary

that you understand or expand the notation
(

n

k

)
at this point. (x+y)n =

∑n
k=0

(
n

k

)
xn−kyk.

6.

(a) Draw the Venn diagram for
3
∩

i=1
Ai.

(b) Express in “expanded format”: A ∪ (
n
∩

i=1
Bi) =

n
∩

i=1
(A ∪Bn).

7. For any positive integer k, let Ak = {x ∈ Q : k − 1 < x ≤ k} and
Bk = {x ∈ Q : −k < x < k}. What are the following sets?

(a)
5
∪

i=1
Ai

(b)
5
∪

i=1
Bi

(c)
5
∩

i=1
Ai

(d)
5
∩

i=1
Bi

8. For any positive integer k, let Ak = {x ∈ Q : 0 < x < 1/k} and Bk = {x ∈
Q : 0 < x < k}. What are the following sets?

(a)
∞
∪

i=1
Ai

(b)
∞
∪

i=1
Bi

(c)
∞
∩

i=1
Ai

(d)
∞
∩

i=1
Bi

9. The symbol Π is used for the product of numbers in the same way that
Σ is used for sums. For example,

∏5
i=1 xi = x1x2x3x4x5. Evaluate the

following:

(a)
3∏

i=1
i2 (b)

3∏
i=1

(2i + 1)

10. Evaluate

(a)
3∏

k=0
2k (b)

100∏
k=1

k

k + 1

Chapter 2

Combinatorics

Enumerative Combinatorics

Enumerative combinatorics
Date back to the first prehistorics

Who counted; relations
Like sets’ permutations

To them were part cult, part folklorics.

Michael Toalster, The Omnificent English Dictionary In Limerick Form

Throughout this book we will be counting things. In this chapter we will outline
some of the tools that will help us count.

Counting occurs not only in highly sophisticated applications of mathematics
to engineering and computer science but also in many basic applications. Like
many other powerful and useful tools in mathematics, the concepts are simple;
we only have to recognize when and how they can be applied.

2.1 Basic Counting Techniques - The Rule of
Products

2.1.1 What is Combinatorics?
One of the first concepts our parents taught us was the “art of counting.”
We were taught to raise three fingers to indicate that we were three years
old. The question of “how many” is a natural and frequently asked question.
Combinatorics is the “art of counting.” It is the study of techniques that will
help us to count the number of objects in a set quickly. Highly sophisticated
results can be obtained with this simple concept. The following examples
will illustrate that many questions concerned with counting involve the same
process.

Example 2.1.1 How many lunches can you have? A snack bar serves
five different sandwiches and three different beverages. How many different
lunches can a person order? One way of determining the number of possible
lunches is by listing or enumerating all the possibilities. One systematic way of
doing this is by means of a tree, as in the following figure.

20

CHAPTER 2. COMBINATORICS 21

Figure 2.1.2 Tree diagram to enumerate the number of possible lunches.
Every path that begins at the position labeled START and goes to the right

can be interpreted as a choice of one of the five sandwiches followed by a choice
of one of the three beverages. Note that considerable work is required to arrive
at the number fifteen this way; but we also get more than just a number. The
result is a complete list of all possible lunches. If we need to answer a question
that starts with “How many . . . ,” enumeration would be done only as a last
resort. In a later chapter we will examine more enumeration techniques.

An alternative method of solution for this example is to make the simple
observation that there are five different choices for sandwiches and three different
choices for beverages, so there are 5 ·3 = 15 different lunches that can be ordered.

□

Example 2.1.3 Counting elements in a cartesian product. Let A =
{a, b, c, d, e} and B = {1, 2, 3}. From Chapter 1 we know how to list the
elements in A×B = {(a, 1), (a, 2), (a, 3), ..., (e, 3)}. Since the first entry of each
pair can be any one of the five elements a, b, c, d, and e, and since the second
can be any one of the three numbers 1, 2, and 3, it is quite clear there are
5 · 3 = 15 different elements in A×B. □

Example 2.1.4 A True-False Questionnaire. A person is to complete a
true-false questionnaire consisting of ten questions. How many different ways
are there to answer the questionnaire? Since each question can be answered in
either of two ways (true or false), and there are ten questions, there are

2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 · 2 = 210 = 1024

different ways of answering the questionnaire. The reader is encouraged to
visualize the tree diagram of this example, but not to draw it! □

We formalize the procedures developed in the previous examples with the
following rule and its extension.

2.1.2 The Rule Of Products
Theorem 2.1.5 The Rule Of Products. If two operations must be performed,
and if the first operation can always be performed p1 different ways and the
second operation can always be performed p2 different ways, then there are p1p2
different ways that the two operations can be performed.

Note: It is important that p2 does not depend on the option that is chosen
in the first operation. Another way of saying this is that p2 is independent of
the first operation. If p2 is dependent on the first operation, then the rule of

CHAPTER 2. COMBINATORICS 22

products does not apply.

Example 2.1.6 Reduced Lunch Possibilities. Assume in Example 2.1.1,
coffee is not served with a beef or chicken sandwiches. Then by inspection of
Figure 2.1.2 we see that there are only thirteen different choices for lunch. The
rule of products does not apply, since the choice of beverage depends on one’s
choice of a sandwich. □

The rule of products can be extended to include sequences of more than
two operations.

Theorem 2.1.7 Extended Rule Of Products. If n operations must
be performed, and the number of options for each operation is p1, p2, . . . , pn

respectively, with each pi independent of previous choices, then the n operations
can be performed p1 · p2 · · · · · pn different ways.
Example 2.1.8 A Multiple Choice Questionnaire. A questionnaire
contains four questions that have two possible answers and three questions with
five possible answers. Since the answer to each question is independent of the
answers to the other questions, the extended rule of products applies and there
are 2 · 2 · 2 · 2 · 5 · 5 · 5 = 24 · 53 = 2000 different ways to answer the questionnaire.

□
In Chapter 1 we introduced the power set of a set A, P(A), which is the set

of all subsets of A. Can we predict how many elements are in P(A) for a given
finite set A? The answer is yes, and in fact if |A| = n, then |P(A)| = 2n. The
ease with which we can prove this fact demonstrates the power and usefulness
of the rule of products. Do not underestimate the usefulness of simple ideas.

Theorem 2.1.9 Power Set Cardinality Theorem. If A is a finite set,
then |P(A)| = 2|A|.
Proof. Proof: Consider how we might determine any B ∈ P(A), where |A| = n.
For each element x ∈ A there are two choices, either x ∈ B or x /∈ B. Since
there are n elements of A we have, by the rule of products,

2 · 2 · · · · · 2
n factors

= 2n

different subsets of A. Therefore, P(A) = 2n. ■

2.1.3 Exercises
1. In horse racing, to bet the “daily double” is to select the winners of the

first two races of the day. You win only if both selections are correct. In
terms of the number of horses that are entered in the first two races, how
many different daily double bets could be made?

2. Professor Shortcut records his grades using only his students’ first and last
initials. What is the smallest class size that will definitely force Prof. S.
to use a different system?

3. A certain shirt comes in four sizes and six colors. One also has the choice
of a dragon, an alligator, or no emblem on the pocket. How many different
shirts could you order?

4. A builder of modular homes would like to impress his potential customers
with the variety of styles of his houses. For each house there are blueprints
for three different living rooms, four different bedroom configurations, and
two different garage styles. In addition, the outside can be finished in
cedar shingles or brick. How many different houses can be designed from
these plans?

CHAPTER 2. COMBINATORICS 23

5. The Pi Mu Epsilon mathematics honorary society of Outstanding Uni-
versity wishes to have a picture taken of its six officers. There will be
two rows of three people. How many different way can the six officers be
arranged?

6. An automobile dealer has several options available for each of three different
packages of a particular model car: a choice of two styles of seats in three
different colors, a choice of four different radios, and five different exteriors.
How many choices of automobile does a customer have?

7. A clothing manufacturer has put out a mix-and-match collection consisting
of two blouses, two pairs of pants, a skirt, and a blazer. How many outfits
can you make? Did you consider that the blazer is optional? How many
outfits can you make if the manufacturer adds a sweater to the collection?

8. As a freshman, suppose you had to take two of four lab science courses,
one of two literature courses, two of three math courses, and one of seven
physical education courses. Disregarding possible time conflicts, how many
different schedules do you have to choose from?

9. (a) Suppose each single character stored in a computer uses eight bits.
Then each character is represented by a different sequence of eight 0’s and
1’s called a bit pattern. How many different bit patterns are there? (That
is, how many different characters could be represented?)

(b) How many bit patterns are palindromes (the same backwards as
forwards)?

(c) How many different bit patterns have an even number of 1’s?
10. Automobile license plates in Massachusetts usually consist of three digits

followed by three letters. The first digit is never zero. How many different
plates of this type could be made?

11.
(a) Let A = {1, 2, 3, 4}. Determine the number of different subsets of A.

(b) Let A = {1, 2, 3, 4, 5}. Determine the number of proper subsets of A.
12. How many integers from 100 to 999 can be written in base ten without

using the digit 7?
13. Consider three persons, A, B, and C, who are to be seated in a row of

three chairs. Suppose A and B are identical twins. How many seating
arrangements of these persons can there be

(a) If you are a total stranger? (b) If you are A and B’s mother?

This problem is designed to show you that different people can have
different correct answers to the same problem.

14. How many ways can a student do a ten-question true-false exam if he or
she can choose not to answer any number of questions?

15. Suppose you have a choice of fish, lamb, or beef for a main course, a choice
of peas or carrots for a vegetable, and a choice of pie, cake, or ice cream
for dessert. If you must order one item from each category, how many
different dinners are possible?

16. Suppose you have a choice of vanilla, chocolate, or strawberry for ice
cream, a choice of peanuts or walnuts for chopped nuts, and a choice of
hot fudge or marshmallow for topping. If you must order one item from
each category, how many different sundaes are possible?

17. A questionnaire contains six questions each having yes-no answers. For
each yes response, there is a follow-up question with four possible responses.

CHAPTER 2. COMBINATORICS 24

(a) Draw a tree diagram that illustrates how many ways a single question
in the questionnaire can be answered.

(b) How many ways can the questionnaire be answered?
18. Ten people are invited to a dinner party. How many ways are there of

seating them at a round table? If the ten people consist of five men and
five women, how many ways are there of seating them if each man must
be surrounded by two women around the table?

19. How many ways can you separate a set with n elements into two nonempty
subsets if the order of the subsets is immaterial? What if the order of the
subsets is important?

20. A gardener has three flowering shrubs and four nonflowering shrubs, where
all shrubs are distinguishable from one another. He must plant these
shrubs in a row using an alternating pattern, that is, a shrub must be of a
different type from that on either side. How many ways can he plant these
shrubs? If he has to plant these shrubs in a circle using the same pattern,
how many ways can he plant this circle? Note that one nonflowering shrub
will be left out at the end.

2.2 Permutations

2.2.1 Ordering Things
A number of applications of the rule of products are of a specific type, and
because of their frequent appearance they are given their own designation,
permutations. Consider the following examples.

Example 2.2.1 Ordering the elements of a set. How many different ways
can we order the three different elements of the set A = {a, b, c}? Since we have
three choices for position one, two choices for position two, and one choice for
the third position, we have, by the rule of products, 3 · 2 · 1 = 6 different ways
of ordering the three letters. We illustrate through a tree diagram.

CHAPTER 2. COMBINATORICS 25

Figure 2.2.2 A tree to enumerate permutations of a three element set.
Each of the six orderings is called a permutation of the set A. □

Example 2.2.3 Ordering a schedule. A student is taking five courses
in the fall semester. How many different ways can the five courses be listed?
There are 5 · 4 · 3 · 2 · 1 = 120 different permutations of the set of courses. □

In each of the above examples of the rule of products we observe that:

(a) We are asked to order or arrange elements from a single set.

(b) Each element is listed exactly once in each list (permutation). So if there
are n choices for position one in a list, there are n− 1 choices for position
two, n− 2 choices for position three, etc.

Example 2.2.4 Some orderings of a baseball team. The alphabetical
ordering of the players of a baseball team is one permutation of the set of players.
Other orderings of the players’ names might be done by batting average, age,
or height. The information that determines the ordering is called the key. We
would expect that each key would give a different permutation of the names.
If there are twenty-five players on the team, there are 25 · 24 · 23 · · · · · 3 · 2 · 1
different permutations of the players.

This number of permutations is huge. In fact it is 15511210043330985984000000,
but writing it like this isn’t all that instructive, while leaving it as a product as
we originally had makes it easier to see where the number comes from. We just
need to find a more compact way of writing these products. □
We now develop notation that will be useful for permutation problems.

Definition 2.2.5 Factorial. If n is a positive integer then n factorial is the
product of the first n positive integers and is denoted n!. Additionally, we
define zero factorial, 0!, to be 1. ♢

CHAPTER 2. COMBINATORICS 26

The first few factorials are
n 0 1 2 3 4 5 6 7
n! 1 1 2 6 24 120 720 5040 .

Note that 4! is 4 times 3!, or 24, and 5! is 5 times 4!, or 120. In addition, note
that as n grows in size, n! grows extremely quickly. For example, 11! = 39916800.
If the answer to a problem happens to be 25!, as in the previous example, you
would never be expected to write that number out completely. However, a
problem with an answer of 25!

23! can be reduced to 25 · 24, or 600.
If |A| = n, there are n! ways of permuting all n elements of A . We next

consider the more general situation where we would like to permute k elements
out of a set of n objects, where k ≤ n.

Example 2.2.6 Choosing Club Officers. A club of twenty-five members will
hold an election for president, secretary, and treasurer in that order. Assume a
person can hold only one position. How many ways are there of choosing these
three officers? By the rule of products there are 25 · 24 · 23 ways of making a
selection. □

Definition 2.2.7 Permutation. An ordered arrangement of k elements
selected from a set of n elements, 0 ≤ k ≤ n, where no two elements of the
arrangement are the same, is called a permutation of n objects taken k at a
time. The total number of such permutations is denoted by P (n, k). ♢

Theorem 2.2.8 Permutation Counting Formula. The number of possible
permutations of k elements taken from a set of n elements is

P (n, k) = n · (n− 1) · (n− 2) · · · · · (n− k + 1) =
k−1∏
j=0

(n− j) = n!
(n− k)! .

Proof. Case I: If k = n we have P (n, n) = n! = n!
(n−n)! .

Case II: If 0 ≤ k < n,then we have k positions to fill using n elements and

(a) Position 1 can be filled by any one of n− 0 = n elements

(b) Position 2 can be filled by any one of n− 1 elements

(c) · · ·

(d) Position k can be filled by any one of n− (k − 1) = n− k + 1 elements

Hence, by the rule of products,

P (n, k) = n · (n− 1) · (n− 2) · · · · · (n− k + 1) = n!
(n− k)! .

■
It is important to note that the derivation of the permutation formula given

above was done solely through the rule of products. This serves to reiterate
our introductory remarks in this section that permutation problems are really
rule-of-products problems. We close this section with several examples.

Example 2.2.9 Another example of choosing officers. A club has eight
members eligible to serve as president, vice-president, and treasurer. How many
ways are there of choosing these officers?

Solution 1: Using the rule of products. There are eight possible choices for
the presidency, seven for the vice-presidency, and six for the office of treasurer.
By the rule of products there are 8 · 7 · 6 = 336 ways of choosing these officers.

Solution 2: Using the permutation formula. We want the total number of

CHAPTER 2. COMBINATORICS 27

permutations of eight objects taken three at a time:

P (8, 3) = 8!
(8− 3)! = 8 · 7 · 6 = 336

□

Example 2.2.10 Course ordering, revisited. To count the number of
ways to order five courses, we can use the permutation formula. We want the
number of permutations of five courses taken five at a time:

P (5, 5) = 5!
(5− 5)! = 5! = 120.

□

Example 2.2.11 Ordering of digits under different conditions. Consider
only the digits 1, 2, 3, 4, and 5.

a How many three-digit numbers can be formed if no repetition of digits
can occur?

b How many three-digit numbers can be formed if repetition of digits is
allowed?

c How many three-digit numbers can be formed if only non-consecutive
repetition of digits are allowed?

Solutions to (a): Solution 1: Using the rule of products. We have any one of
five choices for digit one, any one of four choices for digit two, and three choices
for digit three. Hence, 5 · 4 · 3 = 60 different three-digit numbers can be formed.

Solution 2; Using the permutation formula. We want the total number of
permutations of five digits taken three at a time:

P (5, 3) = 5!
(5− 3)! = 5 · 4 · 3 = 60.

Solution to (b): The definition of permutation indicates “...no two elements
in each list are the same.” Hence the permutation formula cannot be used.
However, the rule of products still applies. We have any one of five choices for
the first digit, five choices for the second, and five for the third. So there are
5 · 5 · 5 = 125 possible different three-digit numbers if repetition is allowed.

Solution to (c): Again, the rule of products applies here. We have any
one of five choices for the first digit, but then for the next two digits we have
four choices since we are not allowed to repeat the previous digit So there
are 5 · 4 · 4 = 80 possible different three-digit numbers if only non-consecutive
repetitions are allowed. □

2.2.2 Exercises
1. If a raffle has three different prizes and there are 1,000 raffle tickets sold,

how many different ways can the prizes be distributed?
2.

(a) How many three-digit numbers can be formed from the digits 1, 2, 3
if no repetition of digits is allowed? List the three-digit numbers.

(b) How many two-digit numbers can be formed if no repetition of digits
is allowed? List them.

CHAPTER 2. COMBINATORICS 28

(c) How many two-digit numbers can be obtained if repetition is allowed?
3. How many eight-letter words can be formed from the 26 letters in the

alphabet? Even without concerning ourselves about whether the words
make sense, there are two interpretations of this problem. Answer both.

4. Let A be a set with |A| = n. Determine
(a) |A3|

(b) |{(a, b, c) | a, b, c ∈ A and each coordinate is different}|
5. The state finals of a high school track meet involves fifteen schools. How

many ways can these schools be listed in the program?
6. Consider the three-digit numbers that can be formed from the digits 1, 2,

3, 4, and 5 with no repetition of digits allowed.
a. How many of these are even numbers?
b. How many are greater than 250?

7. All 15 players on the Tall U. basketball team are capable of playing any
position.

(a) How many ways can the coach at Tall U. fill the five starting positions
in a game?

(b) What is the answer if the center must be one of two players?
8.

(a) How many ways can a gardener plant five different species of shrubs
in a circle?

(b) What is the answer if two of the shrubs are the same?

(c) What is the answer if all the shrubs are identical?
9. The president of the Math and Computer Club would like to arrange a

meeting with six attendees, the president included. There will be three
computer science majors and three math majors at the meeting. How
many ways can the six people be seated at a circular table if the president
does not want people with the same majors to sit next to one other?

10. Six people apply for three identical jobs and all are qualified for the
positions. Two will work in New York and the other one will work in San
Diego. How many ways can the positions be filled?

11. Let A = {1, 2, 3, 4}. Determine the cardinality of
(a) {(a1, a2) | a1 ̸= a2}

(b) What is the answer to the previous part if |A| = n

(c) If |A| = n, determine the number of m-tuples in A, m ≤ n, where
each coordinate is different from the other coordinates.

2.3 Partitions of Sets and the Law of Addition

2.3.1 Partitions
One way of counting the number of students in your class would be to count the
number in each row and to add these totals. Of course this problem is simple
because there are no duplications, no person is sitting in two different rows.
The basic counting technique that you used involves an extremely important

CHAPTER 2. COMBINATORICS 29

first step, namely that of partitioning a set. The concept of a partition must
be clearly understood before we proceed further.

Definition 2.3.1 Partition. A partition of set A is a set of one or more
nonempty subsets of A: A1, A2, A3, · · ·, such that every element of A is in
exactly one set. Symbolically,

(a) A1 ∪A2 ∪A3 ∪ · · · = A

(b) If i ̸= j then Ai ∩Aj = ∅

♢
The subsets in a partition are often referred to as blocks. Note how our

definition allows us to partition infinite sets, and to partition a set into an
infinite number of subsets. Of course, if A is finite the number of subsets can
be no larger than |A|.

Example 2.3.2 Some partitions of a four element set. Let A = {a, b, c, d}.
Examples of partitions of A are:

• {{a}, {b}, {c, d}}

• {{a, b}, {c, d}}

• {{a}, {b}, {c}, {d}}

How many others are there, do you suppose?
There are 15 different partitions. The most efficient way to count them

all is to classify them by the size of blocks. For example, the partition
{{a}, {b}, {c, d}} has block sizes 1, 1, and 2. □

Example 2.3.3 Some Integer Partitions. Two examples of partitions of
set of integers Z are

• {{n} | n ∈ Z} and

• {{n ∈ Z | n < 0}, {0}, {n ∈ Z | 0 < n}}.

The set of subsets {{n ∈ Z | n ≥ 0}, {n ∈ Z | n ≤ 0}} is not a partition
because the two subsets have a nonempty intersection. A second example of
a non-partition is {{n ∈ Z | |n| = k} | k = −1, 0, 1, 2, · · · } because one of the
blocks, when k = −1 is empty. □

One could also think of the concept of partitioning a set as a “packaging
problem.” How can one “package” a carton of, say, twenty-four cans? We could
use: four six-packs, three eight-packs, two twelve-packs, etc. In all cases: (a)
the sum of all cans in all packs must be twenty-four, and (b) a can must be in
one and only one pack.

2.3.2 Addition Laws
Theorem 2.3.4 The Basic Law Of Addition:. If A is a finite set, and if
{A1, A2, . . . , An} is a partition of A , then

|A| = |A1|+ |A2|+ · · ·+ |An| =
n∑

k=1
|Ak|

The basic law of addition can be rephrased as follows: If A is a finite set
where A1 ∪A2 ∪ · · · ∪An = A and where Ai ∩Aj = ∅ whenever i ̸= j, then

|A| = |A1 ∪A2 ∪ · · · ∪An| = |A1|+ |A2|+ · · ·+ |An|

CHAPTER 2. COMBINATORICS 30

Example 2.3.5 Counting All Students. The number of students in a
class could be determined by adding the numbers of students who are freshmen,
sophomores, juniors, and seniors, and those who belong to none of these
categories. However, you probably couldn’t add the students by major, since
some students may have double majors. □

Example 2.3.6 Counting Students in Disjoint Classes. The sophomore
computer science majors were told they must take one and only one of the
following courses that are open only to them: Cryptography, Data Structures,
or Javascript. The numbers in each course, respectively, for sophomore CS
majors, were 75, 60, 55. How many sophomore CS majors are there? The Law
of Addition applies here. There are exactly 75 + 60 + 55 = 190 CS majors since
the rosters of the three courses listed above would be a partition of the CS
majors. □

Example 2.3.7 Counting Students in Non-disjoint Classes. It was
determined that all junior computer science majors take at least one of the fol-
lowing courses: Algorithms, Logic Design, and Compiler Construction. Assume
the number in each course was 75, 60 and 55, respectively for the three courses
listed. Further investigation indicated ten juniors took all three courses, twenty-
five took Algorithms and Logic Design, twelve took Algorithms and Compiler
Construction, and fifteen took Logic Design and Compiler Construction. How
many junior C.S. majors are there?

Example 2.3.6 was a simple application of the law of addition, however
in this example some students are taking two or more courses, so a simple
application of the law of addition would lead to double or triple counting. We
rephrase information in the language of sets to describe the situation more
explicitly.

A = the set of all junior computer science majors
A1 = the set of all junior computer science majors who took Algorithms
A2 = the set of all junior computer science majors who took Logic Design
A3 = the set of all junior computer science majors who took Compiler

Construction
Since all junior CS majors must take at least one of the courses, the number

we want is:

|A| = |A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3| − repeats.

A Venn diagram is helpful to visualize the problem. In this case the universal
set U can stand for all students in the university.

CHAPTER 2. COMBINATORICS 31

Figure 2.3.8 Venn Diagram
We see that the whole universal set is naturally partitioned into subsets

that are labeled by the numbers 1 through 8, and the set A is partitioned
into subsets labeled 1 through 7. The region labeled 8 represents all students
who are not junior CS majors. Note also that students in the subsets labeled
2, 3, and 4 are double counted, and those in the subset labeled 1 are triple
counted. To adjust, we must subtract the numbers in regions 2, 3 and 4. This
can be done by subtracting the numbers in the intersections of each pair of sets.
However, the individuals in region 1 will have been removed three times, just
as they had been originally added three times. Therefore, we must finally add
their number back in.

|A| = |A1 ∪A2 ∪A3|
= |A1|+ |A2|+ |A3| − repeats
= |A1|+ |A2|+ |A3| − duplicates + triplicates
= |A1|+ |A2|+ |A3| − (|A1 ∩A2|+ |A1 ∩A3|+ |A2 ∩A3|) + |A1 ∩A2 ∩A3|
= 75 + 60 + 55− 25− 12− 15 + 10 = 148

□
The ideas used in this latest example gives rise to a basic counting technique:

Theorem 2.3.9 Laws of Inclusion-Exclusion. Given finite sets A1, A2, A3,
then

(a) The Two Set Inclusion-Exclusion Law:

|A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|

CHAPTER 2. COMBINATORICS 32

(b) The Three Set Inclusion-Exclusion Law:

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3|
− (|A1 ∩A2|+ |A1 ∩A3|+ |A2 ∩A3|)
+ |A1 ∩A2 ∩A3|

The inclusion-exclusion laws extend to more than three sets, as will be
explored in the exercises.

In this section we saw that being able to partition a set into disjoint subsets
gives rise to a handy counting technique. Given a set, there are many ways
to partition depending on what one would wish to accomplish. One natural
partitioning of sets is apparent when one draws a Venn diagram. This particular
partitioning of a set will be discussed further in Chapters 4 and 13.

2.3.3 Exercises
1. List all partitions of the set A = {a, b, c}.
2. Which of the following collections of subsets of the plane, R2, are partitions?

(a) {{(x, y) | x + y = c} | c ∈ R}

(b) The set of all circles in R2

(c) The set of all circles in R2 centered at the origin together with the
set {(0, 0)}

(d) {{(x, y)} | (x, y) ∈ R2}
3. A student, on an exam paper, defined the term partition the following

way: “Let A be a set. A partition of A is any set of nonempty subsets
A1, A2, A3, . . . of A such that each element of A is in one of the subsets.”
Is this definition correct? Why?

4. Let A1 and A2 be subsets of a set U . Draw a Venn diagram of this situation
and shade in the subsets A1∩A2, Ac

1∩A2, A1∩Ac
2, and Ac

1∩Ac
2 . Use the

resulting diagram and the definition of partition to convince yourself that
the subset of these four subsets that are nonempty form a partition of U .

5. Show that {{2n | n ∈ Z}, {2n + 1 | n ∈ Z}} is a partition of Z. Describe
this partition using only words.

6.
(a) A group of 30 students were surveyed and it was found that 18 of

them took Calculus and 12 took Physics. If all students took at least
one course, how many took both Calculus and Physics? Illustrate
using a Venn diagram.

(b) What is the answer to the question in part (a) if five students did
not take either of the two courses? Illustrate using a Venn diagram.

7. A survey of 90 people, 47 of them played tennis and 42 of them swam. If
17 of them participated in both activities, how many of them participated
in neither?

8. A survey of 300 people found that 60 owned an iPhone, 75 owned a
Blackberry, and 30 owned an Android phone. Furthermore, 40 owned both
an iPhone and a Blackberry, 12 owned both an iPhone and an Android
phone, and 8 owned a Blackberry and an Android phone. Finally, 3 owned
all three phones.

(a) How many people surveyed owned none of the three phones?

CHAPTER 2. COMBINATORICS 33

(b) How many people owned a Blackberry but not an iPhone?

(c) How many owned a Blackberry but not an Android?
9. Regarding the Theorem 2.3.9,

(a) Use the two set inclusion-exclusion law to derive the three set
inclusion-exclusion law. Note: A knowledge of basic set laws is
needed for this exercise.

(b) State and derive the inclusion-exclusion law for four sets.
10. To complete your spring schedule, you must add Calculus and Physics. At

9:30, there are three Calculus sections and two Physics sections; while at
11:30, there are two Calculus sections and three Physics sections. How
many ways can you complete your schedule if your only open periods are
9:30 and 11:30?

11. The definition of Q = {a/b | a, b ∈ Z, b ̸= 0} given in Chapter 1 is awkward.
If we use the definition to list elements in Q, we will have duplications
such as 1

2 , −2
−4 and 300

600 Try to write a more precise definition of the rational
numbers so that there is no duplication of elements.

2.4 Combinations and the Binomial Theorem

2.4.1 Combinations
In Section 2.1 we investigated the most basic concept in combinatorics, namely,
the rule of products. It is of paramount importance to keep this fundamental
rule in mind. In Section 2.2 we saw a subclass of rule-of-products problems,
permutations, and we derived a formula as a computational aid to assist us. In
this section we will investigate another counting formula, one that is used to
count combinations, which are subsets of a certain size.

In many rule-of-products applications the ordering is important, such as
the batting order of a baseball team. In other cases it is not important, as in
placing coins in a vending machine or in the listing of the elements of a set.
Order is important in permutations. Order is not important in combinations.

Example 2.4.1 Counting Permutations. How many different ways are there
to permute three letters from the set A = {a, b, c, d}? From the Permutation
Counting Formula there are P (4, 3) = 4!

(4−3)! = 24 different orderings of three
letters from A □

Example 2.4.2 Counting with No Order. How many ways can we select
a set of three letters from A = {a, b, c, d}? Note here that we are not concerned
with the order of the three letters. By trial and error, abc, abd, acd, and bcd
are the only listings possible. To repeat, we were looking for all three-element
subsets of the set A. Order is not important in sets. The notation for choosing
3 elements from 4 is most commonly

(4
3
)

or occasionally C(4, 3), either of which
is read “4 choose 3” or the number of combinations for four objects taken three
at a time. □

Definition 2.4.3 Binomial Coefficient. Let n and k be nonnegative integers.
The binomial coefficient

(
n
k

)
represents the number of combinations of n objects

taken k at a time, and is read “n choose k.” ♢
We would now like to investigate the relationship between permutation and

combination problems in order to derive a formula for
(

n
k

)
Let us reconsider the Counting with No Order. There are 3! = 6 different

orderings for each of the three-element subsets. The table below lists each

CHAPTER 2. COMBINATORICS 34

subset of A and all permutations of each subset on the same line.

subset permutations
{a, b, c} abc, acb, bca, bac, cab, cba

{a, b, d} abd, adb, bda, bad, dab, dba

{a, c, d} acd, adc, cda, cad, dac, dca

{b, c, d} bcd, bdc, cdb, cbd, dbc, dcb

.

Hence,
(4

3
)

= P (4,3)
3! = 4!

(4−3)!·3! = 4
We generalize this result in the following theorem:

Theorem 2.4.4 Binomial Coefficient Formula. If n and k are nonnegative
integers with 0 ≤ k ≤ n, then the number k-element subsets of an n element set
is equal to (

n

k

)
= n!

(n− k)! · k! .

Proof. Proof 1: There are k! ways of ordering the elements of any k element
set. Therefore, (

n

k

)
= P (n, k)

k! = n!
(n− k)!k! ..

Proof 2: To “construct” a permutation of k objects from a set of n elements,
we can first choose one of the subsets of objects and second, choose one of the
k! permutations of those objects. By the rule of products,

P (n, k) =
(

n

k

)
· k!

and solving for
(

n
k

)
we get the desired formula. ■

Example 2.4.5 Flipping Coins. Assume an evenly balanced coin is tossed
five times. In how many ways can three heads be obtained? This is a combination
problem, because the order in which the heads appear does not matter. We
can think of this as a situation involving sets by considering the set of flips of
the coin, 1 through 5, in which heads comes up. The number of ways to get
three heads is

(5
3
)

= 5·4
2·1 = 10. □

Example 2.4.6 Counting five ordered flips two ways. We determine
the total number of ordered ways a fair coin can land if tossed five consecutive
times. The five tosses can produce any one of the following mutually exclusive,
disjoint events: 5 heads, 4 heads, 3 heads, 2 heads, 1 head, or 0 heads. For
example, by the previous example, there are

(5
3
)

= 10 sequences in which three
heads appear. Counting the other possibilities in the same way, by the law of
addition we have:(

5
5

)
+
(

5
4

)
+
(

5
3

)
+
(

5
2

)
+
(

5
1

)
+
(

5
0

)
= 1 + 5 + 10 + 10 + 5 + 1 = 32

ways to observe the five flips.
Of course, we could also have applied the extended rule of products, and

since there are two possible outcomes for each of the five tosses, we have 25 = 32
ways. □

You might think that counting something two ways is a waste of time but
solving a problem two different ways often is instructive and leads to valuable
insights. In this case, it suggests a general formula for the sum

∑n
k=0

(
n
k

)
. In

the case of n = 5, we get 25 so it is reasonable to expect that the general sum is

CHAPTER 2. COMBINATORICS 35

2n, and it is. A logical argument to prove the general statment simply involves
generalizing the previous example to n coin flips.

Example 2.4.7 A Committee of Five. A committee usually starts as an
unstructured set of people selected from a larger membership. Therefore, a
committee can be thought of as a combination. If a club of 25 members has a
five-member social committee, there are

(25
5
)

= 25·24·23·22·21
5! = 53130 different

possible social committees. If any structure or restriction is placed on the
way the social committee is to be selected, the number of possible committees
will probably change. For example, if the club has a rule that the treasurer
must be on the social committee, then the number of possibilities is reduced to(24

4
)

= 24·23·22·21
4! = 10626.

If we further require that a chairperson other than the treasurer be selected
for the social committee, we have

(24
4
)
· 4 = 42504 different possible social

committees. The choice of the four non-treasurers accounts for the factor
(24

4
)

while the need to choose a chairperson accounts for the 4. □

Example 2.4.8 Binomial Coefficients - Extreme Cases. By simply
applying the definition of a Binomial Coefficient as a number of subsets we see
that there is

(
n
0
)

= 1 way of choosing a combination of zero elements from a set
of n. In addition, we see that there is

(
n
n

)
= 1 way of choosing a combination

of n elements from a set of n.
We could compute these values using the formula we have developed, but

no arithmetic is really needed here. Other properties of binomial coefficients
that can be derived using the subset definition will be seen in the exercises □

2.4.2 The Binomial Theorem
The binomial theorem gives us a formula for expanding (x + y)n, where n
is a nonnegative integer. The coefficients of this expansion are precisely the
binomial coefficients that we have used to count combinations. Using high
school algebra we can expand the expression for integers from 0 to 5:

n (x + y)n

0 1
1 x + y

2 x2 + 2xy + y2

3 x3 + 3x2y + 3xy2 + y3

4 x4 + 4x3y + 6x2y2 + 4xy3 + y4

5 x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

In the expansion of (x + y)5 we note that the coefficient of the third term is(5
3
)

= 10, and that of the sixth term is
(5

5
)

= 1. We can rewrite the expansion
as (

5
0

)
x5 +

(
5
1

)
x4y +

(
5
2

)
x3y2 +

(
5
3

)
x2y3 +

(
5
4

)
xy4 +

(
5
5

)
y5.

In summary, in the expansion of (x + y)n we note:

(a) The first term is xn and the last term is yn.

(b) With each successive term, exponents of x decrease by 1 as those of y
increase by 1. For any term the sum of the exponents is n.

(c) The coefficient of xn−kyk is
(

n
k

)
.

CHAPTER 2. COMBINATORICS 36

(d) The triangular array of binomial coefficients is called Pascal’s triangle
after the seventeenth-century French mathematician Blaise Pascal. Note
that each number in the triangle other than the 1’s at the ends of each
row is the sum of the two numbers to the right and left of it in the row
above.

Theorem 2.4.9 The Binomial Theorem. If n ≥ 0, and x and y are
numbers, then

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk.

Proof. This theorem will be proven using a logical procedure called mathematical
induction, which will be introduced in Chapter 3. ■

Example 2.4.10 Identifying a term in an expansion. Find the third
term in the expansion of (x− y)4 = (x + (−y))4. The third term, when k = 2,
is
(4

2
)
x4−2(−y)2 = 6x2y2. □

Example 2.4.11 A Binomial Expansion. Expand (3x− 2)3. If we replace
x and y in the Binomial Theorem with 3x and −2, respectively, we get

3∑
k=0

(
3
k

)
(3x)n−k(−2)k =

(
3
0

)
(3x)3(−2)0 +

(
3
1

)
(3x)2(−2)1 +

(
3
2

)
(3x)1(−2)2 +

(
3
3

)
(3x)0(−2)3

= 27x3 − 54x2 + 36x− 8

.

□

2.4.3 SageMath Note
A bridge hand is a 13 element subset of a standard 52 card deck. The order in
which the cards come to the player doesn’t matter. From the point of view of a
single player, the number of possible bridge hands is

(52
13
)
, which can be easily

computed with Sage.

binomial (52 ,13)

635013559600

In bridge, the location of a hand in relation to the dealer has some bearing
on the game. An even truer indication of the number of possible hands takes
into account each player’s possible hand. It is customary to refer to bridge
positions as West, North, East and South. We can apply the rule of product to
get the total number of bridge hands with the following logic. West can get
any of the

(52
13
)

hands identified above. Then North get 13 of the remaining 39
cards and so has

(39
13
)

possible hands. East then gets 13 of the 26 remaining
cards, which has

(26
13
)

possibilities. South gets the remaining cards. Therefore
the number of bridge hands is computed using the Product Rule.

binomial (52 ,13)*binomial (39 ,13)*binomial (26 ,13)

53644737765488792839237440000

CHAPTER 2. COMBINATORICS 37

2.4.4 Exercises
1. The judiciary committee at a college is made up of three faculty members

and four students. If ten faculty members and 25 students have been
nominated for the committee, how many judiciary committees could be
formed at this point?

2. Suppose that a single character is stored in a computer using eight bits.
a. How many bit patterns have exactly three 1’s?
b. How many bit patterns have at least two 1’s?

Hint. Think of the set of positions that contain a 1 to turn this is into a
question about sets.

3. How many subsets of {1, 2, 3, . . . , 10} contain at least seven elements?
4. The congressional committees on mathematics and computer science are

made up of five representatives each, and a congressional rule is that the
two committees must be disjoint. If there are 385 members of congress,
how many ways could the committees be selected?

5. The image below shows a 6 by 6 grid and an example of a lattice path
that could be taken from (0, 0) to (6, 6), which is a path taken by traveling
along grid lines going only to the right and up. How many different lattice
paths are there of this type? Generalize to the case of lattice paths from
(0, 0) to (m, n) for any nonnegative integers m and n.

Figure 2.4.12 A lattice path

Hint. Think of each path as a sequence of instructions to go right (R)
and up (U).

6. How many of the lattice paths from (0, 0) to (6, 6) pass through (3, 3) as
the one in Figure 12 does?

7. A poker game is played with 52 cards. At the start of a game, each player
gets five of the cards. The order in which cards are dealt doesn’t matter.

(a) How many “hands” of five cards are possible?

(b) If there are four people playing, how many initial five-card “hands”
are possible, taking into account all players and their positions at
the table? Position with respect to the dealer does matter.

8. A flush in a five-card poker hand is five cards of the same suit. The suits
are spades, clubs, diamonds and hearts. How many spade flushes are
possible in a 52-card deck? How many flushes are possible in any suit?

9. How many five-card poker hands using 52 cards contain exactly two aces?

CHAPTER 2. COMBINATORICS 38

10. In poker, a full house is three-of-a-kind and a pair in one hand; for example,
three fives and two queens. How many full houses are possible from a
52-card deck? You can use the sage cell in the SageMath Note to do this
calculation, but also write your answer in terms of binomial coefficients.

11. A class of twelve computer science students are to be divided into three
groups of 3, 4, and 5 students to work on a project. How many ways can
this be done if every student is to be in exactly one group?

12. Explain in words why the following equalities are true based on number
of subsets, and then verify the equalities using the formula for binomial
coefficients.

(a)
(

n

1

)
= n

(b)
(

n
k

)
=
(

n
n−k

)
, 0 ≤ k ≤ n

13. There are ten points, P1, P2, . . . , P10 on a plane, no three on the same line.
(a) How many lines are determined by the points?

(b) How many triangles are determined by the points?
14. How many ways can n persons be grouped into pairs when n is even?

Assume the order of the pairs matters, but not the order within the pairs.
For example, if n = 4, the six different groupings would be

{1, 2} {3, 4}
{1, 3} {2, 4}
{1, 4} {2, 3}
{2, 3} {1, 4}
{2, 4} {1, 3}
{3, 4} {1, 2}

15. Use the binomial theorem to prove that if A is a finite set, then |P (A)| =
2|A|

16.
(a) A state’s lottery involves choosing six different numbers out of a

possible 36. How many ways can a person choose six numbers?

(b) What is the probability of a person winning with one bet?
17. Use the binomial theorem to calculate 99983.

Hint. 9998 = 10000− 2
18. In the card game Blackjack, there are one or more players and a dealer.

Initially, each player is dealt two cards and the dealer is dealt one card
down and one facing up. As in bridge, the order of the hands, but not
the order of the cards in the hands, matters. Starting with a single 52
card deck, and three players, how many ways can the first two cards be
dealt out? You can use the sage cell in the SageMath Note to do this
calculation.

Chapter 3

Logic

formal logic

You can write any letters you choose;
Formal logic, though, likes p’s and q’s

To form statements — a lot,
Using IF, OR, AND, NOT —

To determine the falses and trues.

Goldie, The Omnificent English Dictionary In Limerick Form

In this chapter, we will introduce some of the basic concepts of mathematical
logic. In order to fully understand some of the later concepts in this book, you
must be able to recognize valid logical arguments. Although these arguments
will usually be applied to mathematics, they employ the same techniques that
are used by a lawyer in a courtroom or a physician examining a patient. An
added reason for the importance of this chapter is that the circuits that make
up digital computers are designed using the same algebra of propositions that
we will be discussing.

3.1 Propositions and Logical Operators

3.1.1 Propositions
Definition 3.1.1 Proposition. A proposition is a sentence to which one and
only one of the terms true or false can be meaningfully applied. ♢

Example 3.1.2 Some Propositions. “Four is even,”, “4 ∈ {1, 3, 5}” and
“43 > 21” are propositions. □

In traditional logic, a declarative statement with a definite truth value is
considered a proposition. Although our ultimate aim is to discuss mathematical
logic, we won’t separate ourselves completely from the traditional setting. This
is natural because the basic assumptions, or postulates, of mathematical logic
are modeled after the logic we use in everyday life. Since compound sentences
are frequently used in everyday speech, we expect that logical propositions
contain connectives like the word “and.” The statement “Europa supports life
or Mars supports life” is a proposition and, hence, must have a definite truth
value. Whatever that truth value is, it should be the same as the truth value
of “Mars supports life or Europa supports life.”

39

CHAPTER 3. LOGIC 40

3.1.2 Logical Operations
There are several ways in which we commonly combine simple statements into
compound ones. The words/phrases and, or, not, if ... then..., and ...if and only
if ... can be added to one or more propositions to create a new proposition. To
avoid any confusion, we will precisely define each one’s meaning and introduce
its standard symbol. With the exception of negation (not), all of the operations
act on pairs of propositions. Since each proposition has two possible truth
values, there are four ways that truth can be assigned to two propositions. In
defining the effect that a logical operation has on two propositions, the result
must be specified for all four cases. The most convenient way of doing this is
with a truth table, which we will illustrate by defining the word and.

Definition 3.1.3 Logical Conjunction. If p and q are propositions, their
conjunction, p and q (denoted p ∧ q), is defined by the truth table

p q p ∧ q

0 0 0
0 1 0
1 0 0
1 1 1

♢
Notes:

(a) To read this truth table, you must realize that any one line represents a
case: one possible set of values for p and q.

(b) The numbers 0 and 1 are used to denote false and true, respectively. This
is consistent with the way that many programming languages treat logical,
or Boolean, variables since a single bit, 0 or 1, can represent a truth value.

(c) For each case, the symbol under p represents the truth value of p. The
same is true for q. The symbol under p ∧ q represents its truth value for
that case. For example, the second row of the truth table represents the
case in which p is false, q is true, and the resulting truth value for p∧ q is
false. As in everyday speech, p ∧ q is true only when both propositions
are true.

(d) Just as the letters x, y and z are frequently used in algebra to represent
numeric variables, p, q and r seem to be the most commonly used symbols
for logical variables. When we say that p is a logical variable, we mean
that any proposition can take the place of p.

(e) One final comment: The order in which we list the cases in a truth
table is standardized in this book. If the truth table involves two simple
propositions, the numbers under the simple propositions can be interpreted
as the two-digit binary integers in increasing order, 00, 01, 10, and 11,
for 0, 1, 2, and 3, respectively.

Definition 3.1.4 Logical Disjunction. If p and q are propositions, their
disjunction, p or q (denoted p ∨ q), is defined by the truth table

p q p ∨ q

0 0 0
0 1 1
1 0 1
1 1 1

CHAPTER 3. LOGIC 41

♢

Definition 3.1.5 Logical Negation. If p is a proposition, its negation, not p,
denoted ¬p, and is defined by the truth table

p ¬p

0 1
1 0

♢
Note: Negation is the only standard operator that acts on a single proposition;
hence only two cases are needed.

Consider the following propositions from everyday speech:

(a) I’m going to quit if I don’t get a raise.

(b) If I pass the final, then I’ll graduate.

(c) I’ll be going to the movies provided that my car starts.

All three propositions are conditional, they can all be restated to fit into
the form “If Condition, then Conclusion.” For example, the first statement can
be rewritten as “If I don’t get a raise, then I’m going to quit.”

A conditional statement is meant to be interpreted as a guarantee; if the
condition is true, then the conclusion is expected to be true. It says no more
and no less.
Definition 3.1.6 Conditional Statement. The conditional statement “If p
then q,” denoted p→ q, is defined by the truth table
Table 3.1.7 Truth Table for p→ q

p q p→ q

0 0 1
0 1 1
1 0 0
1 1 1

♢

Example 3.1.8 Analysis of a Conditional Proposition. Assume your
instructor told you “If you receive a grade of 95 or better in the final examination,
then you will receive an A in this course.” Your instructor has made a promise
to you. If you fulfill his condition, you expect the conclusion (getting an A) to
be forthcoming. Suppose your graded final has been returned to you. Has your
instructor told the truth or is your instructor guilty of a falsehood?

Case I: Your final exam score was less than 95 (the condition is false) and
you did not receive an A (the conclusion is false). The instructor told the truth.

Case II: Your final exam score was less than 95, yet you received an A for
the course. The instructor told the truth. (Perhaps your overall course average
was excellent.)

Case III: Your final exam score was greater than 95, but you did not receive
an A. The instructor lied.

Case IV: Your final exam score was greater than 95, and you received an A.
The instructor told the truth.

To sum up, the only case in which a conditional proposition is false is when
the condition is true and the conclusion is false. □

The order of the condition and conclusion in a conditional proposition is
important. If the condition and conclusion are exchanged, a different proposition
is produced.

CHAPTER 3. LOGIC 42

Definition 3.1.9 Converse. The converse of the proposition p→ q is the
proposition q → p. ♢

The converse of “If you receive a grade of 95 or better in the final exam,
then you will receive an A in this course,” is “If you receive an A in this course,
then you received a grade of 95 or better in the final exam.” It should be clear
that these two statements say different things.

There is a proposition related to p → q that does have the same logical
meaning. This is the contrapositive.

Definition 3.1.10 Contrapositive. The contrapositive of the proposition
p→ q is the proposition ¬q → ¬p. ♢

As we will see when we discuss logical proofs, we can prove a conditional
proposition by proving its contrapositive, which may be somewhat easier.

Finally, there a third variation on the proposition p→ q, the inverse, which
we will see that has the same logical meaning as the converse.

Definition 3.1.11 Logical Inverse. The inverse of the proposition p→ q is
the proposition ¬p→ ¬q. ♢

The inverse of "If it snows today, we have a day off." would be "If it doesn’t
snow today, we don’t have a day off." Can you see that the original proposition
and the inverse are saying different things?

Our final logical operator is a conjunction of two conditionals

Definition 3.1.12 Biconditional Proposition. If p and q are propositions,
the biconditional statement “p if and only if q,” denoted p↔ q, is defined by
the truth table

p q p↔ q

0 0 1
0 1 0
1 0 0
1 1 1

♢
Note that p ↔ q is true when p and q have the same truth values. It is

common to abbreviate “if and only if” to “iff.”
Although “if ... then...” and “...if and only if ...” are frequently used in

everyday speech, there are several alternate forms that you should be aware of.
They are summarized in the following lists.

All of the following are equivalent to “If p then q”:

• p implies q.

• q follows from p.

• p, only if q.

• q, if p.

• p is sufficient for q.

• q is necessary for p.

All of the following are equivalent to “p if and only if q”:

• p is necessary and sufficient for q.

• p is equivalent to q.

• If p, then q, and if q, then p.

• If p, then q and conversely.

CHAPTER 3. LOGIC 43

3.1.3 Exercises
1. Let d = “I like discrete structures”, c = “I will pass this course” and s =

“I will do my assignments.” Express each of the following propositions in
symbolic form:

(a) I like discrete structures and I will pass this course.

(b) I will do my assignments or I will not pass this course.

(c) It is not true that I both like discrete structures, and will do my
assignments.

(d) I will not do my assignment and I will not pass this course.
2. For each of the following propositions, identify simple propositions, express

the compound proposition in symbolic form, and determine whether it is
true or false:

(a) The world is flat or zero is an even integer.

(b) If 432,802 is a multiple of 4, then 432,802 is even.

(c) 5 is a prime number and 6 is not divisible by 4.

(d) 3 ∈ Z and 3 ∈ Q.

(e) 2/3 ∈ Z and 2/3 ∈ Q.

(f) The sum of two even integers is even and the sum of two odd integers
is odd.

3. Let p =“2 ≤ 5”, q = “8 is an even integer,” and r = “11 is a prime number.”
Express the following as a statement in English and determine whether
the statement is true or false:

(a) ¬p ∧ q

(b) p→ q

(c) (p ∧ q)→ r

(d) p→ (q ∨ (¬r))

(e) p→ ((¬q) ∨ (¬r))

(f) (¬q)→ (¬p)
4. Rewrite each of the following statements using the other conditional forms:

(a) If an integer is a multiple of 4, then it is even.

(b) The fact that a polygon is a square is a sufficient condition that it is
a rectangle.

(c) If x = 5, then x2 = 25.

(d) If x2 − 5x + 6 = 0, then x = 2 or x = 3.

(e) x2 = y2 is a necessary condition for x = y.
5. Write the converse of the propositions in exercise 4. Compare the truth of

each proposition and its converse.

CHAPTER 3. LOGIC 44

3.2 Truth Tables and Propositions Generated by
a Set

3.2.1 Truth Tables
Consider the compound proposition c = (p ∧ q) ∨ (¬q ∧ r), where p, q, and r
are propositions. This is an example of a proposition generated by p, q, and
r. We will define this terminology later in the section. Since each of the three
simple propositions has two possible truth values, it follows that there are eight
different combinations of truth values that determine a value for c. These values
can be obtained from a truth table for c. To construct the truth table, we build
c from p, q, and r and from the logical operators. The result is the truth table
below. Strictly speaking, the first three columns and the last column make up
the truth table for c. The other columns are work space needed to build up to
c.
Table 3.2.1 Truth Table for c = (p ∧ q) ∨ (¬q ∧ r)

p q r p ∧ q ¬q ¬q ∧ r (p ∧ q) ∨ (¬q ∧ r)
0 0 0 0 1 0 0
0 0 1 0 1 1 1
0 1 0 0 0 0 0
0 1 1 0 0 0 0
1 0 0 0 1 0 0
1 0 1 0 1 1 1
1 1 0 1 0 0 1
1 1 1 1 0 0 1

Note that the first three columns of the truth table are an enumeration
of the eight three-digit binary integers. This standardizes the order in which
the cases are listed. In general, if c is generated by n simple propositions,
then the truth table for c will have 2n rows with the first n columns being an
enumeration of the n digit binary integers. In our example, we can see at a
glance that for exactly four of the eight cases, c will be true. For example, if p
and r are true and q is false (the sixth case), then c is true.

Let S be any set of propositions. We will give two definitions of a proposition
generated by S. The first is a bit imprecise, but should be clear. The second
definition is called a recursive definition. If you find it confusing, use the first
definition and return to the second later.

3.2.2 Propositions Generated by a Set
Definition 3.2.2 Proposition Generated by a Set. Let S be any set
of propositions. A proposition generated by S is any valid combination of
propositions in S with conjunction, disjunction, and negation. Or, to be more
precise,

(a) If p ∈ S, then p is a proposition generated by S, and

(b) If x and y are propositions generated by S, then so are (x), ¬x, x ∨ y ,
and x ∧ y.

♢
Note: We have not included the conditional and biconditional in the defini-

tion because they can both be generated from conjunction, disjunction, and
negation, as we will see later.

CHAPTER 3. LOGIC 45

If S is a finite set, then we may use slightly different terminology. For
example, if S = {p, q, r}, we might say that a proposition is generated by p, q,
and r instead of from {p, q, r}.

It is customary to use the following hierarchy for interpreting propositions,
with parentheses overriding this order:

• First: Negation

• Second: Conjunction

• Third: Disjunction

• Fourth: The conditional operation

• Fifth: The biconditional operation

Within any level of the hierarchy, work from left to right. Using these rules,
p∧ q ∨ r is taken to mean (p∧ q)∨ r. These precedence rules are universal, and
are exactly those used by computer languages to interpret logical expressions.

Example 3.2.3 Examples of the Hierarchy of Logical Operations. A
few shortened expressions and their fully parenthesized versions:

(a) p ∧ q ∧ r is (p ∧ q) ∧ r.

(b) ¬p ∨ ¬r is (¬p) ∨ (¬r).

(c) ¬¬p is ¬(¬p).

(d) p↔ q ∧ r → s is p↔ ((q ∧ r)→ s).

□
A proposition generated by a set S need not include each element of S in

its expression. For example, ¬q ∧ r is a proposition generated by p, q, and r.

3.2.3 Exercises
1. Construct the truth tables of:

(a) p ∨ p

(b) p ∧ (¬p)

(c) p ∨ (¬p)

(d) p ∧ p

2. Construct the truth tables of:
(a) ¬(p ∧ q)

(b) p ∧ (¬q)

(c) (p ∧ q) ∧ r

(d) (p ∧ q) ∨ (q ∧ r) ∨ (r ∧ p)

(e) ¬p ∨ ¬q

(f) p ∨ q ∨ r ∨ s

3. Rewrite the following with as few extraneous parentheses as possible:
(a) (¬((p) ∧ (r))) ∨ (s) (b) ((p) ∨ (q)) ∧ ((r) ∨ (q))

4. In what order are the operations in the following propositions performed?
(a) p ∨ ¬q ∨ r ∧ ¬p (b) p ∧ ¬q ∧ r ∧ ¬p

5. Determine the number of rows in the truth table of a proposition containing
four variables p, q, r, and s.

6. If there are 45 lines on a sheet of paper, and you want to reserve one line
for each line in a truth table, how large could |S| be if you can write truth
tables of propositions generated by S on the sheet of paper?

CHAPTER 3. LOGIC 46

3.3 Equivalence and Implication
Consider two propositions generated by p and q: ¬(p∧ q) and ¬p∨¬q. At first
glance, they are different propositions. In form, they are different, but they
have the same meaning. One way to see this is to substitute actual propositions
for p and q; such as p: I’ve been to Toronto; and q: I’ve been to Chicago.

Then ¬(p ∧ q) translates to “I haven’t been to both Toronto and Chicago,”
while ¬p ∨ ¬q is “I haven’t been to Toronto or I haven’t been to Chicago.”
Determine the truth values of these propositions. Naturally, they will be true
for some people and false for others. What is important is that no matter
what truth values they have, ¬(p ∧ q) and ¬p ∨ ¬q will have the same truth
value. The easiest way to see this is by examining the truth tables of these
propositions.

Table 3.3.1 Truth Tables for ¬(p ∧ q) and ¬p ∨ ¬q

p q ¬(p ∧ q) ¬p ∨ ¬q

0 0 1 1
0 1 1 1
1 0 1 1
1 1 0 0

In all four cases, ¬(p∧q) and ¬p∨¬q have the same truth value. Furthermore,
when the biconditional operator is applied to them, the result is a value of true
in all cases. A proposition such as this is called a tautology.

3.3.1 Tautologies and Contradictions
Definition 3.3.2 Tautology. An expression involving logical variables that is
true in all cases is a tautology. The number 1 is used to symbolize a tautology.

♢

Example 3.3.3 Some Tautologies. All of the following are tautologies
because their truth tables consist of a column of 1’s.

(a) (¬(p ∧ q))↔ (¬p ∨ ¬q).

(b) p ∨ ¬p

(c) (p ∧ q)→ p

(d) q → (p ∨ q)

(e) (p ∨ q)↔ (q ∨ p)

□

Definition 3.3.4 Contradiction. An expression involving logical variables
that is false for all cases is called a contradiction. The number 0 is used to
symbolize a contradiction. ♢

Example 3.3.5 Some Contradictions. p∧¬p and (p∨ q)∧ (¬p)∧ (¬q) are
contradictions. □

CHAPTER 3. LOGIC 47

3.3.2 Equivalence
Definition 3.3.6 Equivalence. Let S be a set of propositions and let r and
s be propositions generated by S. r and s are equivalent if and only if r ↔ s is
a tautology. The equivalence of r and s is denoted r ⇐⇒ s. ♢

Equivalence is to logic as equality is to algebra. Just as there are many ways
of writing an algebraic expression, the same logical meaning can be expressed
in many different ways.

Example 3.3.7 Some Equivalences. The following are all equivalences:
(a) (p ∧ q) ∨ (¬p ∧ q) ⇐⇒ q.

(b) p→ q ⇐⇒ ¬q → ¬p

(c) p ∨ q ⇐⇒ q ∨ p.

□
All tautologies are equivalent to one another.

Example 3.3.8 An equivalence to 1. p ∨ ¬p ⇐⇒ 1. □
All contradictions are equivalent to one another.

Example 3.3.9 An equivalence to 0. p ∧ ¬p ⇐⇒ 0. □

3.3.3 Implication
Consider the two propositions:

Table 3.3.10

x: The money is behind Door A; and
y: The money is behind Door A or Door B.

Imagine that you were told that there is a large sum of money behind one
of two doors marked A and B, and that one of the two propositions x and y is
true and the other is false. Which door would you choose? All that you need
to realize is that if x is true, then y will also be true. Since we know that this
can’t be the case, y must be the true proposition and the money is behind Door
B.

This is an example of a situation in which the truth of one proposition leads
to the truth of another. Certainly, y can be true when x is false; but x can’t
be true when y is false. In this case, we say that x implies y.

Consider the truth table of p→ q, Table 3.1.7. If p implies q, then the third
case can be ruled out, since it is the case that makes a conditional proposition
false.
Definition 3.3.11 Implication. Let S be a set of propositions and let r
and s be propositions generated by S. We say that r implies s if r → s is a
tautology. We write r ⇒ s to indicate this implication. ♢

Example 3.3.12 Disjunctive Addition. A commonly used implication
called “disjunctive addition” is p ⇒ (p ∨ q), which is verified by truth table
Table 3.3.13. □

CHAPTER 3. LOGIC 48

Table 3.3.13 Truth Table to verify that p⇒ (p ∨ q)

p q p ∨ q p→ p ∨ q

0 0 0 1
0 1 1 1
1 0 1 1
1 1 1 1

If we let p represent “The money is behind Door A” and q represent “The
money is behind Door B,” p⇒ (p ∨ q) is a formalized version of the reasoning
used in Example 3.3.12. A common name for this implication is disjunctive
addition. In the next section we will consider some of the most commonly used
implications and equivalences.

When we defined what we mean by a Proposition Generated by a Set, we
didn’t include the conditional and biconditional operators. This was because of
the two equivalences p→ q ⇔ ¬p∨q and p↔ q ⇔ (p∧q)∨(¬p∧¬q). Therefore,
any proposition that includes the conditional or biconditional operators can be
written in an equivalent way using only conjunction, disjunction, and negation.
We could even dispense with disjunction since p∨q is equivalent to a proposition
that uses only conjunction and negation.

3.3.4 A Universal Operation
We close this section with a final logical operation, the Sheffer Stroke, that has
the interesting property that all other logical operations can be created from it.
You can explore this operation in Exercise 3.3.5.8

Definition 3.3.14 The Sheffer Stroke. The Sheffer Stroke is the logical
operator defined by the following truth table:
Table 3.3.15 Truth Table for the Sheffer Stroke

p q p | q
0 0 1
0 1 1
1 0 1
1 1 0

♢

3.3.5 Exercises
1. Given the following propositions generated by p, q, and r, which are

equivalent to one another?
(a) (p ∧ r) ∨ q

(b) p ∨ (r ∨ q)

(c) r ∧ p

(d) ¬r ∨ p

(e) (p ∨ q) ∧ (r ∨ q)

(f) r → p

(g) r ∨ ¬p

(h) p→ r
2.

(a) Construct the truth table for x = (p ∧ ¬q) ∨ (r ∧ p).

(b) Give an example other than x itself of a proposition generated by p,
q, and r that is equivalent to x.

(c) Give an example of a proposition other than x that implies x.

(d) Give an example of a proposition other than x that is implied by x.

CHAPTER 3. LOGIC 49

3. Is an implication equivalent to its converse? Verify your answer using a
truth table.

4. Suppose that x is a proposition generated by p, q, and r that is equivalent
to p ∨ ¬q. Write out the truth table for x.

5. How large is the largest set of propositions generated by p and q with the
property that no two elements are equivalent?

6. Find a proposition that is equivalent to p ∨ q and uses only conjunction
and negation.

7. Explain why a contradiction implies any proposition and any proposition
implies a tautology.

8. The significance of the Sheffer Stroke is that it is a “universal” operation
in that all other logical operations can be built from it.

(a) Prove that p|q is equivalent to ¬(p ∧ q).

(b) Prove that ¬p⇔ p|p.

(c) Build ∧ using only the Sheffer Stroke.

(d) Build ∨ using only the Sheffer Stroke.
9. Are the converse and inverse of a conditional proposition equivalent? Verify

your answer using a truth table.

3.4 The Laws of Logic

3.4.1
In this section, we will list the most basic equivalences and implications of
logic. Most of the equivalences listed in Table Table 3.4.3 should be obvious
to the reader. Remember, 0 stands for contradiction, 1 for tautology. Many
logical laws are similar to algebraic laws. For example, there is a logical law
corresponding to the associative law of addition, a + (b + c) = (a + b) + c. In
fact, associativity of both conjunction and disjunction are among the laws of
logic. Notice that with one exception, the laws are paired in such a way that
exchanging the symbols ∧, ∨, 1 and 0 for ∨, ∧, 0, and 1, respectively, in any
law gives you a second law. For example, p∨ 0⇔ p results in p∧ 1⇔ p. This is
called a duality principle. For now, think of it as a way of remembering two laws
for the price of one. We will leave it to the reader to verify a few of these laws
with truth tables. However, the reader should be careful in applying duality
to the conditional operator and implication since the dual involves taking the
converse. For example, the dual of p ∧ q ⇒ p is p ∨ q ⇐ p, which is usually
written p⇒ p ∨ q.

Example 3.4.1 Verification of an Identity Law. The Identity Law can
be verified with this truth table. The fact that (p∧ 1)↔ p is a tautology serves
as a valid proof.
Table 3.4.2 Truth table to demonstrate the identity law for conjunc-
tion.

p 1 p ∧ 1 (p ∧ 1)↔ p

0 1 0 1
1 1 1 1

□
Some of the logical laws in Table Table 3.4.4 might be less obvious to you.

For any that you are not comfortable with, substitute actual propositions for

CHAPTER 3. LOGIC 50

the logical variables. For example, if p is “John owns a pet store” and q is
“John likes pets,” the detachment law should make sense.

Table 3.4.3 Basic Logical Laws - Equivalences

Commutative Laws
p ∨ q ⇔ q ∨ p p ∧ q ⇔ q ∧ p

Associative Laws
(p ∨ q) ∨ r ⇔ p ∨ (q ∨ r) (p ∧ q) ∧ r ⇔ p ∧ (q ∧ r)

Distributive Laws
p ∧ (q ∨ r)⇔ (p ∧ q) ∨ (p ∧ r) p ∨ (q ∧ r)⇔ (p ∨ q) ∧ (p ∨ r)

Identity Laws
p ∨ 0⇔ p p ∧ 1⇔ p

Negation Laws
p ∧ ¬p⇔ 0 p ∨ ¬p⇔ 1

Idempotent Laws
p ∨ p⇔ p p ∧ p⇔ p

Null Laws
p ∧ 0⇔ 0 p ∨ 1⇔ 1

Absorption Laws
p ∧ (p ∨ q)⇔ p p ∨ (p ∧ q)⇔ p

DeMorgan’s Laws
¬(p ∨ q)⇔ (¬p) ∧ (¬q) ¬(p ∧ q)⇔ (¬p) ∨ (¬q)

Involution Law
¬(¬p)⇔ p

Table 3.4.4 Basic Logical Laws - Common Implications and Equiva-
lences

Detachment (AKA Modus Ponens) (p→ q) ∧ p⇒ q

Indirect Reasoning (AKA Modus Tollens) (p→ q) ∧ ¬q ⇒ ¬p

Disjunctive Addition p⇒ (p ∨ q)
Conjunctive Simplification (p ∧ q)⇒ p and (p ∧ q)⇒ q

Disjunctive Simplification (p ∨ q) ∧ ¬p⇒ q and (p ∨ q) ∧ ¬q ⇒ p

Chain Rule (p→ q) ∧ (q → r)⇒ (p→ r)
Conditional Equivalence p→ q ⇔ ¬p ∨ q

Biconditional Equivalences (p↔ q)⇔ (p→ q) ∧ (q → p)⇔ (p ∧ q) ∨ (¬p ∧ ¬q)
Contrapositive (p→ q)⇔ (¬q → ¬p)

3.4.2 Exercises
1. Write the following in symbolic notation and determine whether it is a

tautology: “If I study then I will learn. I will not learn. Therefore, I do
not study.”

2. Show that the common fallacy (p→ q) ∧ ¬p⇒ ¬q is not a law of logic.
3. Describe, in general, how duality can be applied to implications if we

introduce the relation ⇐, read “is implied by.” We define this relation by

(p⇐ q)⇔ (q ⇒ p).
4. Write the dual of the following statements:

(a) (p ∧ q)⇒ p

CHAPTER 3. LOGIC 51

(b) (p ∨ q) ∧ ¬q ⇒ p

3.5 Mathematical Systems and Proofs

3.5.1 Mathematical Systems
In this section, we present an overview of what a mathematical system is and
how logic plays an important role in one. The axiomatic method that we
will use here will not be duplicated with as much formality anywhere else in
the book, but we hope an emphasis on how mathematical facts are developed
and organized will help to unify the concepts we will present. The system of
propositions and logical operators we have developed will serve as a model for
our discussion. Roughly, a mathematical system can be defined as follows.

Definition 3.5.1 Mathematical System. A mathematical system consists
of:

(1) A set or universe, U .

(2) Definitions: sentences that explain the meaning of concepts that relate to
the universe. Any term used in describing the universe itself is said to be
undefined. All definitions are given in terms of these undefined concepts
of objects.

(3) Axioms: assertions about the properties of the universe and rules for
creating and justifying more assertions. These rules always include the
system of logic that we have developed to this point.

(4) Theorems: the additional assertions mentioned above.

♢

Example 3.5.2 Euclidean Geometry. In Euclidean geometry the universe
consists of points and lines (two undefined terms). Among the definitions is a
definition of parallel lines and among the axioms is the axiom that two distinct
parallel lines never meet. □

Example 3.5.3 Propositional Calculus. Propositional calculus is a formal
name for the logical system that we’ve been discussing. The universe consists of
propositions. The axioms are the truth tables for the logical operators and the
key definitions are those of equivalence and implication. We use propositions
to describe any other mathematical system; therefore, this is the minimum
amount of structure that a mathematical system can have. □

Definition 3.5.4 Theorem. A true proposition derived from the axioms of a
mathematical system is called a theorem. ♢

Theorems are normally expressed in terms of a finite number of propositions,
p1, p2, ..., pn , called the premises, and a proposition,C, called the conclusion.
These theorems take the form

p1 ∧ p2 ∧ · · · ∧ pn ⇒ C

or more informally,
p1, p2, ..., and pn imply C

For a theorem of this type, we say that the premises imply the conclusion.
When a theorem is stated, it is assumed that the axioms of the system are true.
In addition, any previously proven theorem can be considered an extension of
the axioms and can be used in demonstrating that the new theorem is true.

CHAPTER 3. LOGIC 52

When the proof is complete, the new theorem can be used to prove subsequent
theorems. A mathematical system can be visualized as an inverted pyramid with
the axioms at the base and the theorems expanding out in various directions.

Figure 3.5.5 The body of knowledge in a mathematical system

Definition 3.5.6 Proof. A proof of a theorem is a finite sequence of logically
valid steps that demonstrate that the premises of a theorem imply its conclusion.

♢
Exactly what constitutes a proof is not always clear. For example, a research

mathematician might require only a few steps to prove a theorem to a colleague,
but might take an hour to give an effective proof to a class of students. Therefore,
what constitutes a proof often depends on the audience. But the audience is
not the only factor. One of the most famous theorems in graph theory, The
Four-Color Theorem, was proven in 1976, after over a century of effort by many
mathematicians. Part of the proof consisted of having a computer check many
different graphs for a certain property. Without the aid of the computer, this
checking would have taken years. In the eyes of some mathematicians, this
proof was considered questionable. Shorter proofs have been developed since
1976 and there is no controversy associated with The Four Color Theorem at
this time.

3.5.2 Direct Proof
Theoretically, you can prove anything in propositional calculus with truth tables.
In fact, the laws of logic stated in Section 3.4 are all theorems. Propositional
calculus is one of the few mathematical systems for which any valid sentence
can be determined true or false by mechanical means. A program to write truth
tables is not too difficult to write; however, what can be done theoretically is
not always practical. For example,

a, a→ b, b→ c, ..., y → z ⇒ z

is a theorem in propositional calculus. However, suppose that you wrote such a
program and you had it write the truth table for

(a ∧ (a→ b) ∧ (b→ c) ∧ · · · ∧ (y → z))→ z

The truth table will have 226 cases. At one million cases per second, it would
take approximately one hour to verify the theorem. Now if you decided to

CHAPTER 3. LOGIC 53

check a similar theorem,

p1, p1 → p2, . . . , p99 → p100 ⇒ p100

you would really have time trouble. There would be 2100 ≈ 1.26765 × 1030

cases to check in the truth table. At one million cases per second it would take
approximately 1.46719×1019 days to check all cases. For most of the remainder
of this section, we will discuss an alternate method for proving theorems in
propositional calculus. It is the same method that we will use in a less formal
way for proofs in other systems. Formal axiomatic methods would be too
unwieldy to actually use in later sections. However, none of the theorems in
later chapters would be stated if they couldn’t be proven by the axiomatic
method.

We will introduce two types of proof here, direct and indirect.

Example 3.5.7 A typical direct proof. This is a theorem: p → r, q →
s, p ∨ q ⇒ s ∨ r. A direct proof of this theorem is:
Table 3.5.8 Direct proof of p→ r, q → s, p ∨ q ⇒ s ∨ r

Step Proposition Justification
1. p ∨ q Premise
2. ¬p→ q (1), conditional rule
3. q → s Premise
4. ¬p→ s (2), (3), chain rule
5. ¬s→ p (4), contrapositive
6. p→ r Premise
7. ¬s→ r (5), (6), chain rule
8. s ∨ r (7), conditional rule □

□
Note that □ marks the end of a proof.
Example 3.5.7 illustrates the usual method of formal proof in a formal

mathematical system. The rules governing these proofs are:

(1) A proof must end in a finite number of steps.

(2) Each step must be either a premise or a proposition that is implied from
previous steps using any valid equivalence or implication.

(3) For a direct proof, the last step must be the conclusion of the theorem.
For an indirect proof (see below), the last step must be a contradiction.

(4) Justification Column. The column labeled “justification” is analogous
to the comments that appear in most good computer programs. They
simply make the proof more readable.

Example 3.5.9 Two proofs of the same theorem. Here are two direct
proofs of ¬p ∨ q, s ∨ p,¬q ⇒ s:
Table 3.5.10 Direct proof of ¬p ∨ q, s ∨ p,¬q ⇒ s

1. ¬p ∨ q Premise
2. ¬q Premise
3. ¬p Disjunctive simplification, (1), (2)
4. s ∨ p Premise
5. s Disjunctive simplification, (3), (4). □

You are invited to justify the steps in this second proof:

CHAPTER 3. LOGIC 54

Table 3.5.11 Alternate proof of ¬p ∨ q, s ∨ p,¬q ⇒ s

1. ¬p ∨ q

2. ¬q → ¬p

3. s ∨ p

4. p ∨ s

5. ¬p→ s

6. ¬q → s

7. ¬q

8. s □

□
The conclusion of a theorem is often a conditional proposition. The condition
of the conclusion can be included as a premise in the proof of the theorem. The
object of the proof is then to prove the consequence of the conclusion. This
rule is justified by the logical law

p→ (h→ c)⇔ (p ∧ h)→ c

Example 3.5.12 Example of a proof with a conditional conclusion.
The following proof of p → (q → s),¬r ∨ p, q ⇒ r → s includes r as a fourth
premise. Inference of truth of s completes the proof.
Table 3.5.13 Proof of a theorem with a conditional conclusion.

1. ¬r ∨ p Premise
2. r Added premise
3. p (1), (2), disjunction simplification
4. p→ (q → s) Premise
5. q → s (3), (4), detachment
6. q Premise
7. s (5), (6), detachment. □

□

3.5.3 Indirect Proof
Consider a theorem P ⇒ C, where P represents p1, p2, ..., and pn, the premises.
The method of indirect proof is based on the equivalence P → C ⇔ ¬(P∧¬C).
In words, this logical law states that if P ⇒ C, then P ∧ ¬C is always false;
that is, P ∧ ¬C is a contradiction. This means that a valid method of proof is
to negate the conclusion of a theorem and add this negation to the premises.
If a contradiction can be implied from this set of propositions, the proof is
complete. For the proofs in this section, a contradiction will often take the
form t ∧ ¬t.

For proofs involving numbers, a contradiction might be 1 = 0 or 0 < 0.
Indirect proofs involving sets might conclude with x ∈ ∅ or (x ∈ A and x ∈ Ac).
Indirect proofs are often more convenient than direct proofs in certain situations.
Indirect proofs are often called proofs by contradiction.

Example 3.5.14 An Indirect Proof. Here is an example of an indirect
proof of the theorem in Example 3.5.7.

CHAPTER 3. LOGIC 55

Table 3.5.15 An Indirect proof of p→ r, q → s, p ∨ q ⇒ s ∨ r

1. ¬(s ∨ r) Negated conclusion
2. ¬s ∧ ¬r DeMorgan’s Law, (1)
3. ¬s Conjunctive simplification, (2)
4. q → s Premise
5. ¬q Indirect reasoning, (3), (4)
6. ¬r Conjunctive simplification, (2)
7. p→ r Premise
8. ¬p Indirect reasoning, (6), (7)
9. (¬p) ∧ (¬q) Conjunctive, (5), (8)
10. ¬(p ∨ q) DeMorgan’s Law, (9)
11. p ∨ q Premise
12. 0 (10), (11) □

□

Note 3.5.16 Proof Style. The rules allow you to list the premises of a
theorem immediately; however, a proof is much easier to follow if the premises
are only listed when they are needed.
Example 3.5.17 Yet Another Indirect Proof. Here is an indirect proof
of a→ b,¬(b ∨ c)⇒ ¬a.
Table 3.5.18 Indirect proof of a→ b,¬(b ∨ c)⇒ ¬a

1. a Negation of the conclusion
2. a→ b Premise
3. b (1), (2), detachment
4. b ∨ c (3), disjunctive addition
5. ¬(b ∨ c) Premise
6. 0 (4), (5) □

□
As we mentioned at the outset of this section, we are only presenting an

overview of what a mathematical system is. For greater detail on axiomatic
theories, see Stoll (1961). An excellent description of how propositional calculus
plays a part in artificial intelligence is contained in Hofstadter (1980). If you
enjoy the challenge of constructing proofs in propositional calculus, you should
enjoy the game WFF’N PROOF (1962), by L.E. Allen.

3.5.4 Exercises
1. Prove with truth tables:

(a) p ∨ q,¬q ⇒ p

(b) p→ q,¬q ⇒ ¬p

2. Prove with truth tables:
(a) q,¬q ⇒ p

(b) p→ q ⇒ ¬p ∨ q

3. Give direct and indirect proofs of:
(a) a→ b, c→ b, d→ (a ∨ c), d⇒ b.

(b) (p→ q) ∧ (r → s), (q → t) ∧ (s→ u),¬(t ∧ u), p→ r ⇒ ¬p.

(c) p→ (q → r),¬s ∨ p, q ⇒ s→ r.

CHAPTER 3. LOGIC 56

(d) p→ q, q → r,¬(p ∧ r), p ∨ r ⇒ r.

(e) ¬q, p→ q, p ∨ t⇒ t

4. Give direct and indirect proofs of:
(a) p→ q,¬r → ¬q,¬r ⇒ ¬p.

(b) p→ ¬q,¬r → q, p⇒ r.

(c) a ∨ b, c ∧ d, a→ ¬c⇒ b.
5. Are the following arguments valid? If they are valid, construct formal

proofs; if they aren’t valid, explain why not.
(a) If wages increase, then there will be inflation. The cost of living will

not increase if there is no inflation. Wages will increase. Therefore,
the cost of living will increase.

(b) If the races are fixed or the casinos are crooked, then the tourist
trade will decline. If the tourist trade decreases, then the police will
be happy. The police force is never happy. Therefore, the races are
not fixed.

6. Determine the validity of the following argument: For students to do well
in a discrete mathematics course, it is necessary that they study hard.
Students who do well in courses do not skip classes. Students who study
hard do well in courses. Therefore students who do well in a discrete
mathematics course do not skip class.

7. Describe how p1, p1 → p2, . . . , p99 → p100 ⇒ p100 could be proved in 199
steps.

3.6 Propositions over a Universe

3.6.1 Propositions over a Universe
Consider the sentence “He was a member of the Boston Red Sox.” There is no
way that we can assign a truth value to this sentence unless “he” is specified.
For that reason, we would not consider it a proposition. However, “he” can
be considered a variable that holds a place for any name. We might want to
restrict the value of “he” to all names in the major-league baseball record books.
If that is the case, we say that the sentence is a proposition over the set of
major-league baseball players, past and present.

Definition 3.6.1 Proposition over a Universe. Let U be a nonempty
set. A proposition over U is a sentence that contains a variable that can take
on any value in U and that has a definite truth value as a result of any such
substitution. ♢

Example 3.6.2 Some propositions over a variety of universes.
(a) A few propositions over the integers are 4x2 − 3x = 0, 0 ≤ n ≤ 5, and “k

is a multiple of 3.”

(b) A few propositions over the rational numbers are 4x2 − 3x = 0, y2 = 2,
and (s− 1)(s + 1) = s2 − 1.

(c) A few propositions over the subsets of P are (A = ∅) ∨ (A = P), 3 ∈ A,
and A ∩ {1, 2, 3} ≠ ∅.

□

CHAPTER 3. LOGIC 57

All of the laws of logic that we listed in Section 3.4 are valid for propositions
over a universe. For example, if p and q are propositions over the integers, we
can be certain that p ∧ q ⇒ p, because (p ∧ q)→ p is a tautology and is true
no matter what values the variables in p and q are given. If we specify p and q
to be p(n) : n < 4 and q(n) : n < 8, we can also say that p implies p ∧ q. This
is not a usual implication, but for the propositions under discussion, it is true.
One way of describing this situation in general is with truth sets.

3.6.2 Truth Sets
Definition 3.6.3 Truth Set. If p is a proposition over U , the truth set of p
is Tp = {a ∈ U | p(a) is true}. ♢

Example 3.6.4 Truth Set Example. The truth set of the proposition
{1, 2} ∩ A = ∅, taken as a proposition over the power set of {1, 2, 3, 4} is
{∅, {3}, {4}, {3, 4}}. □

Example 3.6.5 Truth sets depend on the universe. Over the universe Z
(the integers), the truth set of 4x2 − 3x = 0 is {0}. If the universe is expanded
to the rational numbers, the truth set becomes {0, 3/4}. The term solution set
is often used for the truth set of an equation such as the one in this example.

□

Definition 3.6.6 Tautologies and Contradictions over a Universe. A
proposition over U is a tautology if its truth set is U . It is a contradiction if its
truth set is empty. ♢

Example 3.6.7 Tautology, Contradiction over Q. (s− 1)(s + 1) = s2 − 1
is a tautology over the rational numbers. x2 − 2 = 0 is a contradiction over the
rationals. □

The truth sets of compound propositions can be expressed in terms of the
truth sets of simple propositions. For example, if a ∈ Tp∧q if and only if a
makes p ∧ q true. This is true if and only if a makes both p and q true, which,
in turn, is true if and only if a ∈ Tp ∩ Tq. This explains why the truth set of
the conjunction of two propositions equals the intersection of the truth sets of
the two propositions. The following list summarizes the connection between
compound and simple truth sets

Table 3.6.8 Truth Sets of Compound Statements

Tp∧q = Tp ∩ Tq

Tp∨q = Tp ∪ Tq

T¬p = Tp
c

Tp↔q = (Tp ∩ Tq) ∪ (Tp
c ∩ Tq

c)
Tp→q = Tp

c ∪ Tq

Definition 3.6.9 Equivalence of propositions over a universe. Two
propositions, p and q, are equivalent if p↔ q is a tautology. In terms of truth
sets, this means that p and q are equivalent if Tp = Tq . ♢

Example 3.6.10 Some pairs of equivalent propositions.
(a) n + 4 = 9 and n = 5 are equivalent propositions over the integers.

(b) A ∩ {4} ≠ ∅ and 4 ∈ A are equivalent propositions over the power set of
the natural numbers.

□

CHAPTER 3. LOGIC 58

Definition 3.6.11 Implication for propositions over a universe. If p
and q are propositions over U , p implies q if p→ q is a tautology. ♢

Since the truth set of p → q is Tp
c ∪ Tq, the Venn diagram for Tp→q in

Figure 12 shows that p⇒ q when Tp ⊆ Tq.

Figure 3.6.12 Venn Diagram for Tp→q

Example 3.6.13 Examples of Implications.
(a) Over the natural numbers: n ≤ 4 ⇒ n ≤ 8 since {0, 1, 2, 3, 4} ⊆
{0, 1, 2, 3, 4, 5, 6, 7, 8}

(b) Over the power set of the integers: |Ac| = 1 implies A ∩ {0, 1} ≠ ∅

(c) Over the power set of the integers, A ⊆ even integers ⇒ A∩ odd integers =
∅

□

3.6.3 Exercises
1. If U = P({1, 2, 3, 4}), what are the truth sets of the following propositions?

(a) A ∩ {2, 4} = ∅.

(b) 3 ∈ A and 1 /∈ A.

(c) A ∪ {1} = A.

(d) A is a proper subset of {2, 3, 4}.

(e) |A| = |Ac|.
2. Over the universe of positive integers, define

Table 3.6.14

p(n): n is prime and n < 32.
q(n): n is a power of 3.
r(n): n is a divisor of 27.

(a) What are the truth sets of these propositions?

(b) Which of the three propositions implies one of the others?
3. If U = {0, 1, 2}, how many propositions over U could you list without

listing two that are equivalent?

CHAPTER 3. LOGIC 59

4. Given the propositions over the natural numbers:
Table 3.6.15

p : n < 4, q : 2n > 17, and r : n is a divisor of 18

What are the truth sets of:

(a) q

(b) p ∧ q

(c) r

(d) q → r

5. Suppose that s is a proposition over {1, 2, . . . , 8}. If Ts = {1, 3, 5, 7}, give
two examples of propositions that are equivalent to s.

6.
(a) Determine the truth sets of the following propositions over the

positive integers:

p(n) : n is a perfect square and n < 100

q(n) : n = |P(A)| for some set A.

(b) Determine Tp∧q for p and q above.
7. Let the universe be Z, the set of integers. Which of the following proposi-

tions are equivalent over Z?
Table 3.6.16

a: 0 < n2 < 9
b: 0 < n3 < 27
c: 0 < n < 3

3.7 Mathematical Induction

3.7.1 Introduction, First Example
In this section, we will examine mathematical induction, a technique for proving
propositions over the positive integers. Mathematical induction reduces the
proof that all of the positive integers belong to a truth set to a finite number
of steps.

Example 3.7.1 Formula for Triangular Numbers. Consider the following
proposition over the positive integers, which we will label p(n): The sum of the
positive integers from 1 to n is n(n+1)

2 . This is a well-known formula that is
quite simple to verify for a given value of n. For example, p(5) is: The sum of
the positive integers from 1 to 5 is 5(5+1)

2 . Indeed, 1+2+3+4+5 = 15 = 5(5+1)
2 .

However, this doesn’t serve as a proof that p(n) is a tautology. All that we’ve
established is that 5 is in the truth set of p. Since the positive integers are
infinite, we certainly can’t use this approach to prove the formula. □

An Analogy: A proof by mathematical induction is similar to knocking over
a row of closely spaced dominos that are standing on end. To knock over the
dominos in Figure 3.7.2, all you need to do is push the first domino over. To
be assured that they all will be knocked over, some work must be done ahead
of time. The dominos must be positioned so that if any domino is pushed is
knocked over, it will push the next domino in the line.

CHAPTER 3. LOGIC 60

Figure 3.7.2 An analogy for Mathematical Induction, Creative Commons
photo by Ranveig Thattai

Returning to Example 3.7.1 imagine the propositions p(1), p(2), p(3), . . . to
be an infinite line of dominos. Let’s see if these propositions are in the same
formation as the dominos were. First, we will focus on one specific point of
the line: p(99) and p(100). We are not going to prove that either of these
propositions is true, just that the truth of p(99) implies the truth of p(100). In
terms of our analogy, if p(99) is knocked over, it will knock over p(100).

In proving p(99) ⇒ p(100), we will use p(99) as our premise. We must
prove: The sum of the positive integers from 1 to 100 is 100(100+1)

2 . We
start by observing that the sum of the positive integers from 1 to 100 is
(1 + 2 + · · ·+ 99) + 100. That is, the sum of the positive integers from 1 to 100
equals the sum of the first ninety-nine plus the final number, 100. We can now
apply our premise, p(99), to the sum 1 + 2 + · · ·+ 99. After rearranging our
numbers, we obtain the desired expression for 1 + 2 + · · ·+ 100:

1 + 2 + · · ·+ 99 + 100 = (1 + 2 + · · ·+ 99) + 100

= 99 · (99 + 1)
2 + 100 by our assumption of p(99)

= 99 · 100
2 + 2 · 100

2
= 100 · 101

2

= 100 · (100 + 1)
2

.

CHAPTER 3. LOGIC 61

What we’ve just done is analogous to checking two dominos in a line and
finding that they are properly positioned. Since we are dealing with an infinite
line, we must check all pairs at once. This is accomplished by proving that
p(n)⇒ p(n + 1) for all n ≥ 1:

1 + 2 + · · ·+ n + (n + 1) = (1 + 2 + · · ·+ n) + (n + 1)

= n(n + 1)
2 + (n + 1) by p(n)

= n(n + 1)
2 + 2(n + 1)

2

= (n + 1)(n + 2)
2

= (n + 1)((n + 1) + 1)
2

.

They are all lined up! Now look at p(1): The sum of the positive integers
from 1 to 1 is 1·(1+1)

2 . Clearly, p(1) is true. This sets off a chain reaction. Since
p(1)⇒ p(2), p(2) is true. Since p(2)⇒ p(3), p(3) is true; and so on. ■

Theorem 3.7.3 The Principle of Mathematical Induction. Let p(n) be
a proposition over the positive integers. If

(1) p(1) is true, and

(2) for all n ≥ 1, p(n)⇒ p(n + 1),

then p(n) is a tautology.
Note: The truth of p(1) is called the basis for the induction proof. The

premise that p(n) is true in the second part is called the induction hypothesis.
The proof that p(n) implies p(n + 1) is called the induction step of the proof.
Despite our analogy, the basis is usually done first in an induction proof.
However, order doesn’t really matter.

3.7.2 More Examples

CHAPTER 3. LOGIC 62

Example 3.7.4 Generalized Detachment. Consider the implication over
the positive integers.

p(n) : q0 → q1, q1 → q2, . . . , qn−1 → qn, q0 ⇒ qn

A proof that p(n) is a tautology follows. Basis: p(1) is q0 → q1, q0 ⇒ q1. This
is the logical law of detachment which we know is true. If you haven’t done so
yet, write out the truth table of ((q0 → q1) ∧ q0)→ q1 to verify this step.

Induction: Assume that p(n) is true for some n ≥ 1. We want to prove that
p(n + 1) must be true. That is:

q0 → q1, q1 → q2, . . . , qn−1 → qn, qn → qn+1, q0 ⇒ qn+1

Here is a direct proof of p(n + 1):

Table 3.7.5

Step Proposition Justification
1− (n + 1) q0 → q1, q1 → q2, . . . , qn−1 → qn, q0 Premises

n + 2 qn (1)− (n + 1), p(n)
n + 3 qn → qn+1 Premise
n + 4 qn+1 (n + 2), (n + 3), detachment □

□

Example 3.7.6 An example from Number Theory. For all n ≥ 1, n3 +2n
is a multiple of 3. An inductive proof follows:

Basis: 13 + 2(1) = 3 is a multiple of 3. The basis is almost always this easy!
Induction: Assume that n ≥ 1 and n3 + 2n is a multiple of 3. Consider

(n + 1)3 + 2(n + 1). Is it a multiple of 3?

(n + 1)3 + 2(n + 1) = n3 + 3n2 + 3n + 1 + (2n + 2)
= n3 + 2n + 3n2 + 3n + 3
= (n3 + 2n) + 3(n2 + n + 1)

.

Yes, (n + 1)3 + 2(n + 1) is the sum of two multiples of 3; therefore, it is also
a multiple of 3. □ □

Now we will discuss some of the variations of the principle of mathematical
induction. The first simply allows for universes that are similar to P such as
{−2,−1, 0, 1, . . .} or {5, 6, 7, 8, . . .}.

Theorem 3.7.7 Principle of Mathematical Induction (Generalized).
If p(n) is a proposition over {k0, k0 + 1, k0 + 2, . . .}, where k0 is any integer,
then p(n) is a tautology if

(1) p(k0) is true, and

(2) for all n ≥ k0, p(n)⇒ p(n + 1).
Example 3.7.8 A proof of the permutations formula. In Chapter 2, we
stated that the number of different permutations of k elements taken from an n
element set, P (n; k), can be computed with the formula n!

(n−k)! . We can prove
this statement by induction on n. For n ≥ 0, let q(n) be the proposition

P (n; k) = n!
(n− k)! for all k, 0 ≤ k ≤ n.

Basis: q(0) states that P (0; 0) if is the number of ways that 0 elements can

CHAPTER 3. LOGIC 63

be selected from the empty set and arranged in order, then P (0; 0) = 0!
0! = 1.

This is true. A general law in combinatorics is that there is exactly one way of
doing nothing.

Induction: Assume that q(n) is true for some natural number n. It is left
for us to prove that this assumption implies that q(n + 1) is true. Suppose
that we have a set of cardinality n + 1 and want to select and arrange k of its
elements. There are two cases to consider, the first of which is easy. If k = 0,
then there is one way of selecting zero elements from the set; hence

P (n + 1; 0) = 1 = (n + 1)!
(n + 1 + 0)!

and the formula works in this case.
The more challenging case is to verify the formula when k is positive and

less than or equal to n + 1. Here we count the value of P (n + 1; k) by counting
the number of ways that the first element in the arrangement can be filled and
then counting the number of ways that the remaining k − 1 elements can be
filled in using the induction hypothesis.

There are n + 1 possible choices for the first element. Since that leaves n
elements to fill in the remaining k − 1 positions, there are P (n; k − 1) ways of
completing the arrangement. By the rule of products,

P (n + 1; k) = (n + 1)P (n; k − 1)

= (n + 1) n!
(n− (k − 1))!

= (n + 1)n!
(n− k + 1)!

= (n + 1)!
((n + 1)− k)!

■ □

3.7.3 Course of Values Induction
A second variation allows for the expansion of the induction hypothesis. The
course-of-values principle includes the previous generalization. It is also some-
times called strong induction.

Theorem 3.7.9 The Course-of-Values Principle of Mathematical
Induction. If p(n) is a proposition over {k0, k0 + 1, k0 + 2, . . .}, where k0 is
any integer, then p(n) is a tautology if

(1) p(k0) is true, and

(2) for all n ≥ k0, p(k0), p(k0 + 1), ..., p(n)⇒ p(n + 1).
A prime number is defined as a positive integer that has exactly two

positive divisors, 1 and itself. There are an infinite number of primes. The list
of primes starts with 2, 3, 5, 7, 11,

The proposition over {2, 3, 4, ...} that we will prove here is p(n): n can be
written as the product of one or more primes. In most texts, the assertion that
p(n) is a tautology would appear as

Theorem 3.7.10 Existence of Prime Factorizations. Every positive
integer greater than or equal to 2 has a prime decomposition.
Proof. If you were to encounter this theorem outside the context of a discussion
of mathematical induction, it might not be obvious that the proof can be done

CHAPTER 3. LOGIC 64

by induction. Recognizing when an induction proof is appropriate is mostly a
matter of experience. Now on to the proof!

Basis: Since 2 is a prime, it is already decomposed into primes (one of
them).

Induction: Suppose that for some n ≥ 2 all of the integers 2, 3, ..., n have a
prime decomposition. Notice the course-of-value hypothesis. Consider n + 1.
Either n + 1 is prime or it isn’t. If n + 1 is prime, it is already decomposed
into primes. If not, then n + 1 has a divisor, d, other than 1 and n + 1.
Hence, n + 1 = cd where both c and d are between 2 and n. By the induction
hypothesis, c and d have prime decompositions, c1c2 · · · cs and d1d2 · · · dt ,
respectively. Therefore, n + 1 has the prime decomposition c1c2 · · · csd1d2 · · · dt.

■

Peano Postulates and Induction. Mathematical induction originated in
the late nineteenth century. Two mathematicians who were prominent in its
development were Richard Dedekind and Giuseppe Peano. Dedekind developed
a set of axioms that describe the positive integers. Peano refined these axioms
and gave a logical interpretation to them. The axioms are usually called the
Peano Postulates.

Axiom 3.7.11 Peano Postulates. The system of positive integers consists of
a nonempty set, P; a least element of P, denoted 1; and a “successor function,”
s, with the properties

(1) If k ∈ P , then there is an element of P called the successor of k, denoted
s(k).

(2) No two elements of P have the same successor.

(3) No element of P has 1 as its successor.

(4) If S ⊆ P, 1 ∈ S, and k ∈ S ⇒ s(k) ∈ S, then S = P.
Notes:

• You might recognize s(k) as simply being k + 1.

• Axiom 4 is the one that makes mathematical induction possible. In
an induction proof, we simply apply that axiom to the truth set of a
proposition.

3.7.4 Exercises
1. Prove that the sum of the first n odd integers equals n2 .
2. Prove that if n ≥ 1, then 1(1!) + 2(2!) + · · ·+ n(n!) = (n + 1)!− 1.
3. Prove that for n ≥ 1:

∑n
k=1 k2 = 1

6 n(n + 1)(2n + 1).

4. Prove that for n ≥ 0:
∑n

k=0 2k = 2n+1 − 1.
5. Use mathematical induction to show that for n ≥ 1,

1
1 · 2 + 1

2 · 3 + · · ·+ 1
n(n + 1) = n

n + 1 .

6. Prove that if n ≥ 2, the generalized DeMorgan’s Law is true:

¬(p1 ∧ p2 ∧ ... ∧ pn)⇔ (¬p1) ∨ (¬p2) ∨ · · · ∨ (¬pn).
7. The number of strings of n zeros and ones that contain an even number of

ones is 2n−1. Prove this fact by induction for n ≥ 1.
8. Let p(n) be 8n − 3n is a multiple of 5. Prove that p(n) is a tautology over

N.

CHAPTER 3. LOGIC 65

9. Suppose that there are n people in a room, n ≥ 1, and that they all shake
hands with one another. Prove that n(n−1)

2 handshakes will have occurred.
10. Prove that it is possible to make up any postage of eight cents or more

using only three- and five-cent stamps.
11. Generalized associativity. It is well known that if a1, a2, and a3 are

numbers, then no matter what order the sums in the expression a1 +a2 +a3
are taken in, the result is always the same. Call this fact p(3) and assume
it is true. Prove using course-of-values induction that if a1, a2, . . . , and
an are numbers, then no matter what order the sums in the expression
a1 + a2 + · · ·+ an are taken in, the result is always the same.

12. Let S be the set of all numbers that can be produced by applying any of
the rules below in any order a finite number of times.

• Rule 1: 1
2 ∈ S

• Rule 2: 1 ∈ S

• Rule 3: If a and b have been produced by the rules, then ab ∈ S.

• Rule 4: If a and b have been produced by the rules, then a+b
2 ∈ S.

Prove that a ∈ S ⇒ 0 ≤ a ≤ 1.
Hint. The number of times the rules are applied should be the integer
that you do the induction on.

13. Proofs involving objects that are defined recursively are often inductive.
A recursive definition is similar to an inductive proof. It consists of a
basis, usually the simple part of the definition, and the recursion, which
defines complex objects in terms of simpler ones. For example, if x is a
real number and n is a positive integer, we can define xn as follows:

• Basis: x1 = x.

• Recursion: if n ≥ 2, xn = xn−1x.

For example, x3 = x2x = (x1x)x = (xx)x.
Prove that if n, m ∈ P, xm+n = xmxn. There is much more on recursion

in Chapter 8.
Hint. Let p(m) be the proposition that xm+n = xmxn for all n ≥ 1.

14. Let S be a finite set and let Pn be defined recursively by P1 = S and
Pn = S × Pn−1 for n ≥ 2.

• List the elements of P3 for the case S = {a, b}.

• Determine the formula for |Pn|, given that |S| = k, and prove your
formula by induction.

3.8 Quantifiers
As we saw in Section 3.6, if p(n) is a proposition over a universe U , its truth set
Tp is equal to a subset of U . In many cases, such as when p(n) is an equation,
we are most concerned with whether Tp is empty or not. In other cases, we
might be interested in whether Tp = U ; that is, whether p(n) is a tautology.
Since the conditions Tp ̸= ∅ and Tp = U are so often an issue, we have a special
system of notation for them.

CHAPTER 3. LOGIC 66

3.8.1 The Existential Quantifier
Definition 3.8.1 The Existential Quantifier. If p(n) is a proposition over
U with Tp ̸= ∅, we commonly say “There exists an n in U such that p(n) (is
true).” We abbreviate this with the symbols (∃n)U (p(n)). The symbol ∃ is
called the existential quantifier. If the context is clear, the mention of U is
dropped: (∃n)(p(n)). ♢

Example 3.8.2 Some examples of existential quantifiers.
(a) (∃k)Z(k2 − k − 12 = 0) is another way of saying that there is an integer

that solves the equation k2 − k − 12 = 0. The fact that two such integers
exist doesn’t affect the truth of this proposition in any way.

(b) (∃k)Z(3k = 102) simply states that 102 is a multiple of 3, which is true.
On the other hand, (∃k)Z(3k = 100) states that 100 is a multiple of 3,
which is false.

(c) (∃x)R(x2 + 1 = 0) is false since the solution set of the equation x2 + 1 = 0
in the real numbers is empty. It is common to write (∄x)R(x2 + 1 = 0) in
this case.

□
There are a wide variety of ways that you can write a proposition with an

existential quantifier. Table 3.8.5 contains a list of different variations that
could be used for both the existential and universal quantifiers.

3.8.2 The Universal Quantifier
Definition 3.8.3 The Universal Quantifier. If p(n) is a proposition
over U with Tp = U , we commonly say “For all n in U , p(n) (is true).” We
abbreviate this with the symbols (∀n)U (p(n)). The symbol ∀ is called the
universal quantifier. If the context is clear, the mention of U is dropped:
(∀n)(p(n)). ♢

Example 3.8.4 Some Universal Quantifiers.
(a) We can say that the square of every real number is non-negative symboli-

cally with a universal quantifier: (∀x)R(x2 ≥ 0).

(b) (∀n)Z(n + 0 = 0 + n = n) says that the sum of zero and any integer n is
n. This fact is called the identity property of zero for addition.

□

Table 3.8.5 Notational Variations with Quantified Expressions

Universal Quantifier Existential Quantifier
(∀n)U (p(n)) (∃n)U (p(n))

(∀n ∈ U)(p(n)) (∃n ∈ U)(p(n))
∀n ∈ U, p(n) ∃n ∈ U such that p(n)
p(n),∀n ∈ U p(n) is true for some n ∈ U

p(n) is true for all n ∈ U

3.8.3 The Negation of Quantified Propositions
When you negate a quantified proposition, the existential and universal quanti-
fiers complement one another.

CHAPTER 3. LOGIC 67

Example 3.8.6 Negation of an Existential Quantifier. Over the universe
of animals, define F (x): x is a fish and W (x): x lives in the water. We
know that the proposition W (x) → F (x) is not always true. In other words,
(∀x)(W (x) → F (x)) is false. Another way of stating this fact is that there
exists an animal that lives in the water and is not a fish; that is,

¬(∀x)(W (x)→ F (x))⇔ (∃x)(¬(W (x)→ F (x)))
⇔ (∃x)(W (x) ∧ ¬F (x))

.

□
Note that the negation of a universally quantified proposition is an exis-

tentially quantified proposition. In addition, when you negate an existentially
quantified proposition, you get a universally quantified proposition. Symboli-
cally,

Table 3.8.7 Negation of Quantified Expressions

¬((∀n)U (p(n)))⇔ (∃n)U (¬p(n))
¬((∃n)U (p(n)))⇔ (∀n)U (¬p(n))

Example 3.8.8 More Negations of Quantified Expressions.
(a) The ancient Greeks first discovered that

√
2 is an irrational number; that

is,
√

2 is not a rational number. ¬((∃r)Q(r2 = 2)) and (∀r)Q(r2 ̸= 2) both
state this fact symbolically.

(b) ¬((∀n)P(n2−n+41 is prime)) is equivalent to (∃n)P(n2−n+41 is composite).
They are either both true or both false.

□

3.8.4 Multiple Quantifiers
If a proposition has more than one variable, then you can quantify it more
than once. For example, p(x, y) : x2 − y2 = (x + y)(x − y) is a tautology
over the set of all pairs of real numbers because it is true for each pair (x, y)
in R × R. Another way to look at this proposition is as a proposition with
two variables. The assertion that p(x, y) is a tautology could be quantified as
(∀x)R((∀y)R(p(x, y))) or (∀y)R((∀x)R(p(x, y)))

In general, multiple universal quantifiers can be arranged in any order
without logically changing the meaning of the resulting proposition. The same is
true for multiple existential quantifiers. For example, p(x, y) : x+y = 4 and x−
y = 2 is a proposition over R× R. (∃x)R((∃y)R(x + y = 4 and x− y = 2)) and
(∃y)R ((∃x)R(x + y = 4 and x − y = 2)) are equivalent. A proposition with
multiple existential quantifiers such as this one says that there are simultaneous
values for the quantified variables that make the proposition true. A similar
example is q(x, y) : 2x− y = 2 and 4x− 2y = 5, which is always false; and the
following are all equivalent:

¬((∃x)R((∃y)R(q(x, y))))⇔ ¬(∃y)R((∃x)R(q(x, y))))
⇔ (∀y)R(¬((∃x)R(q(x, y))))
⇔ ((∀y)R((∀x)R(¬q(x, y))))
⇔ ((∀x)R((∀y)R(¬q(x, y))))

When existential and universal quantifiers are mixed, the order cannot be
exchanged without possibly changing the meaning of the proposition. For

CHAPTER 3. LOGIC 68

example, let R+ be the positive real numbers, x : (∀a)R+((∃b)R+(ab = 1)) and
y : (∃b)R+((∀a)R+(ab = 1)) have different logical values; x is true, while y is
false.

Tips on Reading Multiply-Quantified Propositions. It is understandable that
you would find propositions such as x difficult to read. The trick to deciphering
these expressions is to “peel” one quantifier off the proposition just as you would
peel off the layers of an onion (but quantifiers shouldn’t make you cry!). Since
the outermost quantifier in x is universal, x says that z(a) : (∃b)R+(ab = 1) is
true for each value that a can take on. Now take the time to select a value for
a, like 6. For the value that we selected, we get z(6) : (∃b)R+(6b = 1), which
is obviously true since 6b = 1 has a solution in the positive real numbers. We
will get that same truth value no matter which positive real number we choose
for a; therefore, z(a) is a tautology over R+ and we are justified in saying
that x is true. The key to understanding propositions like x on your own is to
experiment with actual values for the outermost variables as we did above.

Now consider y. To see that y is false, we peel off the outer quantifier.
Since it is an existential quantifier, all that y says is that some positive real
number makes w(b) : (∀a)R+(ab = 1) true. Choose a few values of b to see
if you can find one that makes w(b) true. For example, if we pick b = 2, we
get (∀a)R+(2a = 1), which is false, since 2a is almost always different from 1.
You should be able to convince yourself that no value of b will make w(b) true.
Therefore, y is false.

Another way of convincing yourself that y is false is to convince yourself
that ¬y is true:

¬((∃b)R+((∀a)R+(ab = 1)))⇔ (∀b)R+¬((∀a)R+(ab = 1))
⇔ (∀b)R+((∃a)R+(ab ̸= 1))

In words, for each value of b, there is a value for a that makes ab ̸= 1. One
such value is a = 1

b + 1. Therefore, ¬y is true.
One final example that serves as a preview to how quantifiers appear in

calculus.
Example 3.8.9 The Limit of a Sequence>. What does it mean that
0.999. . . = 1? The ellipsis (. . .) implies that there are an infinite number of
9’s on the left of the equals sign. Any way to try to justify this equality boils
down to the idea of limits. After many years of struggling with what this
means, mathematicians have come up with a universally accepted interpretation
involving quantifiers. It is that

(∀ϵ)R+((∃N)P)(n ≥ N ⇒ |1− 0. 99..9︸︷︷︸
n 9′s

| < ϵ))

In calculus, the symbol ϵ is usually reserved for small positive real numbers.
Let’s pick a value for ϵ and peel the universal quantifier off the statement above.
Let’s try ϵ equal to 1

210 = 1
1024 . In addition we note that 0. 99..9︸︷︷︸

n 9′s

= 1 − 1
10n .

With our choice of ϵ we get

(∃N)P(n ≥ N ⇒ |1− 0. 99..9︸︷︷︸
n 9′s

| < 1
1024)

or
(∃N)P(n ≥ N ⇒ 1

10n
<

1
1024)

This last statement is true - one value of N that would work is 11. You just
have to convince yourself that any positive value of ϵ, no matter how small,
will produce a true statement. If you see that, you’ve convinced yourself that
0.999 · · · = 1! □

CHAPTER 3. LOGIC 69

3.8.5 Exercises
1. Let C(x) be “x is cold-blooded,” let F (x) be “x is a fish,” and let S(x) be

“x lives in the sea.”
(a) Translate into a formula: Every fish is cold-blooded.

(b) Translate into English: (∃x)(S(x) ∧ ¬F (x)).

(c) Translate into English: (∀x)(F (x)→ S(x)).
2. Let M(x) be “x is a mammal,” let A(x) be “x is an animal,” and let W (x)

be “x is warm-blooded.”
(a) Translate into a formula: Every mammal is warm-blooded.

(b) Translate into English: (∃x)(A(x) ∧ (¬M(x))).
3. Over the universe of books, define the propositions B(x): x has a blue

cover, M(x): x is a mathematics book, U(x): x is published in the United
States, and R(x, y) : The bibliography of x includes y.

Translate into words:

(a) (∃x)(¬B(x)).

(b) (∀x)(M(x) ∧ U(x)→ B(x)).

(c) (∃x)(M(x) ∧ ¬B(x)).

(d) (∃y)((∀x)(M(x)→ R(x, y))).

(e) Express using quantifiers: Every book with a blue cover is a mathe-
matics book.

(f) Express using quantifiers: There are mathematics books that are
published outside the United States.

(g) Express using quantifiers: Not all books have bibliographies.
4. Let the universe of discourse, U , be the set of all people, and let M(x, y)

be “x is the mother of y.”
Which of the following is a true statement? Translate it into English.

(a) (∃x)U ((∀y)U (M(x, y)))

(b) (∀y)U ((∃x)U (M(x, y)))

(c) Translate the following statement into logical notation using quan-
tifiers and the proposition M(x, y) : “Everyone has a maternal
grandmother.”

5. Translate into your own words and indicate whether it is true or false that
(∃u)Z(4u2 − 9 = 0).

6. Use quantifiers to say that
√

3 is an irrational number.
Hint. Your answer will depend on your choice of a universe

7. What do the following propositions say, where U is the power set of
{1, 2, . . . , 9}? Which of these propositions are true?

(a) (∀A)U |A| ≠ |Ac|.

(b) (∃A)U (∃B)U (|A| = 5, |B| = 5, and A ∩B = ∅).

(c) (∀A)U (∀B)U (A−B = Bc −Ac).

CHAPTER 3. LOGIC 70

8. Use quantifiers to state that for every positive integer, there is a larger
positive integer.

9. Use quantifiers to state that the sum of any two rational numbers is
rational.

10. Over the universe of real numbers, use quantifiers to say that the equation
a + x = b has a solution for all values of a and b.
Hint. You will need three quantifiers.

11. Let n be a positive integer. Describe using quantifiers:

(a) x ∈
n
∪

k=1
Ak

(b) x ∈
n
∩

k=1
Ak

12. Prove that (∃x)(∀y)(p(x, y))⇒ (∀y)(∃x)(p(x, y)), but that converse is not
true.

3.9 A Review of Methods of Proof
One of the major goals of this chapter is to acquaint the reader with the key
concepts in the nature of proof in logic, which of course carries over into all
areas of mathematics and its applications. In this section we will stop, reflect,
and “smell the roses,” so that these key ideas are not lost in the many concepts
covered in logic. In Chapter 4 we will use set theory as a vehicle for further
practice and insights into methods of proof.

3.9.1 Key Concepts in Proof
All theorems in mathematics can be expressed in form “If P then C” (P ⇒ C),
or in the form “C1 if and only if C2” (C1 ⇔ C2). The latter is equivalent to “If
C1 then C2,” and “If C2 then C1.”

In “If P then C,” P is the premise (or hypothesis) and C is the conclusion.
It is important to realize that a theorem makes a statement that is dependent
on the premise being true.

There are two basic methods for proving P ⇒ C:

• Directly: Assume P is true and prove C is true.

• Indirectly (or by contradiction): Assume P is true and C is false and
prove that this leads to a contradiction of some premise, theorem, or basic
truth.

The method of proof for “If and only if” theorems is found in the law
(P ↔ C) ⇔ ((P → C) ∧ (C → P)). Hence to prove an “If and only if”
statement one must prove an “if . . . then ...” statement and its converse.

The initial response of most people when confronted with the task of being
told they must be able to read and do proofs is often “Why?” or “I can’t do
proofs.” To answer the first question, doing proofs or problem solving, even on
the most trivial level, involves being able to read statements. First we must
understand the problem and know the hypothesis; second, we must realize when
we are done and we must understand the conclusion. To apply theorems or
algorithms we must be able to read theorems and their proofs intelligently.

To be able to do the actual proofs of theorems we are forced to learn:

• the actual meaning of the theorems, and

CHAPTER 3. LOGIC 71

• the basic definitions and concepts of the topic discussed.

For example, when we discuss rational numbers and refer to a number x as
being rational, this means we can substitute a fraction p

q in place of x, with
the understanding that p and q are integers and q ̸= 0. Therefore, to prove a
theorem about rational numbers it is absolutely necessary that you know what
a rational number “looks like.”

It’s easy to comment on the response, “I cannot do proofs.” Have you tried?
As elementary school students we may have been in awe of anyone who could
handle algebraic expressions, especially complicated ones. We learned by trying
and applying ourselves. Maybe we cannot solve all problems in algebra or
calculus, but we are comfortable enough with these subjects to know that we
can solve many and can express ourselves intelligently in these areas. The same
remarks hold true for proofs.

3.9.2 The Art of Proving P ⇒ C

First one must completely realize what is given, the hypothesis. The importance
of this is usually overlooked by beginners. It makes sense, whenever you begin
any task, to spend considerable time thinking about the tools at your disposal.
Write down the premise in precise language. Similarly, you have to know when
the task is finished. Write down the conclusion in precise language. Then you
usually start with P and attempt to show that C follows logically. How do you
begin? Basically you attack the proof the same way you solve a complicated
equation in elementary algebra. You may not know exactly what each and
every step is but you must try something. If we are lucky, C follows naturally;
if it doesn’t, try something else. Often what is helpful is to work backward
from C. Finally, we have all learned, possibly the hard way, that mathematics
is a participating sport, not a spectator sport. One learns proofs by doing them,
not by watching others do them. We give several illustrations of how to set up
the proofs of several examples. Our aim here is not to prove the statements
given, but to concentrate on the logical procedure.

Example 3.9.1 The Sum of Odd Integers. We will outline a proof that
the sum of any two odd integers is even. Our first step will be to write the
theorem in the familiar conditional form: If x and y are odd integers, then
x + y is even. The premise and conclusion of this theorem should be clear now.
Notice that if x and y are not both odd, then the conclusion may or may not
be true. Our only objective is to show that the truth of the premise forces the
conclusion to be true. Therefore, we can express the integers x and y in the
form that all odd integers take; that is:

n ∈ Z is odd implies that (∃m ∈ Z)(n = 2m + 1)

This observation allows us to examine the sum x + y and to verify that it must
be even.

One final important point: This example involves two odd integers that may
or may not be equal. If we use the fact that x is odd and infer that x = 2m + 1
for some integer m, we can do a similar thing with y. However, in this context
we cannot write y = 2m + 1 since we have already linked m to x. We need to
use a different variable, maybe q or m′ - any other symbol that is not already
used in our discussion. □

Example 3.9.2 The Square of an Even Integer. Let n ∈ Z. We will
outline a proof that n2 is even if and only if n is even.

Outline of a proof: Since this is an “If and only if” theorem we must prove

CHAPTER 3. LOGIC 72

two things:

(i) (⇒) If n2 is even, then n is even. To do this directly, assume that n2 is
even and prove that n is even. To do this indirectly, assume n2 is even
and that n is odd, and reach a contradiction. It turns out that the latter
of the two approaches is easiest here.

(ii) (⇐) If n is even, then n2 is even. To do this directly, assume that n is
even and prove that n2 is even.

Now that we have broken the theorem down into two parts and know what
to prove, we proceed to prove the two implications. The final ingredient that
we need is a convenient way of describing even integers. When we refer to
an integer n (or m, or k,. . .) as even, we can always replace it with a
product of the form 2q, where q is an integer (more precisely, (∃q)Z(n = 2q)).
In other words, for an integer to be even it must have a factor of two in its
prime decomposition. □

Example 3.9.3
√

2 is irrational. Our final example will be an outline of
the proof that the square root of 2 is irrational (not an element of Q). This is
an example of the theorem that does not appear to be in the standard P ⇒ C
form. One way to rephrase the theorem is: If x is a rational number, then
x2 ̸= 2. A direct proof of this theorem would require that we verify that the
square of every rational number is not equal to 2. There is no convenient way
of doing this, so we must turn to the indirect method of proof. In such a proof,
we assume that x is a rational number and that x2 = 2. This will lead to a
contradiction. In order to reach this contradiction, we need to use the following
facts:

• A rational number is a quotient of two integers.

• Every fraction can be reduced to lowest terms, so that the numerator and
denominator have no common factor greater than 1.

• If n is an integer, n2 is even if and only if n is even.

□

3.9.3 Exercises
1. Prove that the sum of two odd positive integers is an even positive integer.

You might want to read Example 3.9.1 before attempting this.
2. Write out a complete proof that if n is an integer, n2 is even if and only if

n is even.
3. Write out a complete proof that

√
2 is irrational.

4. Prove that the cube root of 2 is an irrational number.
5. Prove that if x and y are real numbers such that x + y ≤ 1, then x ≤ 1

2 or
y ≤ 1

2 .
6. Use the following definition of absolute value to prove the given statements:

If x is a real number, then the absolute value of x, |x|, is defined by:

|x| =
{

x if x ≥ 0
−x if x < 0

(a) For any real number x, |x| ≥ 0. Moreover, |x| = 0 implies x = 0.

CHAPTER 3. LOGIC 73

(b) For any two real numbers x and y, |x| · |y| = |xy|.

(c) For any two real numbers x and y, |x + y| ≤ |x|+ |y|.

Chapter 4

More on Sets

In this chapter we shall look more closely at some basic facts about sets. One
question we could ask ourselves is: Can we manipulate sets similarly to the way
we manipulated expressions in basic algebra, or to the way we manipulated
propositions in logic? In basic algebra we are aware that a·(b+c) = a·b+a·c for
all real numbers a, b, and c. In logic we verified an analogue of this statement,
namely, p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)), where p, q, and r were arbitrary
propositions. If A, B, and C are arbitrary sets, is A∩(B∪C) = (A∩B)∪(A∩C)?
How do we convince ourselves of it is truth, or discover that it is false? Let us
consider some approaches to this problem, look at their pros and cons, and
determine their validity. Later in this chapter, we introduce partitions of sets
and minsets.

4.1 Methods of Proof for Sets
If A, B, and C are arbitrary sets, is it always true that A ∩ (B ∪ C) =
(A∩B)∪ (A∩C)? There are a variety of ways that we could attempt to prove
that this distributive law for intersection over union is indeed true. We start
with a common “non-proof” and then work toward more acceptable methods.

4.1.1 Examples and Counterexamples
We could, for example, let A = {1, 2}, B = {5, 8, 10}, and C = {3, 2, 5}, and
determine whether the distributive law is true for these values of A, B, and C.
In doing this we will have only determined that the distributive law is true for
this one example. It does not prove the distributive law for all possible sets
A, B, and C and hence is an invalid method of proof. However, trying a few
examples has considerable merit insofar as it makes us more comfortable with
the statement in question. Indeed, if the statement is not true for the example,
we have disproved the statement.

Definition 4.1.1 Counterexample. An example that disproves a statement
is called a counterexample. ♢

Example 4.1.2 Disproving distributivity of addition over multi-
plication. From basic algebra we learned that multiplication is distribu-
tive over addition. Is addition distributive over multiplication? That is, is
a + (b · c) = (a + b) · (a + c) always true? If we choose the values a = 3, b = 4,
and c = 1, we find that 3 + (4 · 1) ̸= (3 + 4) · (3 + 1). Therefore, this set of values
serves as a counterexample to a distributive law of addition over multiplication.

74

CHAPTER 4. MORE ON SETS 75

□

4.1.2 Proof Using Venn Diagrams
In this method, we illustrate both sides of the statement via a Venn diagram
and determine whether both Venn diagrams give us the same “picture,” For
example, the left side of the distributive law is developed in Figure 4.1.3 and
the right side in Figure 4.1.4. Note that the final results give you the same
shaded area.

The advantage of this method is that it is relatively quick and mechanical.
The disadvantage is that it is workable only if there are a small number of
sets under consideration. In addition, it doesn’t work very well in a static
environment like a book or test paper. Venn diagrams tend to work well if you
have a potentially dynamic environment like a blackboard or video.

Figure 4.1.3 Development of the left side of the distributive law for sets

Figure 4.1.4 Development of the right side of the distributive law for sets

CHAPTER 4. MORE ON SETS 76

4.1.3 Proof using Set-membership Tables
Let A be a subset of a universal set U and let u ∈ U . To use this method we
note that exactly one of the following is true: u ∈ A or u /∈ A. Denote the
situation where u ∈ A by 1 and that where u /∈ A by 0. Working with two sets,
A and B, and if u ∈ U , there are four possible outcomes of “where u can be.”
What are they? The set-membership table for A ∪B is:

Table 4.1.5 Membership Table for A ∪B

A B A ∪B

0 0 0
0 1 1
1 0 1
1 1 1

This table illustrates that u ∈ A ∪B if and only if u ∈ A or u ∈ B.
In order to prove the distributive law via a set-membership table, write out

the table for each side of the set statement to be proved and note that if S
and T are two columns in a table, then the set statement S is equal to the set
statement T if and only if corresponding entries in each row are the same.

To prove A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), first note that the statement
involves three sets, A, B, and C, so there are 23 = 8 possibilities for the
membership of an element in the sets.

Table 4.1.6 Membership table to prove the distributive law of inter-
section over union

A B C B ∪ C A ∩B A ∩ C A ∩ (B ∪ C) (A ∩B) ∪ (A ∩ C)
0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 1 1 1 1 1

Since each entry in Column 7 is the same as the corresponding entry in
Column 8, we have shown that A∩(B∪C) = (A∩B)∪(A∩C) for any sets A, B,
and C. The main advantage of this method is that it is mechanical. The main
disadvantage is that it is reasonable to use only for a relatively small number of
sets. If we are trying to prove a statement involving five sets, there are 25 = 32
rows, which would test anyone’s patience doing the work by hand.

4.1.4 Proof Using Definitions
This method involves using definitions and basic concepts to prove the given
statement. This procedure forces one to learn, relearn, and understand basic
definitions and concepts. It helps individuals to focus their attention on the
main ideas of each topic and therefore is the most useful method of proof. One
does not learn a topic by memorizing or occasionally glancing at core topics,
but by using them in a variety of contexts. The word proof panics most people;
however, everyone can become comfortable with proofs. Do not expect to prove
every statement immediately. In fact, it is not our purpose to prove every
theorem or fact encountered, only those that illustrate methods and/or basic

CHAPTER 4. MORE ON SETS 77

concepts. Throughout the text we will focus in on main techniques of proofs.
Let’s illustrate by proving the distributive law.

Proof Technique 1. State or restate the theorem so you understand what is
given (the hypothesis) and what you are trying to prove (the conclusion).

Theorem 4.1.7 The Distributive Law of Intersection over Union. If
A, B, and C are sets, then A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
Proof. What we can assume: A, B, and C are sets.

What we are to prove: A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
Commentary: What types of objects am I working with: sets? real numbers?

propositions? The answer is sets: sets of elements that can be anything you
care to imagine. The universe from which we draw our elements plays no part
in the proof of this theorem.

We need to show that the two sets are equal. Let’s call them the left-hand
set (LHS) and the right-hand set (RHS). To prove that LHS = RHS, we
must prove two things: (a) LHS ⊆ RHS, and (b) RHS ⊆ LHS.

To prove part a and, similarly, part b, we must show that each element of
LHS is an element of RHS. Once we have diagnosed the problem we are ready
to begin.

We must prove: (a) A ∩ (B ∪ C) ⊆ (A ∩B) ∪ (A ∩ C).
Let x ∈ A ∩ (B ∪ C):

x ∈ A ∩ (B ∪ C)⇒ x ∈ A and (x ∈ B or x ∈ C)
def. of union and intersection
⇒ (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)

distributive law of logic
⇒ (x ∈ A ∩B) or (x ∈ A ∩ C)

def. of intersection
⇒ x ∈ (A ∩B) ∪ (A ∩ C)

def. of union

We must also prove (b) (A ∩B) ∪ (A ∩ C) ⊆ A ∩ (B ∪ C).

x ∈ (A ∩B) ∪ (A ∩ C)⇒ (x ∈ A ∩B)or (x ∈ A ∩ C)
Why?

⇒ (x ∈ A and x ∈ B) or (x ∈ A and x ∈ C)
Why?

⇒ x ∈ A and (x ∈ B or x ∈ C)
Why?

⇒ x ∈ A ∩ (B ∪ C)
Why? □

.

■
Proof Technique 2

(1) To prove that A ⊆ B, we must show that if x ∈ A, then x ∈ B.

(2) To prove that A = B, we must show:

(a) A ⊆ B and
(b) B ⊆ A.

CHAPTER 4. MORE ON SETS 78

To further illustrate the Proof-by-Definition technique, let’s prove the fol-
lowing theorem.

Theorem 4.1.8 Another Proof using Definitions. If A, B, and C are
any sets, then A× (B ∩ C) = (A×B) ∩ (A× C).
Proof. Commentary; We again ask ourselves: What are we trying to prove?
What types of objects are we dealing with? We realize that we wish to prove
two facts: (a) LHS ⊆ RHS, and (b) RHS ⊆ LHS.

To prove part (a), and similarly part (b), we’ll begin the same way. Let
___ ∈ LHS to show ___ ∈ RHS. What should ___ be? What does a
typical object in the LHS look like?

Now, on to the actual proof.
(a) A× (B ∩ C) ⊆ (A×B) ∩ (A× C).
Let (x, y) ∈ A× (B ∩ C).

(x, y) ∈ A× (B ∩ C)⇒ x ∈ A and y ∈ (B ∩ C)
Why?

⇒ x ∈ A and (y ∈ B and y ∈ C)
Why?
⇒ (x ∈ A and y ∈ B) and (x ∈ A and y ∈ C)

Why?
⇒ (x, y) ∈ (A×B) and (x, y) ∈ (A× C)

Why?
⇒ (x, y) ∈ (A×B) ∩ (A× C)

Why?

(b) (A×B) ∩ (A× C) ⊆ A× (B ∩ C).
Let (x, y) ∈ (A×B) ∩ (A× C).

(x, y) ∈ (A×B) ∩ (A× C)⇒ (x, y) ∈ A×B and (x, y) ∈ A× C

Why?
⇒ (x ∈ A and y ∈ B) and (x ∈ A and y ∈ C)

Why?
⇒ x ∈ A and (y ∈ B and y ∈ C)

Why?
⇒ x ∈ A and y ∈ (B ∩ C)

Why?
⇒ (x, y) ∈ A× (B ∩ C)

Why?

■

4.1.5 Exercises
1. Prove the following:

(a) Let A, B, and C be sets. If A ⊆ B and B ⊆ C, then A ⊆ C.

(b) Let A and B be sets. Then A−B = A ∩Bc .

(c) Let A, B, and C be sets. If (A ⊆ B and A ⊆ C) then A ⊆ B ∩ C.

(d) Let A and B be sets. A ⊆ B if and only if Bc ⊆ Ac .

CHAPTER 4. MORE ON SETS 79

(e) Let A, B, and C be sets. If A ⊆ B then A× C ⊆ B × C.
2. Write the converse of parts (a), (c), and (e) of Exercise 1 and prove or

disprove them.
3. Disprove the following, assuming A, B, and C are sets:

(a) A−B = B −A.

(b) A×B = B ×A.

(c) A ∩B = A ∩ C implies B = C.

(d) A⊕ (B ∩ C) = (A⊕B) ∩ (A⊕ C)
4. Let A, B, and C be sets. Write the following in “if . . . then . . .”

language and prove:
(a) x ∈ B is a sufficient condition for x ∈ A ∪B.

(b) A ∩B ∩ C = ∅ is a necessary condition for A ∩B = ∅.

(c) A ∪B = B is a necessary and sufficient condition for A ⊆ B.
5. Prove by induction that if A, B1, B2, ... , Bn are sets, n ≥ 2, then

A ∩ (B1 ∪B2 ∪ · · · ∪Bn) = (A ∩B1) ∪ (A ∩B2) ∪ · · · ∪ (A ∩Bn).
6. Let A, B and C be sets. Prove or disprove:

A ∩B ̸= ∅, B ∩ C ̸= ∅ ⇒ A ∩ C ̸= ∅

4.2 Laws of Set Theory

4.2.1 Tables of Laws
The following basic set laws can be derived using either the Basic Definition or
the Set-Membership approach and can be illustrated by Venn diagrams.

CHAPTER 4. MORE ON SETS 80

Table 4.2.1 Basic Laws of Set Theory

Commutative Laws
(1) A ∪B = B ∪A (1′) A ∩B = B ∩A

Associative Laws
(2) A ∪ (B ∪ C) = (A ∪B) ∪ C (2′) A ∩ (B ∩ C) = (A ∩B) ∩ C

Distributive Laws
(3) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (3′) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

Identity Laws
(4) A ∪ ∅ = ∅ ∪A = A (4′) A ∩ U = U ∩A = A

Complement Laws
(5) A ∪Ac = U (5′) A ∩Ac = ∅

Idempotent Laws
(6) A ∪A = A (6′) A ∩A = A

Null Laws
(7) A ∪ U = U (7′) A ∩ ∅ = ∅

Absorption Laws
(8) A ∪ (A ∩B) = A (8′) A ∩ (A ∪B) = A

DeMorgan’s Laws
(9) (A ∪B)c = Ac ∩Bc (9′) (A ∩B)c = Ac ∪Bc

Involution Law
(10) (Ac)c = A

It is quite clear that most of these laws resemble or, in fact, are analogues
of laws in basic algebra and the algebra of propositions.

4.2.2 Proof Using Previously Proven Theorems
Once a few basic laws or theorems have been established, we frequently use them
to prove additional theorems. This method of proof is usually more efficient
than that of proof by Definition. To illustrate, let us prove the following
Corollary to the Distributive Law. The term "corollary" is used for theorems
that can be proven with relative ease from previously proven theorems.

Corollary 4.2.2 A Corollary to the Distributive Law of Sets. Let A
and B be sets. Then (A ∩B) ∪ (A ∩Bc) = A.
Proof.

(A ∩B) ∪ (A ∩Bc) = A ∩ (B ∪Bc)
Why?

= A ∩ U

Why?
= A

Why?

.

■

4.2.3 Proof Using the Indirect Method/Contradiction
The procedure one most frequently uses to prove a theorem in mathematics
is the Direct Method, as illustrated in Theorem 4.1.7 and Theorem 4.1.8.
Occasionally there are situations where this method is not applicable. Consider
the following:

CHAPTER 4. MORE ON SETS 81

Theorem 4.2.3 An Indirect Proof in Set Theory. Let A, B, C be sets. If
A ⊆ B and B ∩ C = ∅, then A ∩ C = ∅.
Proof. Commentary: The usual and first approach would be to assume A ⊆ B
and B ∩ C = ∅ is true and to attempt to prove A ∩ C = ∅ is true. To do this
you would need to show that nothing is contained in the set A ∩ C. Think
about how you would show that something doesn’t exist. It is very difficult to
do directly.

The Indirect Method is much easier: If we assume the conclusion is false and
we obtain a contradiction --- then the theorem must be true. This approach is
on sound logical footing since it is exactly the same method of indirect proof
that we discussed in Subsection 3.5.3.

Assume A ⊆ B and B ∩ C = ∅, and A ∩ C ≠ ∅. To prove that this cannot
occur, let x ∈ A ∩ C.

x ∈ A ∩ C ⇒ x ∈ A and x ∈ C

⇒ x ∈ B and x ∈ C

⇒ x ∈ B ∩ C

.

But this contradicts the second premise. Hence, the theorem is proven. ■

4.2.4 Exercises
In the exercises that follow it is most important that you outline the logical
procedures or methods you use.

1.
(a) Prove the associative law for intersection (Law 2′) with a Venn

diagram.

(b) Prove DeMorgan’s Law (Law 9) with a membership table.

(c) Prove the Idempotent Law (Law 6) using basic definitions.
2.

(a) Prove the Absorption Law (Law 8′) with a Venn diagram.

(b) Prove the Identity Law (Law 4) with a membership table.

(c) Prove the Involution Law (Law 10) using basic definitions.
3. Prove the following using the set theory laws, as well as any other theorems

proved so far.
(a) A ∪ (B −A) = A ∪B

(b) A−B = Bc −Ac

(c) A ⊆ B, A ∩ C ̸= ∅ ⇒ B ∩ C ̸= ∅

(d) A ∩ (B − C) = (A ∩B)− (A ∩ C)

(e) A− (B ∪ C) = (A−B) ∩ (A− C)
4. Use previously proven theorems to prove the following.

(a) A ∩ (B ∩ C)c = (A ∩Bc) ∪ (A ∩ Cc)

(b) A ∩ (B ∩ (A ∩B)c) = ∅

(c) (A ∩B) ∪Bc = A ∪Bc

CHAPTER 4. MORE ON SETS 82

(d) A ∪ (B − C) = (A ∪B)− (C −A).
5. Hierarchy of Set Operations. The rules that determine the order of

evaluation in a set expression that involves more than one operation are
similar to the rules for logic. In the absence of parentheses, complementa-
tions are done first, intersections second, and unions third. Parentheses
are used to override this order. If the same operation appears two or
more consecutive times, evaluate from left to right. In what order are the
following expressions performed?

(a) A ∪Bc ∩ C.

(b) A ∩B ∪ C ∩B.

(c) A ∪B ∪ Cc

6. There are several ways that we can use to format the proofs in this chapter.
One that should be familiar to you from Chapter 3 is illustrated with the
following alternate proof of part (a) in Theorem 4.1.7:
Table 4.2.4 An alternate format for the proof of Theorem 4.1.7

(1) x ∈ A ∩ (B ∪ C) Premise
(2) (x ∈ A) ∧ (x ∈ B ∪ C) (1), definition of intersection
(3) (x ∈ A) ∧ ((x ∈ B) ∨ (x ∈ C)) (2), definition of union
(4) (x ∈ A) ∧ (x ∈ B) ∨ (x ∈ A) ∧ (x ∈ C) (3), distribute ∧ over ∨
(5) (x ∈ A ∩B) ∨ (x ∈ A ∩ C) (4), definition of intersection
(6) x ∈ (A ∩B) ∪ (A ∩ C) (5), definition of union ■

Prove part (b) of Theorem 4.1.8 and Theorem 4.2.3 using this format.

4.3 Minsets

4.3.1 Definition of Minsets
Let B1 and B2 be subsets of a set A. Notice that the Venn diagram of
Figure 4.3.1 is naturally partitioned into the subsets A1, A2, A3, and A4.
Further we observe that A1, A2, A3, and A4 can be described in terms of B1
and B2 as follows:

Figure 4.3.1 Venn Diagram of Minsets

CHAPTER 4. MORE ON SETS 83

Table 4.3.2 Minsets generated by two sets

A1 = B1 ∩Bc
2

A2 = B1 ∩B2
A3 = Bc

1 ∩B2
A4 = Bc

1 ∩Bc
2

Each Ai is called a minset generated by B1 and B2. We note that each
minset is formed by taking the intersection of two sets where each may be either
Bk or its complement, Bc

k. Note also, given two sets, there are 22 = 4 minsets.
Minsets are occasionally called minterms.
The reader should note that if we apply all possible combinations of the

operations intersection, union, and complementation to the sets B1 and B2 of
Figure 1, the smallest sets generated will be exactly the minsets, the minimum
sets. Hence the derivation of the term minset.

Next, consider the Venn diagram containing three sets, B1, B2, and B3.
Draw it right now and count the regions! What are the minsets generated
by B1, B2, and B3? How many are there? Following the procedures outlined
above, we note that the following are three of the 23 = 8 minsets. What are
the others?
Table 4.3.3 Three of the minsets generated by B1, B2, and B3

B1 ∩B2 ∩Bc
3

B1 ∩Bc
2 ∩B3

B1 ∩Bc
2 ∩Bc

3

Definition 4.3.4 Minset. Let {B1, B2, . . . , Bn} be a set of subsets of set A.
Sets of the form D1 ∩D2 ∩ · · · ∩Dn, where each Di may be either Bi or Bc

i , is
called a minset generated by B1, B2,... and Bn. ♢

Example 4.3.5 A concrete example of some minsets. Consider the
following example. Let A = {1, 2, 3, 4, 5, 6} with subsets B1 = {1, 3, 5} and
B2 = {1, 2, 3}. How can we use set operations to and produce a partition of A?
As a first attempt, we might try these three sets:
Table 4.3.6

B1 ∩B2 = {1, 3}
Bc

1 = {2, 4, 6}
Bc

2 = {4, 5, 6}.

We have produced all elements of A but we have 4 and 6 repeated in two
sets. In place of Bc

1 and Bc
2, let’s try Bc

1 ∩B2 and B1 ∩Bc
2, respectively:

Table 4.3.7

Bc
1 ∩B2 = {2} and
B1 ∩Bc

2 = {5}.

We have now produced the elements 1, 2, 3, and 5 using B1 ∩B2, Bc
1 ∩B2

and B1 ∩Bc
2 yet we have not listed the elements 4 and 6. Most ways that we

could combine B1 and B2 such as B1 ∪B2 or B1 ∪Bc
2 will produce duplications

of listed elements and will not produce both 4 and 6. However we note that
Bc

1 ∩Bc
2 = {4, 6}, exactly the elements we need.

After more experimenting, we might reach a conclusion that each element of
A appears exactly once in one of the four minsets B1 ∩B2 , Bc

1 ∩B2, B1 ∩Bc
2

and Bc
1 ∩Bc

2. Hence, we have a partition of A. In fact this is the finest partition
of A in that all other partitions we could generate consist of selected unions of
these minsets.

CHAPTER 4. MORE ON SETS 84

At this point, we might ask and be able to answer the question “How
many different subsets of our universe can we generate from B1 and B2?” The
answer is 2number of nonempty minsets, which is 24 = 16 in this case. Notice that
in general, it would be impossible to find two sets from which we could generate
all subsets of A = {1, 2, 3, 4, 5, 6} since there will never be more than four
nonempty minsets. If we allowed ourselves three subsets and tried to generat
all sets from them, then the number of minsets would be 23 = 8. With only six
elements in A, there could be six minsets, each containing a single element. In
that case we could generate the whole power set of A. □

4.3.2 Properties of Minsets
Theorem 4.3.8 Minset Partition Theorem. Let A be a set and let B1,
B2 . . . , Bn be subsets of A. The set of nonempty minsets generated by B1, B2
. . . , Bn is a partition of A.
Proof. The proof of this theorem is left to the reader. ■

One of the most significant facts about minsets is that any subset of A that
can be obtained from B1, B2 . . ., Bn, using the standard set operations can be
obtained in a standard form by taking the union of selected minsets.

Definition 4.3.9 Minset Normal Form. A set is said to be in minset
normal form when it is expressed as the union of zero or more distinct nonempty
minsets. ♢

Notes:

• The union of zero sets is the empty set, ∅.

• Minset normal form is also called canonical form.
Example 4.3.10 Another Concrete Example of Minsets. Let U =
{−2,−1, 0, 1, 2}, B1 = {0, 1, 2}, and B2 = {0, 2}. Then
Table 4.3.11

B1 ∩B2 = {0, 2}
Bc

1 ∩B2 = ∅
B1 ∩Bc

2 = {1}
Bc

1 ∩Bc
2 = {−2,−1}

In this case, there are only three nonempty minsets, producing the partition
{{0, 2}, {1}, {−2,−1}}. An example of a set that could not be produced from
just B1 and B2 is the set of even elements of U , {−2, 0, 2}. This is because −2
and −1 cannot be separated. They are in the same minset and any union of
minsets either includes or excludes them both. In general, there are 23 = 8
different minset normal forms because there are three nonempty minsets. This
means that only 8 of the 25 = 32 subsets of U could be generated from any two
sets B1 and B2. □

4.3.3 Exercises
1. Consider the subsets A = {1, 7, 8}, B = {1, 6, 9, 10}, and C = {1, 9, 10},

where U = {1, 2, ..., 10}.
(a) List the nonempty minsets generated by A, B, and C.

(b) How many elements of the power set of U can be generated by A,
B, and C? Compare this number with | P(U) |. Give an example of
one subset that cannot be generated by A, B, and C.

CHAPTER 4. MORE ON SETS 85

2.
(a) Partition {1, 2,9} into the minsets generated by B1 = {5, 6, 7},

B2 = {2, 4, 5, 9}, and B3 = {3, 4, 5, 6, 8, 9}.

(b) How many different subsets of {1, 2, ..., 9} can you create using B1, B2,
and B3 with the standard set operations?

(c) Do there exist subsets C1, C2, C3 whose minsets will generate every
subset of {1, 2, ..., 9}?

3. Partition the set of strings of 0’s and 1’s of length two or less, using
the minsets generated by B1 = {s | s has length 2}, and B2 = {s |
s starts with a 0}.

4. Let B1, B2, and B3 be subsets of a universal set U ,
(a) Symbolically list all minsets generated by B1, B2, and B3.

(b) Illustrate with a Venn diagram all minsets obtained in part (a).

(c) Express the following sets in minset normal form: Bc
1, B1 ∩ B2 ,

B1 ∪Bc
2.

5.
(a) Partition A = {0, 1, 2, 3, 4, 5} with the nonempty minsets generated

by B1 = {0, 2, 4} and B2 = {1, 5}.

(b) How many different subsets of A can you generate from B1 and B2?
6. If {B1, B2, . . . , Bn} is a partition of A, how many minsets are generated

by B1, B2, . . . , Bn?
7. Prove Theorem 4.3.8
8. Let S be a finite set of n elements. Let Bi, i = 1, 2, . . . , k be nonempty

subsets of S. There are 22k minset normal forms generated by the k

subsets. The number of subsets of S is 2n. Since we can make 22k

> 2n

by choosing k ≥ log2 n, it is clear that two distinct minset normal-form
expressions do not always equal distinct subsets of S. Even for k < log2 n,
it may happen that two distinct minset normal-form expressions equal
the same subset of S. Determine necessary and sufficient conditions for
distinct normal-form expressions to equal distinct subsets of S.

4.4 The Duality Principle

4.4.1
In Section 4.2, we observed that each of the Table 4.2.1 labeled 1 through 9
had an analogue 1′ through 9′. We notice that each of the laws in one column
can be obtained from the corresponding law in the other column by replacing
∪ by ∩, ∩ by ∪, ∅ by U , U by ∅, and leaving the complement unchanged.

Definition 4.4.1 Duality Principle for Sets. Let S be any identity
involving sets and the operations complement, intersection and union. If S∗
is obtained from S by making the substitutions ∪ → ∩, ∩ → ∪, ∅ → U , and
U → ∅, then the statement S∗ is also true and it is called the dual of the
statement S. ♢

Example 4.4.2 Example of a dual. The dual of (A∩B)∪ (A ∩Bc) = A is
(A ∪B) ∩ (A ∪Bc) = A. □

CHAPTER 4. MORE ON SETS 86

One should not underestimate the importance of this concept. It gives us a
whole second set of identities, theorems, and concepts. For example, we can
consider the dual of minsets and minset normal form to obtain what is called
maxsets and maxset normal form.

4.4.2 Exercises
1. State the dual of each of the following:

(a) A ∪ (B ∩A) = A.

(b) A ∪ ((Bc ∪A) ∩B)c = U

(c) (A ∪Bc)c ∩B = Ac ∩B

2. Examine Table 3.4.3 and then write a description of the principle of duality
for logic.

3. Write the dual of each of the following:
(a) p ∨ ¬((¬q ∨ p) ∧ q)⇔ 1

(b) (¬(p ∧ (¬q)) ∨ q)⇔ (¬p ∨ q).
4. Use the principle of duality and the definition of minset to write the

definition of maxset.
5. Let A = {1, 2, 3, 4, 5, 6} and let B1 = {1, 3, 5} and B2 = {1, 2, 3}.

(a) Find the maxsets generated by B1 and B2. Note the set of maxsets
does not constitute a partition of A. Can you explain why?

(b) Write out the definition of maxset normal form.

(c) Repeat Exercise 4.3.3.4 for maxsets.
6. What is the dual of the expression in Exercise 4.1.5.5 ?

Chapter 5

Introduction to Matrix Alge-
bra

diagonal matrix

"It’s totally right what you say, Trix,
That in a diagonal matrix

You’ll find," Al confirms,
"Off-diagonal terms

Are all zero. Now bug off and play, Trix!"

Bob Egg, The Omnificent English Dictionary In Limerick Form

The purpose of this chapter is to introduce you to matrix algebra, which has
many applications. You are already familiar with several algebras: elementary
algebra, the algebra of logic, the algebra of sets. We hope that as you studied
the algebra of logic and the algebra of sets, you compared them with elementary
algebra and noted that the basic laws of each are similar. We will see that
matrix algebra is also similar. As in previous discussions, we begin by defining
the objects in question and the basic operations.

5.1 Basic Definitions and Operations

5.1.1 Matrix Order and Equality
Definition 5.1.1 matrix. A matrix is a rectangular array of elements of the
form

A =

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
. . .

...
am1 am2 am3 · · · amn

♢

A convenient way of describing a matrix in general is to designate each
entry via its position in the array. That is, the entry a34 is the entry in the
third row and fourth column of the matrix A. Depending on the situation, we
will decide in advance to which set the entries in a matrix will belong. For
example, we might assume that each entry aij (1 ≤ i ≤ m, 1 ≤ j ≤ n) is a real

87

CHAPTER 5. INTRODUCTION TO MATRIX ALGEBRA 88

number. In that case we would use Mm×n(R) to stand for the set of all m by
n matrices whose entries are real numbers. If we decide that the entries in a
matrix must come from a set S, we use Mm×n(S) to denote all such matrices.

Definition 5.1.2 The Order of a Matrix. A matrix A that has m rows
and n columns is called an m× n (read “m by n”) matrix, and is said to have
order m× n. ♢

Since it is rather cumbersome to write out the large rectangular array above
each time we wish to discuss the generalized form of a matrix, it is common
practice to replace the above by A = (aij). In general, matrices are often given
names that are capital letters and the corresponding lower case letter is used
for individual entries. For example the entry in the third row, second column
of a matrix called C would be c32.

Example 5.1.3 Orders of Some Matrices. A =
(

2 3
0 −5

)
, B =

 0
1
2

15

, and D =

 1 2 5
6 −2 3
4 2 8

 are 2× 2, 3× 1, and 3× 3 matrices, respectively. □

Since we now understand what a matrix looks like, we are in a position to
investigate the operations of matrix algebra for which users have found the
most applications.

First we ask ourselves: Is the matrix A =
(

1 2
3 4

)
equal to the matrix

B =
(

1 2
3 5

)
? No, they are not because the corresponding entries in the

second row, second column of the two matrices are not equal.

Next, is A =
(

1 2 3
4 5 6

)
equal to B =

(
1 2
4 5

)
? No, although the

corresponding entries in the first two columns are identical, B doesn’t have a
third column to compare to that of A. We formalize these observations in the
following definition.

Definition 5.1.4 Equality of Matrices. A matrix A is said to be equal to
matrix B (written A = B) if and only if:

(1) A and B have the same order, and

(2) all corresponding entries are equal: that is, aij = bij for all appropriate i
and j.

♢

5.1.2 Matrix Addition and Scalar Multiplication
The first two operations we introduce are very natural and are not likely
cause much confusion. The first is matrix addition. It seems natural that if
A =

(
1 0
2 −1

)
and B =

(
3 4
−5 2

)
, then

A + B =
(

1 + 3 0 + 4
2− 5 −1 + 2

)
=
(

4 4
−3 1

)
.

However, if A =
(

1 2 3
0 1 2

)
and B =

(
3 0
2 8

)
, is there a natural way

CHAPTER 5. INTRODUCTION TO MATRIX ALGEBRA 89

to add them to give us A + B? No, the orders of the two matrices must be
identical.
Definition 5.1.5 Matrix Addition. Let A and B be m× n matrices. Then
A + B is an m× n matrix where (A + B)ij = aij + bij (read “The ith jth entry
of the matrix A + B is obtained by adding the ith jth entry of A to the ith jth
entry of B”). If the orders of A and B are not identical, A + B is not defined.

♢
In short, A + B is defined if and only if A and B are of the same order.
Another frequently used operation is that of multiplying a matrix by a

number, commonly called a scalar in this context. Scalars normally come from
the same set as the entries in a matrix. For example, if A ∈Mm×n(R), a scalar
can be any real number.

Example 5.1.6 A Scalar Product. If c = 3 and if A =
(

1 −2
3 5

)
and

we wish to find cA, it seems natural to multiply each entry of A by 3 so that

3A =
(

3 −6
9 15

)
, and this is precisely the way scalar multiplication is defined.

□

Definition 5.1.7 Scalar Multiplication. Let A be an m× n matrix and c
a scalar. Then cA is the m× n matrix obtained by multiplying c times each
entry of A; that is (cA)ij = caij . ♢

5.1.3 Matrix Multiplication
A definition that is more awkward to motivate is the product of two matrices.
See Exercise 5.1.4.8 for an attempt to do so. In time, the reader will see that
the following definition of the product of matrices will be very useful, and will
provide an algebraic system that is quite similar to elementary algebra.

Definition 5.1.8 Matrix Multiplication. Let A be an m× n matrix and
let B be an n×p matrix. The product of A and B, denoted by AB, is an m×p
matrix whose ith row jth column entry is

(AB)ij = ai1b1j + ai2b2j + · · ·+ ainbnj

=
n∑

k=1
aikbkj

for 1 ≤ i ≤ m and 1 ≤ j ≤ p. ♢
The mechanics of computing one entry in the product of two matrices is

illustrated in Figure 5.1.9.

CHAPTER 5. INTRODUCTION TO MATRIX ALGEBRA 90

Figure 5.1.9 Computation of one entry in the product of two 3 by 3 matrices
The computation of a product can take a considerable amount of time in

comparison to the time required to add two matrices. Suppose that A and B are
n×n matrices; then (AB)ij is determined performing n multiplications and n−1
additions. The full product takes n3 multiplications and n3−n2 additions. This
compares with n2 additions for the sum of two n× n matrices. The product of
two 10 by 10 matrices will require 1,000 multiplications and 900 additions, clearly
a job that you would assign to a computer. The sum of two matrices requires a
more modest 100 additions. This analysis is based on the assumption that matrix
multiplication will be done using the formula that is given in the definition.
There are more advanced methods that, in theory, reduce operation counts.
For example, Strassen’s algorithm (en.wikipedia.org/wiki/Strassen_algorithm)
computes the product of two n by n matrices in 7 · 7log2 n − 6 · 4log2 n ≈ 7n2.808

operations. There are practical issues involved in actually using the algorithm
in many situations. For example, round-off error can be more of a problem
than with the standard formula.

Example 5.1.10 A Matrix Product. Let A =

 1 0
3 2
−5 1

, a 3× 2 matrix,

and let B =
(

6
1

)
, a 2× 1 matrix. Then AB is a 3× 1 matrix:

AB =

 1 0
3 2
−5 1

(6
1

)
=

 1 · 6 + 0 · 1
3 · 6 + 2 · 1
−5 · 6 + 1 · 1

 =

 6
20
−29

□

Remarks:

(1) The product AB is defined only if A is an m×n matrix and B is an n×p
matrix; that is, the two “inner” numbers must be equal. Furthermore,

https://en.wikipedia.org/wiki/Strassen_algorithm

CHAPTER 5. INTRODUCTION TO MATRIX ALGEBRA 91

the order of the product matrix AB is the “outer” numbers, in this case
m× p.

(2) It is wise to first determine the order of a product matrix. For example,
if A is a 3× 2 matrix and B is a 2× 2 matrix, then AB is a 3× 2 matrix
of the form

AB =

 c11 c12
c21 c22
c31 c32

Then to obtain, for example, c31, we multiply corresponding entries in
the third row of A times the first column of B and add the results.

Example 5.1.11 Multiplication with a diagonal matrix. Let A =(
−1 0
0 3

)
and B =

(
3 10
2 1

)
. Then AB =

(
−1 · 3 + 0 · 2 −1 · 10 + 0 · 1
0 · 3 + 3 · 2 0 · 10 + 3 · 1

)
=(

−3 −10
6 3

)
The net effect is to multiply the first row of B by −1 and the second row of

B by 3.

Note: BA =
(
−3 30
−2 3

)
̸= AB. The columns of B are multiplied by −1

and 3 when the order is switched. □
Remarks:

• An n× n matrix is called a square matrix.

• If A is a square matrix, AA is defined and is denoted by A2 , and
AAA = A3, etc.

• The m × n matrices whose entries are all 0 are denoted by 000m×n, or
simply 000, when no confusion arises regarding the order.

5.1.4 Exercises

1. Let A =
(

1 −1
2 3

)
, B =

(
0 1
3 −5

)
, and C =

(
0 1 −1
3 −2 2

)
(a) Compute AB and BA.

(b) Compute A + B and B + A.

(c) If c = 3, show that c(A + B) = cA + cB.

(d) Show that (AB)C = A(BC).

(e) Compute A2C.

(f) Compute B + 000.

(g) Compute A0002×2 and 0002×2A, where 0002×2 is the 2× 2 zero matrix.

(h) Compute 0A, where 0 is the real number (scalar) zero.

(i) Let c = 2 and d = 3. Show that (c + d)A = cA + dA.

2. Let A =

 1 0 2
2 −1 5
3 2 1

 , B =

 0 2 3
1 1 2
−1 3 −2

 , and C =

 2 1 2 3
4 0 1 1
3 −1 4 1

CHAPTER 5. INTRODUCTION TO MATRIX ALGEBRA 92

Compute, if possible;
(a) A−B

(b) AB

(c) AC −BC

(d) A(BC)

(e) CA− CB

(f) C

x

y

z

w

3. Let A =

(
2 0
0 3

)
. Find a matrix B such that AB = I and BA = I,

where I =
(

1 0
0 1

)
.

4. Find AI and BI where I is as in Exercise 3, where A =
(

1 8
9 5

)
and

B =
(
−2 3
5 −7

)
. What do you notice?

5. Find A3 if A =

 1 0 0
0 2 0
0 0 3

 . What is A15 equal to?

6.

(a) Determine I2 and I3 if I =

 1 0 0
0 1 0
0 0 1

.

(b) What is In equal to for any n ≥ 1?

(c) Prove your answer to part (b) by induction.
7.

(a) If

A =
(

2 1
1 −1

)
, X =

(
x1
x2

)
, and B =

(
3
1

)
,

show that AX = B is a way of expressing the system 2x1 + x2 = 3
x1 − x2 = 1

using matrices.

(b) Express the following systems of equations using matrices:

(i) 2x1 − x2 = 4
x1 + x2 = 0

(ii)
x1 + x2 + 2x3 = 1

x1 + 2x2 − x3 = −1
x1 + 3x2 + x3 = 5

(iii)
x1 + x2 = 3

x2 = 5
x1 + 3x3 = 6

8. In this exercise, we propose to show how matrix multiplication is a natural
operation. Suppose a bakery produces bread, cakes and pies every weekday,
Monday through Friday. Based on past sales history, the bakery produces
various numbers of each product each day, summarized in the 5× 3 matrix
D. It should be noted that the order could be described as “number of
days by number of products.” For example, on Wednesday (the third day)
the number of cakes (second product in our list) that are produced is

CHAPTER 5. INTRODUCTION TO MATRIX ALGEBRA 93

d3,2 = 4.

D =

25 5 5
14 5 8
20 4 15
18 5 7
35 10 9

The main ingredients of these products are flour, sugar and eggs. We

assume that other ingredients are always in ample supply, but we need
to be sure to have the three main ones available. For each of the three
products, The amount of each ingredient that is needed is summarized in
the 3 × 3, or “number of products by number of ingredients” matrix P .
For example, to bake a cake (second product) we need P2,1 = 1.5 cups of
flour (first ingredient). Regarding units: flour and sugar are given in cups
per unit of each product, while eggs are given in individual eggs per unit
of each product.

P =

 2 0.5 0
1.5 1 2
1 1 1

These amounts are “made up”, so don’t used them to do your own baking!

(a) How many cups of flour will the bakery need every Monday? Pay
close attention to how you compute your answer and the units of
each number.

(b) How many eggs will the bakery need every Wednesday?

(c) Compute the matrix product DP . What do you notice?

(d) Suppose the costs of ingredients are $0.12 for a cup of flour, $0.15
for a cup of sugar and $0.19 for one egg. How can this information
be put into a matrix that can meaningfully be multiplied by one of
the other matrices in this problem?

5.2 Special Types of Matrices

5.2.1 Diagonal Matrices
We have already investigated, in exercises in the previous section, one special
type of matrix. That was the zero matrix, and found that it behaves in matrix
algebra in an analogous fashion to the real number 0; that is, as the additive
identity. We will now investigate the properties of a few other special matrices.

Definition 5.2.1 Diagonal Matrix. A square matrix D is called a diagonal
matrix if dij = 0 whenever i ̸= j. ♢

Example 5.2.2 Some diagonal matrices. A =

 1 0 0
0 2 0
0 0 5

, B =

 3 0 0
0 0 0
0 0 −5

, and I =

 1 0 0
0 1 0
0 0 1

 are all diagonal matrices. □

CHAPTER 5. INTRODUCTION TO MATRIX ALGEBRA 94

5.2.2 The Identity Matrix and Matrix Inverses
In the example above, the 3× 3 diagonal matrix I whose diagonal entries are
all 1’s has the distinctive property that for any other 3× 3 matrix A we have
AI = IA = A. For example:

Example 5.2.3 Multiplying by the Identity Matrix. If A =

 1 2 5
6 7 −2
3 −3 0

,

then AI =

 1 2 5
6 7 −2
3 −3 0

 and IA =

 1 2 5
6 7 −2
3 −3 0

. □

In other words, the matrix I behaves in matrix algebra like the real number
1; that is, as a multiplicative identity. In matrix algebra, the matrix I is called
simply the identity matrix. Convince yourself that if A is any n × n matrix
AI = IA = A.
Definition 5.2.4 Identity Matrix. The n × n diagonal matrix In whose
diagonal components are all 1’s is called the identity matrix. If the context is
clear, we simply use I. ♢

In the set of real numbers we recall that, given a nonzero real number x,
there exists a real number y such that xy = yx = 1. We know that real numbers
commute under multiplication so that the two equations can be summarized
as xy = 1. Further we know that y = x−1 = 1

x . Do we have an analogous
situation in Mn×n(R)? Can we define the multiplicative inverse of an n × n
matrix A? It seems natural to imitate the definition of multiplicative inverse in
the real numbers.
Definition 5.2.5 Matrix Inverse. Let A be an n× n matrix. If there exists
an n× n matrix B such that AB = BA = I, then B is a multiplicative inverse
of A (called simply an inverse of A) and is denoted by A−1 ♢

When we are doing computations involving matrices, it would be helpful to
know that when we find A−1, the answer we obtain is the only inverse of the
given matrix. This would let us refer to the inverse of a matrix. We refrained
from saying that in the definition, but the theorem below justifies it.

Remark: Those unfamiliar with the laws of matrix algebra should return to
the following proof after they have familiarized themselves with the Laws of
Matrix Algebra in Section 5.5.

Theorem 5.2.6 Inverses are unique. The inverse of an n× n matrix A,
when it exists, is unique.
Proof. Let A be an n × n matrix. Assume to the contrary, that A has two
(different) inverses, say B and C. Then

B = BI Identity property of I

= B(AC) Assumption that C is an inverse of A

= (BA)C Associativity of matrix multiplication
= IC Assumption that B is an inverse of A

= C Identity property of I

■

Let A =
(

2 0
0 3

)
. What is A−1 ? Without too much difficulty, by trial

and error, we determine that A−1 =
(1

2 0
0 1

3

)
. This might lead us to guess

CHAPTER 5. INTRODUCTION TO MATRIX ALGEBRA 95

that the inverse is found by taking the reciprocal of all nonzero entries of a
matrix. Alas, it isn’t that easy!

If A =
(

1 2
−3 5

)
, the “reciprocal rule” would tell us that the inverse of

A is B =
(

1 1
2

−1
3

1
5

)
. Try computing AB and you will see that you don’t get

the identity matrix. So, what is A−1? In order to understand more completely
the notion of the inverse of a matrix, it would be beneficial to have a formula
that would enable us to compute the inverse of at least a 2× 2 matrix. To do
this, we introduce the definition of the determinant of a 2× 2 matrix.

Definition 5.2.7 Determinant of a 2 by 2 matrix. Let A =
(

a b

c d

)
.

The determinant of A is the number det A = ad− bc. ♢
In addition to det A, common notation for the determinant of matrix A is

|A|. This is particularly common when writing out the whole matrix, which

case we would write
∣∣∣∣ a b

c d

∣∣∣∣ for the determinant of the general 2× 2 matrix.

Example 5.2.8 Some determinants of two by two matrices. If A =(
1 2
−3 5

)
then det A = 1 · 5 − 2 · (−3) = 11. If B =

(
1 2
2 4

)
then

det B = 1 · 4− 2 · 2 = 0. □

Theorem 5.2.9 Inverse of 2 by 2 matrix. Let A =
(

a b

c d

)
. If det A ̸= 0,

then A−1 = 1
det A

(
d −b

−c a

)
.

Proof. See Exercise 4 at the end of this section. ■

Example 5.2.10 Finding Inverses. Can we find the inverses of the matrices

in Example 5.2.8? If A =
(

1 2
−3 5

)
then

A−1 = 1
11

(
5 −2
3 1

)
=
(5

11 − 2
11

3
11

1
11

)
The reader should verify that AA−1 = A−1A = I.

The second matrix, B, has a determinant equal to zero. If we tried to apply
the formula in Theorem 5.2.9, we would be dividing by zero. For this reason,
the formula can’t be applied and in fact B−1 does not exist. □

Remarks:

• In general, if A is a 2 × 2 matrix and if det A = 0, then A−1 does not
exist.

• A formula for the inverse of n × n matrices n ≥ 3 can be derived that
also involves det A. Hence, in general, if the determinant of a matrix is
zero, the matrix does not have an inverse. However the formula for even
a 3× 3 matrix is very long and is not the most efficient way to compute
the inverse of a matrix.

• In Chapter 12 we will develop a technique to compute the inverse of a
higher-order matrix, if it exists.

• Matrix inversion comes first in the hierarchy of matrix operations; there-
fore, AB−1 is A(B−1).

CHAPTER 5. INTRODUCTION TO MATRIX ALGEBRA 96

5.2.3 Exercises
1. For the given matrices A find A−1 if it exists and verify that AA−1 =

A−1A = I. If A−1 does not exist explain why.

(a) A =
(

1 3
2 1

)

(b) A =
(

6 −3
8 −4

)

(c) A =
(

1 −3
0 1

)

(d) A =
(

1 0
0 1

)
(e) Use the definition of the inverse of a matrix to find A−1: A = 3 0 0

0 1
2 0

0 0 −5

2. For the given matrices A find A−1 if it exists and verify that AA−1 =

A−1A = I. If A−1 does not exist explain why.

(a) A =
(

2 −1
−1 2

)

(b) A =
(

0 1
0 2

)

(c) A =
(

1 c

0 1

)

(d) A =
(

a b

b a

)
, where |a| ≠ |b|.

3.

(a) Let A =
(

2 3
1 4

)
and B =

(
3 −3
2 1

)
. Verify that (AB)−1 =

B−1A−1.

(b) Let A and B be n × n invertible matrices. Prove that (AB)−1 =
B−1A−1. Why is the right side of the above statement written
“backwards”? Is this necessary? Hint: Use Theorem 5.2.6

4. Let A =
(

a b

c d

)
. Derive the formula for A−1.

5. Linearity of Determinants.
(a) Let A and B be 2-by-2 matrices. Show that det(AB) = (det A)(det B).

(b) It can be shown that the statement in part (a) is true for all n ×
n matrices. Let A be any invertible n × n matrix. Prove that
det
(
A−1) = (det A)−1. Note: The determinant of the identity

matrix In is 1 for all n.

(c) Verify that the equation in part (b) is true for the matrix in exercise
1(a) of this section.

CHAPTER 5. INTRODUCTION TO MATRIX ALGEBRA 97

6. Prove by induction that for n ≥ 1,
(

a 0
0 b

)n

=
(

an 0
0 bn

)
.

7. Use the assumptions in Exercise 5.2.3.5 to prove by induction that if n ≥ 1,
det (An) = (det A)n.

8. Prove: If the determinant of a matrix A is zero, then A does not have an
inverse. Hint: Use the indirect method of proof and exercise 5.

9.
(a) Let A, B, and D be n× n matrices. Assume that B is invertible. If

A = BDB−1 , prove by induction that Am = BDmB−1 is true for
m ≥ 1.

(b) Given that A =
(
−8 15
−6 11

)
= B

(
1 0
0 2

)
B−1 where B =(

5 3
3 2

)
what is A10?

5.3 Laws of Matrix Algebra

5.3.1 The Laws
The following is a summary of the basic laws of matrix operations. Assume that
the indicated operations are defined; that is, that the orders of the matrices A,
B and C are such that the operations make sense.

Table 5.3.1 Laws of Matrix Algebra

(1) Commutative Law of Addition A + B = B + A

(2) Associative Law of Addition A + (B + C) = (A + B) + C

(3) Distributive Law of a Scalar over Matrices c(A + B) = cA + cB, where c ∈ R.
(4) Distributive Law of Scalars over a Matrix (c1 + c2) A = c1A + c2A, where c1, c2 ∈ R.
(5) Associative Law of Scalar Multiplication c1 (c2A) = (c1 · c2) A, where c1, c2 ∈ R.

(6) Zero Matrix Annihilates all Products 000A = 000, where 000 is the zero matrix.
(7) Zero Scalar Annihilates all Products 0A = 000, where 0 on the left is the scalar zero.

(8) Zero Matrix is an identity for Addition A + 000 = A.
(9) Negation produces additive inverses A + (−1)A = 000.

(10) Right Distributive Law of Matrix Multiplication (B + C)A = BA + CA.
(11) Left Distributive Law of Matrix Multiplication A(B + C) = AB + AC.

(12) Associative Law of Multiplication A(BC) = (AB)C.
(13) Identity Matrix is a Multiplicative Identity IA = A and AI = A.

(14) Involution Property of Inverses If A−1 exists,
(
A−1)−1 = A.

(15) Inverse of Product Rule If A−1 and B−1 exist, (AB)−1 = B−1A−1

5.3.2 Commentary
Example 5.3.2 More Precise Statement of one Law. If we wished to
write out each of the above laws more completely, we would specify the orders
of the matrices. For example, Law 10 should read:

Let A, B, and C be m× n, n× p, and n× p matrices, respectively,
then A(B + C) = AB + AC

□
Remarks:

CHAPTER 5. INTRODUCTION TO MATRIX ALGEBRA 98

• Notice the absence of the “law” AB = BA. Why?

• Is it really necessary to have both a right (No. 11) and a left (No. 10)
distributive law? Why?

5.3.3 Exercises
1. Rewrite the above laws specifying as in Example 5.3.2 the orders of the

matrices.
2. Verify each of the Laws of Matrix Algebra using examples.

3. Let A =
(

1 2
0 −1

)
, B =

(
3 7 6
2 −1 5

)
, and C =

(
0 −2 4
7 1 1

)
.

Compute the following as efficiently as possible by using any of the Laws
of Matrix Algebra:

(a) AB + AC

(b) A−1

(c) A(B + C)

(d)
(
A2)−1

(e) (C + B)−1A−1

4. Let A =
(

7 4
2 1

)
and B =

(
3 5
2 4

)
. Compute the following as

efficiently as possible by using any of the Laws of Matrix Algebra:
(a) AB

(b) A + B

(c) A2 + AB + BA + B2

(d) B−1A−1

(e) A2 + AB

5. Let A and B be n×n matrices of real numbers. Is A2−B2 = (A−B)(A+B)?
Explain.

5.4 Matrix Oddities

5.4.1 Dissimilarities with elementary algebra
We have seen that matrix algebra is similar in many ways to elementary algebra.
Indeed, if we want to solve the matrix equation AX = B for the unknown X,
we imitate the procedure used in elementary algebra for solving the equation
ax = b. One assumption we need is that A is a square matrix that has an
inverse. Notice how exactly the same properties are used in the following
detailed solutions of both equations.

CHAPTER 5. INTRODUCTION TO MATRIX ALGEBRA 99

Table 5.4.1

Equation in the algebra of real numbers Equation in matrix algebra
ax = b AX = B

a−1(ax) = a−1b if a ̸= 0 A−1(AX) = A−1B if A−1 exists(
a−1a

)
x = a−1b Associative Property

(
A−1A

)
X = A−1B

1x = a−1b Inverse Property IX = A−1B

x = a−1b Identity Property X = A−1B

Certainly the solution process for solving AX = B is the same as that of
solving ax = b.

The solution of xa = b is x = ba−1 = a−1b. In fact, we usually write the
solution of both equations as x = b

a . In matrix algebra, the solution of XA = B
is X = BA−1 , which is not necessarily equal to A−1B. So in matrix algebra,
since the commutative law (under multiplication) is not true, we have to be
more careful in the methods we use to solve equations.

It is clear from the above that if we wrote the solution of AX = B as
X = B

A , we would not know how to interpret B
A . Does it mean A−1B or BA−1?

Because of this, A−1 is never written as I
A .

Observation 5.4.2 Matrix Oddities. Some of the main dissimilarities
between matrix algebra and elementary algebra are that in matrix algebra:

(1) AB may be different from BA.

(2) There exist matrices A and B such that AB = 000, and yet A ≠ 000 and
B ̸= 000.

(3) There exist matrices A where A ̸= 000, and yet A2 = 000.

(4) There exist matrices A where A2 = A with A ̸= I and A ̸= 000

(5) There exist matrices A where A2 = I, where A ̸= I and A ̸= −I

5.4.2 Exercises
1. Discuss each of the “Matrix Oddities” with respect to elementary algebra.
2. Determine 2× 2 matrices which show that each of the “Matrix Oddities”

are true.
3. Prove or disprove the following implications.

(a) A2 = A and det A ̸= 0⇒ A = I

(b) A2 = I and det A ̸= 0⇒ A = I or A = −I.
4. Let Mn×n(R) be the set of real n× n matrices. Let P ⊆Mn×n(R) be the

subset of matrices defined by A ∈ P if and only if A2 = A. Let Q ⊆ P be
defined by A ∈ Q if and only if det A ̸= 0.

(a) Determine the cardinality of Q.

(b) Consider the special case n = 2 and prove that a sufficient condition
for A ∈ P ⊆ M2×2(R) is that A has a zero determinant (i.e., A is
singular) and tr(A) = 1 where tr(A) = a11 + a22 is the sum of the
main diagonal elements of A.

(c) Is the condition of part b a necessary condition?
5. Write each of the following systems in the form AX = B, and then solve

CHAPTER 5. INTRODUCTION TO MATRIX ALGEBRA 100

the systems using matrices.

(a) 2x1 + x2 = 3
x1 − x2 = 1

(b) 2x1 − x2 = 4
x1 − x2 = 0

(c) 2x1 + x2 = 1
x1 − x2 = 1

(d) 2x1 + x2 = 1
x1 − x2 = −1

(e) 3x1 + 2x2 = 1
6x1 + 4x2 = −1

6. Recall that p(x) = x2 − 5x + 6 is called a polynomial, or more specifically,
a polynomial over R, where the coefficients are elements of R and x ∈ R.
Also, think of the method of solving, and solutions of, x2− 5x + 6 = 0. We
would like to define the analogous situation for 2× 2 matrices. First define
where A is a 2× 2 matrix p(A) = A2 − 5A + 6I. Discuss the method of
solving and the solutions of A2 − 5A + 6I = 000.

7. For those who know calculus:
(a) Write the series expansion for ea centered around a = 0.

(b) Use the idea of exercise 6 to write what would be a plausible definition
of eA where A is an n× n matrix.

(c) If A =
(

1 1
0 0

)
and B =

(
0 −1
0 0

)
, use the series in part (b)

to show that eA =
(

e e− 1
0 1

)
and eB =

(
1 −1
0 1

)
.

(d) Show that eAeB ̸= eBeA.

(e) Show that eA+B =
(

e 0
0 1

)
.

(f) Is eAeB = eA+B?

Chapter 6

Relations

adjacency matrix

An adjacency matrix will show
Where the edges ’tween vertices go.

For a nice simple graph
You can cut through the chaff:

Noughts and ones in symmetrical flow.

psheil, The Omnificent English Dictionary In Limerick Form

One understands a set of objects completely only if the structure of that set is
made clear by the interrelationships between its elements. For example, the
individuals in a crowd can be compared by height, by age, or through any
number of other criteria. In mathematics, such comparisons are called relations.
The goal of this chapter is to develop the language, tools, and concepts of
relations.

6.1 Basic Definitions
In Chapter 1 we introduced the concept of the Cartesian product of sets. Let’s
assume that a person owns three shirts and two pairs of slacks. More precisely, let
A = {blue shirt, tan shirt, mint green shirt} and B = {grey slacks, tan slacks}.
Then A×B is the set of all six possible combinations of shirts and slacks that
the individual could wear. However, an individual may wish to restrict himself
or herself to combinations which are color coordinated, or “related.” This may
not be all possible pairs in A×B but will certainly be a subset of A×B. For
example, one such subset may be

{(blue shirt, grey slacks), (blue shirt, tan slacks), (mint green shirt, tan slacks)}.

6.1.1 Relations between two sets
Definition 6.1.1 Relation. Let A and B be sets. A relation from A into B
is any subset of A×B. ♢

Example 6.1.2 A simple example. Let A = {1, 2, 3} and B = {4, 5}. Then
{(1, 4), (2, 4), (3, 5)} is a relation from A into B. Of course, there are many
others we could describe; 64, to be exact. □

101

CHAPTER 6. RELATIONS 102

Example 6.1.3 Divisibility Example. Let A = {2, 3, 5, 6} and define a rela-
tion r from A into A by (a, b) ∈ r if and only if a divides evenly into b. The set of
pairs that qualify for membership is r = {(2, 2), (3, 3), (5, 5), (6, 6), (2, 6), (3, 6)}.

□

6.1.2 Relations on a Set
Definition 6.1.4 Relation on a Set. A relation from a set A into itself is
called a relation on A. ♢

The relation “divides” in Example 6.1.3 will appear throughout the book.
Here is a general definition on the whole set of integers.

Definition 6.1.5 Divides. Let a, b ∈ Z, a ̸= 0. We say that a divides b,
denoted a | b, if and only if there exists an integer k such that ak = b. ♢

Be very careful in writing about the relation “divides.” The vertical line
symbol use for this relation, if written carelessly, can look like division. While
a | b is either true or false, a/b is a number.

Based on the equation ak = b, we can say that a|b is equivalent to k = b
a ,

or a divides evenly into b. In fact the “divides” is short for “divides evenly into.”
You might find the equation k = b

a initially easier to understand, but in the
long run we will find the equation ak = b more convenient.

Sometimes it is helpful to illustrate a relation with a graph. Consider
Example 6.1.2. A graph of r can be drawn as in Figure 6.1.6. The arrows
indicate that 1 is related to 4 under r. Also, 2 is related to 4 under r, and 3 is
related to 5, while the upper arrow denotes that r is a relation from the whole
set A into the set B.

Figure 6.1.6 The graph of a relation
A typical element in a relation r is an ordered pair (x, y). In some cases, r

can be described by actually listing the pairs which are in r, as in the previous
examples. This may not be convenient if r is relatively large. Other notations
are used with certain well-known relations. Consider the “less than or equal”
relation on the real numbers. We could define it as a set of ordered pairs this
way:

≤= {(x, y)|x ≤ y}

However, the notation x ≤ y is clear and self-explanatory; it is a more natural,
and hence preferred, notation to use than (x, y) ∈≤.

Many of the relations we will work with “resemble” the relation ≤, so xsy is
a common way to express the fact that x is related to y through the relation s.

CHAPTER 6. RELATIONS 103

Relation Notation Let s be a relation from a set A into a set B. Then the
fact that (x, y) ∈ s is frequently written xsy.

6.1.3 Composition of Relations
With A = {2, 3, 5, 8}, B = {4, 6, 16}, and C = {1, 4, 5, 7}, let r be the relation
“divides,” from A into B, and let s be the relation ≤ from B into C. So
r = {(2, 4), (2, 6), (2, 16), (3, 6), (8, 16)} and s = {(4, 4), (4, 5), (4, 7), (6, 7)}.

Notice that in Figure 6.1.8 that we can, for certain elements of A, go through
elements in B to results in C. That is:
Table 6.1.7

2|4 and 4 ≤ 4
2|4 and 4 ≤ 5
2|4 and 4 ≤ 7
2|6 and 6 ≤ 7
3|6 and 6 ≤ 7

Figure 6.1.8 Relation Composition - a graphical view
Based on this observation, we can define a new relation, call it rs, from

A into C. In order for (a, c) to be in rs, it must be possible to travel along
a path in Figure 6.1.8 from a to c. In other words, (a, c) ∈ rs if and only if
(∃b)B(arb and bsc). The name rs was chosen because it reminds us that this
new relation was formed by the two previous relations r and s. The complete
listing of all elements in rs is {(2, 4), (2, 5), (2, 7), (3, 7)}. We summarize in a
definition.
Definition 6.1.9 Composition of Relations. Let r be a relation from a set
A into a set B, and let s be a relation from B into a set C. The composition
of r with s, written rs, is the set of pairs of the form (a, c) ∈ A × C, where
(a, c) ∈ rs if and only if there exists b ∈ B such that (a, b) ∈ r and (b, c) ∈ s. ♢

Remark: A word of warning to those readers familiar with composition of
functions. (For those who are not, disregard this remark. It will be repeated at
an appropriate place in the next chapter.) As indicated above, the traditional
way of describing a composition of two relations is rs where r is the first relation
and s the second. However, function composition is traditionally expressed in
the opposite order: s ◦ r, where r is the first function and s is the second.

CHAPTER 6. RELATIONS 104

6.1.4 Exercises
1. For each of the following relations r defined on P, determine which of the

given ordered pairs belong to r

(a) xry iff x|y; (2, 3), (2, 4), (2, 8), (2, 17)

(b) xry iff x ≤ y; (2, 3), (3, 2), (2, 4), (5, 8)

(c) xry iff y = x2 ; (1,1), (2, 3), (2, 4), (2, 6)
2. The following relations are on {1, 3, 5}. Let r be the relation xry iff

y = x + 2 and s the relation xsy iff x ≤ y.
(a) List all elements in rs.

(b) List all elements in sr.

(c) Illustrate rs and sr via a diagram.

(d) Is the relation rs equal to the relation sr?
3. Let A = {1, 2, 3, 4, 5} and define r on A by xry iff x + 1 = y. We define

r2 = rr and r3 = r2r. Find:
(a) r

(b) r2

(c) r3

4. Given s and t, relations on Z, s = {(1, n) : n ∈ Z} and t = {(n, 1) : n ∈ Z},
what are st and ts? Hint: Even when a relation involves infinite sets, you
can often get insights into them by drawing partial graphs.

5. Let ρ be the relation on the power set, P(S), of a finite set S of cardinality
n defined ρ by (A, B) ∈ ρ iff A ∩B = ∅.

(a) Consider the specific case n = 3, and determine the cardinality of
the set ρ.

(b) What is the cardinality of ρ for an arbitrary n? Express your answer
in terms of n. (Hint: There are three places that each element of S
can go in building an element of ρ.)

6. Consider the two relations on people: M , where aMb if a’s mother is b;
and S, where aSb if a and b are siblings. Describe, in words, the two
relations MS and SM in simple English terms.

7. Let r1, r2, and r3 be relations on any set A. Prove that if r1 ⊆ r2 then
r1r3 ⊆ r2r3.

6.2 Graphs of Relations on a Set
In this section we introduce directed graphs as a way to visualize relations on a
set.

6.2.1 Digraphs
Let A = {0, 1, 2, 3}, and let

r = {(0, 0), (0, 3), (1, 2), (2, 1), (3, 2), (2, 0)}

CHAPTER 6. RELATIONS 105

In representing this relation as a graph, elements of A are called the vertices of
the graph. They are typically represented by labeled points or small circles. We
connect vertex a to vertex b with an arrow, called an edge, going from vertex
a to vertex b if and only if arb. This type of graph of a relation r is called a
directed graph or digraph. Figure 6.2.1 is a digraph for r. Notice that since
0 is related to itself, we draw a “self-loop” at 0.

Figure 6.2.1 Digraph of a relation
The actual location of the vertices in a digraph is immaterial. The actual

location of vertices we choose is called an embedding of a graph. The main
idea is to place the vertices in such a way that the graph is easy to read. After
drawing a rough-draft graph of a relation, we may decide to relocate the vertices
so that the final result will be neater. Figure 6.2.1 could also be presented as
in Figure 6.2.2.

CHAPTER 6. RELATIONS 106

Figure 6.2.2 Alternate embedding of the previous directed graph
A vertex of a graph is also called a node, point, or a junction. An edge of a

graph is also referred to as an arc, a line, or a branch. Do not be concerned if
two graphs of a given relation look different as long as the connections between
vertices are the same in the two graphs.

Example 6.2.3 Another directed graph. Consider the relation s whose
digraph is Figure 6.2.4. What information does this give us? The graph tells us
that s is a relation on A = {1, 2, 3} and that s = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 3)}.

Figure 6.2.4 Digraph of the relation s

□
We will be building on the next example in the following section.

Example 6.2.5 Ordering subsets of a two element universe. Let
B = {1, 2}, and let A = P(B) = {∅, {1}, {2}, {1, 2}}. Then ⊆ is a relation on
A whose digraph is Figure 6.2.6.

CHAPTER 6. RELATIONS 107

Figure 6.2.6 Graph for set containment on subsets of {1, 2}
We will see in the next section that since ⊆ has certain structural properties

that describe “partial orderings.” We will be able to draw a much simpler type
graph than this one, but for now the graph above serves our purposes. □

6.2.2 Exercises
1. Let A = {1, 2, 3, 4}, and let r be the relation ≤ on A. Draw a digraph for

r.
2. Let B = {1, 2, 3, 4, 6, 8, 12, 24}, and let s be the relation “divides” on B.

Draw a digraph for s.
3. Let A = {1, 2, 3, 4, 5}. Define t on A by atb if and only if b − a is even.

Draw a digraph for t.
4. Let A be the set of strings of 0’s and 1’s of length 3 or less. This includes

the empty string, λ, which is the only string of length zero.
(a) Define the relation of d on A by xdy if x is contained within y. For

example, 01d101. Draw a digraph for this relation.

(b) Do the same for the relation p defined by xpy if x is a prefix of y.
For example, 10p101, but 01p101 is false.

5. Recall the relation in Exercise 5 of Section 6.1, ρ defined on the power set,
P(S), of a set S. The definition was (A, B) ∈ ρ iff A ∩B = ∅. Draw the
digraph for ρ where S = {a, b}.

6. Let C = {1, 2, 3, 4, 6, 8, 12, 24} and define t on C by atb if and only if a
and b share a common divisor greater than 1. Draw a digraph for t.

6.3 Properties of Relations

6.3.1 Individual Properties
Consider the set B = {1, 2, 3, 4, 6, 12, 36, 48} and the relations “divides” and
≤ on B. We notice that these two relations on B have three properties in
common:

• Every element in B divides itself and is less than or equal to itself. This
is called the reflexive property.

CHAPTER 6. RELATIONS 108

• If we search for two elements from B where the first divides the second
and the second divides the first, then we are forced to choose the two
numbers to be the same. In other words, no two different numbers are
related in both directions. The reader can verify that a similar fact is
true for the relation ≤ on B. This is called the antisymmetric property.

• Next if we choose three values (not necessarily distinct) from B such that
the first divides the second and the second divides the third, then we
always find that the first number divides the third. Again, the same is
true if we replace “divides” with “is less than or equal to.” This is called
the transitive property.

Relations that satisfy these properties are of special interest to us. Formal
definitions of the properties follow.

Definition 6.3.1 Reflexive Relation. Let A be a set and let r be a relation
on A. Then r is reflexive if and only if ara for all a ∈ A. ♢

Definition 6.3.2 Antisymmetric Relation. Let A be a set and let r be a
relation on A. Then r is antisymmetric if and only if whenever arb and a ̸= b
then bra is false. ♢

An equivalent condition for antisymmetry is that if arb and bra then a = b.
You are encouraged to convince yourself that this is true. This condition is
often more convenient to prove than the definition, even though the definition
is probably easier to understand.

A word of warning about antisymmetry: Students frequently find it difficult
to understand this definition. Keep in mind that this term is defined through
an “If...then...” statement. The question that you must ask is: Is it true that
whenever there are elements a and b from A where arb and a ̸= b, it follows
that b is not related to a? If so, then the relation is antisymmetric.

Another way to determine whether a relation is antisymmetric is to examine
(or imagine) its digraph. The relation is not antisymmetric if there exists a pair
of vertices that are connected by edges in both directions.

Definition 6.3.3 Transitive Relation. Let A be a set and let r be a relation
on A. r is transitive if and only if whenever arb and brc then arc. ♢

6.3.2 Partial Orderings
Not all relations have all three of the properties discussed above, but those that
do are a special type of relation.

Definition 6.3.4 Partial Ordering. A relation on a set A that is reflexive,
antisymmetric, and transitive is called a partial ordering on A. A set on
which there is a partial ordering relation defined is called a partially ordered
set or poset. ♢

Example 6.3.5 Set Containment as a Partial Ordering. Let A be a set.
Then P(A) together with the relation ⊆ (set containment) is a poset. To prove
this we observe that the three properties hold, as discussed in Chapter 4.

• Let B ∈ P(A). The fact that B ⊆ B follows from the definition of subset.
Hence, set containment is reflexive.

• Let B1, B2 ∈ P(A) and assume that B1 ⊆ B2 and B1 ≠ B2 . Could it
be that B2 ⊆ B1? No. There must be some element a ∈ A such that
a /∈ B1, but a ∈ B2. This is exactly what we need to conclude that B2 is
not contained in B1. Hence, set containment is antisymmetric.

CHAPTER 6. RELATIONS 109

• Let B1, B2, B3 ∈ P(A) and assume that B1 ⊆ B2 and B2 ⊆ B3 . Does
it follow that B1 ⊆ B3 ? Yes, if a ∈ B1, then a ∈ B2 because B1 ⊆ B2.
Now that we have a ∈ B2 and we have assumed B2 ⊆ B3, we conclude
that a ∈ B3. Therefore, B1 ⊆ B3 and so set containment is transitive.

Figure 6.2.6 is the graph for the “set containment” relation on the power
set of {1, 2}. □

Figure 6.2.6 is helpful insofar as it reminds us that each set is a subset of
itself and shows us at a glance the relationship between the various subsets in
P({1, 2}). However, when a relation is a partial ordering, we can streamline a
graph like this one. The streamlined form of a graph is called a Hasse diagram
or ordering diagram. A Hasse diagram takes into account the following facts.

• By the reflexive property, each vertex must be related to itself, so the
arrows from a vertex to itself (called “self-loops”) are not drawn in a
Hasse diagram. They are simply assumed.

• By the antisymmetry property, connections between two distinct elements
in a directed graph can only go one way, if at all. When there is a
connection, we agree to always place the second element above the first
(as we do above with the connection from {1} to {1, 2}). For this reason,
we can just draw a connection without an arrow, just a line.

• By the transitive property, if there are edges connecting one element
up to a second element and the second element up to a third element,
then there will be a direct connection from the first to the third. We see
this in Figure 6.2.6 with ∅ connected to {1}and then {1} connected to
{1, 2}. Notice the edge connecting ∅ to {1, 2}. Whenever we identify this
situation, remove the connection from the first to the third in a Hasse
diagram and simply observe that an upward path of any length implies
that the lower element is related to the upper one.

Using these observations as a guide, we can draw a Hasse diagram for ⊆ on
{1, 2} as in Figure 6.3.6.

Figure 6.3.6 Hasse diagram for set containment on subsets of {1, 2}

Example 6.3.7 Definition of a relation using a Hasse diagram. Consider
the partial ordering relation s whose Hasse diagram is Figure 6.3.8.

CHAPTER 6. RELATIONS 110

Figure 6.3.8 Hasse diagram for the pentagonal poset
How do we read this diagram? What is A? What is s? What does the

digraph of s look like? Certainly A = {1, 2, 3, 4, 5} and 1s2, 3s4, 1s4, 1s5, etc.,
Notice that 1s5 is implied by the fact that there is a path of length three upward
from 1 to 5. This follows from the edges that are shown and the transitive
property that is presumed in a poset. Since 1s3 and 3s4, we know that 1s4.
We then combine 1s4 with 4s5 to infer 1s5. Without going into details why,
here is a complete list of pairs defined by s.

s = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 3), (1, 4), (1, 5), (1, 2), (3, 4), (3, 5), (4, 5), (2, 5)}

A digraph for s is Figure 6.3.9. It is certainly more complicated to read and
difficult to draw than the Hasse diagram.

Figure 6.3.9 Digraph for the pentagonal poset
□

A classic example of a partial ordering relation is ≤ on the real numbers,
R. Indeed, when graphing partial ordering relations, it is natural to “plot” the
elements from the given poset starting with the “least” element to the “greatest”
and to use terms like “least,” “greatest,” etc. Because of this the reader should
be forewarned that some texts use the symbol ≤ for arbitrary partial orderings.
This can be quite confusing for the novice, so we continue to use generic letters
r, s, etc.

CHAPTER 6. RELATIONS 111

6.3.3 Equivalence Relations
Another common property of relations is symmetry.

Definition 6.3.10 Symmetric Relation. Let r be a relation on a set A. r
is symmetric if and only if whenever arb, it follows that bra. ♢

Consider the relation of equality defined on any set A. Certainly a = b
implies that b = a so equality is a symmetric relation on A.

Surprisingly, equality is also an antisymmetric relation on A. This is due
to the fact that the condition that defines the antisymmetry property, a = b
and a ̸= b, is a contradiction. Remember, a conditional proposition is always
true when the condition is false. So a relation can be both symmetric and
antisymmetric on a set! Again recall that these terms are not negatives of one
other. That said, there are very few important relations other than equality
that are both symmetric and antisymmetric.

Definition 6.3.11 Equivalence Relation. A relation r on a set A is called
an equivalence relation if and only if it is reflexive, symmetric, and transitive.

♢
The classic example of an equivalence relation is equality on a set A. In

fact, the term equivalence relation is used because those relations which satisfy
the definition behave quite like the equality relation. Here is another important
equivalence relation.

Example 6.3.12 Equivalent Fractions. Let Z∗ be the set of nonzero
integers. One of the most basic equivalence relations in mathematics is the
relation q on Z×Z∗ defined by (a, b)q(c, d) if and only if ad = bc. We will leave
it to the reader to, verify that q is indeed an equivalence relation. Be aware
that since the elements of Z× Z∗ are ordered pairs, proving symmetry involves
four numbers and transitivity involves six numbers. Two ordered pairs, (a, b)
and (c, d), are related if the fractions a

b and c
d are numerically equal.

Reflecting on these comments on fractions, we see that any fraction is a
member of a set of equivalent fractions that can be exchanged for one another
when doing arithmetic. This is an instance of an important property of all
equivalence relations that motivates the following definition. □

Definition 6.3.13 Equivalence Classes. Let r be an equivalence relation
on A, and a ∈ A. The equivalence class of a is the set, [a], of all elements to
which a is related.

[a] = {b ∈ A : arb}

The set of all equivalence classes with respect to r is denoted A/r, read “A
mod r.” ♢

When we want to make it clear that an equivalence class defined by an
element a is based on a specific equivalence relation r we would refer to it as
“the equivalence class of a under r.” Whenever we encounter an equivalence
relation on a set, we should immediately think about how the set is partitioned
because of the following theorem.

Theorem 6.3.14 Let r be an equivalence relation on A. Then the set of all
distinct equivalence classes determined by r form a partition of A denoted A/r
and read “A mod r.”
Proof. We leave it to the reader to prove this theorem. All three properties of
an equivalence relation play a role in the proof. ■

Our next example involves the following fundamental relations on the set of
integers.

CHAPTER 6. RELATIONS 112

Definition 6.3.15 Congruence Modulo n. Let n be a positive integer,
n ≥ 2. We define congruence modulo n to be the relation ≡n defined on the
integers by

a ≡n b⇔ n | (a− b)

♢
We observe the following about congruence modulo n:

• This relation is reflexive, for if a ∈ Z, n | (a− a)⇒ a ≡n a.

• This relation is symmetric. We can prove this through the following chain
of implications.

a ≡n b⇒ n | (a− b)
⇒ For some k ∈ Z, a− b = nk

⇒ b− a = n(−k)
⇒ n | (b− a)
⇒ b ≡n a

.

• Finally, this relation is transitive. We leave it to the reader to prove that
if a ≡n b and b ≡n c, then a ≡n c.

Frequently, you will see the equivalent notation a ≡ b(mod n) for congruence
modulo n.
Example 6.3.16 Random Relations usually have no properties. Con-
sider the relation s described by the digraph in Figure 6.3.17. This was created
by randomly selecting whether or not two elements from {a, b, c} were related
or not. Convince yourself that the following are true:

• This relation is not reflexive.

• It is not antisymmetric.

• Also, it is not symmetric.

• It is not transitive.

• Is s an equivalence relation or a partial ordering?

Figure 6.3.17 Digraph of a random relation r

Not every random choice of a relation will be so totally negative, but as the
underlying set increases, the likelihood any of the properties are true begins to
vanish. □

CHAPTER 6. RELATIONS 113

6.3.4 Exercises
1. Prove that Definition 6.1.5 on the set of positive integers is a partial

ordering. Note that this will imply that the relation is a partial ordering
on any subset of the positive integers as well.

2.
(a) Let B = {a, b} and U = P(B). Draw a Hasse diagram for ⊆ on U .

(b) Let A = {1, 2, 3, 6}. Show that divides, |, is a partial ordering on A.

(c) Draw a Hasse diagram for divides on A.

(d) Compare the graphs of parts a and c.

(e) Repeat the previous steps with B = {a, b, c} and A = {1, 2, 3, 5, 6, 10, 15, 30}.

Hint.

Figure 6.3.18
See Figure D.0.6 and observe that the ordering diagrams are the same

if we disregard the names of the vertices.
Here is a Hasse diagram for the sub-
sets of A = {1, 2, 3, 5, 6, 10, 15, 30}.

Figure 6.3.19
3. Consider the relations defined by the digraphs in Figure 6.3.20.

(a) Determine whether the given relations are reflexive, symmetric, anti-
symmetric, or transitive. Try to develop procedures for determining
the validity of these properties from the graphs,

(b) Which of the graphs are of equivalence relations or of partial order-

CHAPTER 6. RELATIONS 114

ings?

Figure 6.3.20 Some digraphs of relations

CHAPTER 6. RELATIONS 115

4. Determine which of the following are equivalence relations and/or partial
ordering relations for the given sets:

(a) A = { lines in the plane}, and r defined by xry if and only if x is
parallel to y. Assume every line is parallel to itself.

(b) A = R and r defined by xry if and only if |x− y| ≤ 7.
5. Consider the relation on {1, 2, 3, 4, 5, 6} defined by r = {(i, j) : |i−j| = 2}.

(a) Is r reflexive?

(b) Is r symmetric?

(c) Is r transitive?

(d) Draw a graph of r.
6. Let A = {0, 1, 2, 3} and let

r = {(0, 0), (1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (3, 2), (2, 3), (3, 1), (1, 3)}

(a) Verify that r is an equivalence relation on A.

(b) Find [a] for each element a ∈ A, and observe that {[a] | a ∈ A} forms
a partition of A.

7. Let r be an equivalence relation on an arbitrary nonempty set A. Prove
that the set of all equivalence classes under r constitutes a partition of A.

8. Define r on the power set of {1, 2, 3} by ArB ⇔ |A| = |B|. Prove that r
is an equivalence relation. What are the equivalence classes under r?

9. Consider the following relations on Z8 = {0, 1, ..., 7}. Which are equivalence
relations? For the equivalence relations, list the equivalence classes.

(a) arb iff the English spellings of a and b begin with the same letter.

(b) asb iff a− b is a positive integer.

(c) atb iff a− b is an even integer.
10. Let n be a positive integer greater than or equal to two.

(a) Prove that congruence modulo n is transitive.

(b) What are the equivalence classes under congruence modulo 2? How
many distinct equivalence classes are there?

(c) What are the equivalence classes under congruence modulo 10? How
many distinct equivalence classes are there?

11. In this exercise, we prove that implication is a partial ordering. Let A be
any set of propositions, no two of which is equivalent to one another.

(a) Verify that q → q is a tautology, thereby showing that⇒ is a reflexive
relation on A.

(b) Prove that ⇒ is antisymmetric on A. Note: we do not use = when
speaking of propositions, but rather equivalence, ⇔.

(c) Prove that ⇒ is transitive on A.

(d) Given that qi is the proposition n < i on N, draw the Hasse diagram
for the relation ⇒ on {q1, q2, q3, . . .}.

CHAPTER 6. RELATIONS 116

12. Let S = {1, 2, 3, 4, 5, 6, 7} be a poset (S,≤) with the Hasse diagram shown
below. Another relation r ⊆ S × S is defined as follows: (x, y) ∈ r if and
only if there exists z ∈ S such that z < x and z < y in the poset (S,≤).

(a) Prove that r is reflexive.

(b) Prove that r is symmetric.

(c) A compatible with respect to relation r is any subset Q of set S such
that x ∈ Q and y ∈ Q ⇒ (x, y) ∈ r. A compatible g is a maximal
compatible if Q is not a proper subset of another compatible. Give
all maximal compatibles with respect to relation r defined above.

(d) Discuss a characterization of the set of maximal compatibles for
relation r when (S,≤) is a general finite poset. What conditions,
if any, on a general finite poset (S,≤) will make r an equivalence
relation?

Figure 6.3.21 Hasse diagram for r in exercise 12.

6.4 Matrices of Relations
We have discussed two of the many possible ways of representing a relation,
namely as a digraph or as a set of ordered pairs. In this section we will discuss
the representation of relations by matrices.

CHAPTER 6. RELATIONS 117

6.4.1 Representing a Relation with a Matrix
Definition 6.4.1 Adjacency Matrix. Let A = {a1, a2, . . . , am} and B =
{b1, b2, . . . , bn} be finite sets of cardinality m and n, respectively. Let r be a
relation from A into B. Then r can be represented by the m × n matrix R
defined by

Rij =
{

1 if airbj

0 otherwise

R is called the adjacency matrix (or the relation matrix) of r. ♢

Example 6.4.2 A simple example. Let A = {2, 5, 6} and let r be the
relation {(2, 2), (2, 5), (5, 6), (6, 6)} on A. Since r is a relation from A into the
same set A (the B of the definition), we have a1 = 2, a2 = 5, and a3 = 6, while
b1 = 2, b2 = 5, and b3 = 6. Next, since

• 2r2, we have R11 = 1

• 2r5, we have R12 = 1

• 5r6, we have R23 = 1

• 6r6, we have R33 = 1

All other entries of R are zero, so

R =

 1 1 0
0 0 1
0 0 1

□

6.4.2 Composition as Matrix Multiplication
From the definition of r and of composition, we note that

r2 = {(2, 2), (2, 5), (2, 6), (5, 6), (6, 6)}

The adjacency matrix of r2 is

R2 =

 1 1 1
0 0 1
0 0 1

 .

We do not write R2 only for notational purposes. In fact, R2 can be obtained
from the matrix product RR; however, we must use a slightly different form of
arithmetic.
Definition 6.4.3 Boolean Arithmetic. Boolean arithmetic is the arithmetic
defined on {0, 1} using Boolean addition and Boolean multiplication, defined by
Table 6.4.4

0 + 0 = 0 0 + 1 = 1 + 0 = 1 1 + 1 = 1
0 · 0 = 0 0 · 1 = 1 · 0 = 0 1 · 1 = 1

♢
Notice that from Chapter 3, this is the “arithmetic of logic,” where +

replaces “or” and · replaces “and.”

Example 6.4.5 Composition by Multiplication. Suppose that R =

CHAPTER 6. RELATIONS 118

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 and S =

0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

. Then using Boolean arithmetic,

RS =

0 0 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 and SR =

1 1 1 1
0 1 1 1
0 0 1 0
0 0 0 0

. □

Theorem 6.4.6 Composition is Matrix Multiplication. Let A1, A2, and
A3 be finite sets where r1 is a relation from A1 into A2 and r2 is a relation from
A2 into A3. If R1 and R2 are the adjacency matrices of r1 and r2, respectively,
then the product R1R2 using Boolean arithmetic is the adjacency matrix of the
composition r1r2.

Remark: A convenient help in constructing the adjacency matrix of a
relation from a set A into a set B is to write the elements from A in a column
preceding the first column of the adjacency matrix, and the elements of B in a
row above the first row. Initially, R in Example 2 would be

2 5 6
2
5
6

To fill in the matrix, Rij is 1 if and only if (ai, bj) ∈ r. So that, since the pair
(2, 5) ∈ r, the entry of R corresponding to the row labeled 2 and the column
labeled 5 in the matrix is a 1.
Example 6.4.7 Relations and Information. This final example gives
an insight into how relational data base programs can systematically answer
questions pertaining to large masses of information. Matrices R (on the left)
and S (on the right) define the relations r and s where arb if software a can be
run with operating system b, and bsc if operating system b can run on computer
c.

OS1 OS2 OS3 OS4
P1
P2
P3
P4

1 0 1 0
1 1 0 0
0 0 0 1
0 0 1 1

C1 C2 C3

OS1
OS2
OS3
OS4

1 1 0
0 1 0
0 0 1
0 1 1

Although the relation between the software and computers is not implicit from
the data given, we can easily compute this information. The matrix of rs is
RS, which is

C1 C2 C3
P1
P2
P3
P4

1 1 1
1 1 0
0 1 1
0 1 1

This matrix tells us at a glance which software will run on the computers listed.
In this case, all software will run on all computers with the exception of program
P2, which will not run on the computer C3, and programs P3 and P4, which
will not run on the computer C1. □

CHAPTER 6. RELATIONS 119

6.4.3 Exercises
1. Let A1 = {1, 2, 3, 4}, A2 = {4, 5, 6}, and A3 = {6, 7, 8}. Let r1 be the

relation from A1 into A2 defined by r1 = {(x, y) | y − x = 2}, and let r2
be the relation from A2 into A3 defined by r2 = {(x, y) | y − x = 1}.

(a) Determine the adjacency matrices of r1 and r2.

(b) Use the definition of composition to find r1r2.

(c) Verify the result in part b by finding the product of the adjacency
matrices of r1 and r2.

2.
(a) Determine the adjacency matrix of each relation given via the di-

graphs in Exercise 3 of Section 6.3.

(b) Using the matrices found in part (a) above, find r2 of each relation
in Exercise 3 of Section 6.3.

(c) Find the digraph of r2 directly from the given digraph and compare
your results with those of part (b).

3. Suppose that the matrices in Example 6.4.5 are relations on {1, 2, 3, 4}.
What relations do R and S describe?

4. Let D be the set of weekdays, Monday through Friday, let W be a set of
employees {1, 2, 3} of a tutoring center, and let V be a set of computer lan-
guages for which tutoring is offered, {A(PL), B(asic), C(++), J(ava), L(isp), P (ython)}.
We define s (schedule) from D into W by dsw if w is scheduled to work
on day d. We also define r from W into V by wrl if w can tutor students
in language l. If s and r are defined by matrices

S =

1 2 3
M

T

W

R

F

1 0 1
0 1 1
1 0 1
0 1 0
1 1 0

 and R =

A B C J L P

1
2
3

 0 1 1 0 0 1
1 1 0 1 0 1
0 1 0 0 1 1

(a) compute SR using Boolean arithmetic and give an interpretation of
the relation it defines, and

(b) compute SR using regular arithmetic and give an interpretation of
what the result describes.

5. How many different reflexive, symmetric relations are there on a set with
three elements?
Hint. Consider the possible matrices.

6. Let A = {a, b, c, d}. Let r be the relation on A with adjacency matrix
a b c d

a

b

c

d

1 0 0 0
0 1 0 0
1 1 1 0
0 1 0 1

(a) Explain why r is a partial ordering on A.

(b) Draw its Hasse diagram.

CHAPTER 6. RELATIONS 120

7. Define relations p and q on {1, 2, 3, 4} by p = {(a, b) | |a − b| = 1} and
q = {(a, b) | a− b is even}.

(a) Represent p and q as both graphs and matrices.

(b) Determine pq, p2, and q2; and represent them clearly in any way.
8.

(a) Prove that if r is a transitive relation on a set A, then r2 ⊆ r.

(b) Find an example of a transitive relation for which r2 ̸= r.
9. We define ≤ on the set of all n× n relation matrices by the rule that if R

and S are any two n× n relation matrices, R ≤ S if and only if Rij ≤ Sij

for all 1 ≤ i, j ≤ n.
(a) Prove that ≤ is a partial ordering on all n× n relation matrices.

(b) Prove that R ≤ S ⇒ R2 ≤ S2 , but the converse is not true.

(c) If R and S are matrices of equivalence relations and R ≤ S, how
are the equivalence classes defined by R related to the equivalence
classes defined by S?

6.5 Closure Operations on Relations
In Section 6.1, we studied relations and one important operation on relations,
namely composition. This operation enables us to generate new relations from
previously known relations. In Section 6.3, we discussed some key properties
of relations. We now wish to consider the situation of constructing a new
relation r+ from an existing relation r where, first, r+ contains r and, second,
r+ satisfies the transitive property.

6.5.1 Transitive Closure
Consider a telephone network in which the main office a is connected to, and
can communicate to, individuals b and c. Both b and c can communicate
to another person, d; however, the main office cannot communicate with d.
Assume communication is only one way, as indicated. This situation can be
described by the relation r = {(a, b), (a, c), (b, d), (c, d)}. We would like to
change the system so that the main office a can communicate with person d and
still maintain the previous system. We, of course, want the most economical
system.

This can be rephrased as follows; Find the smallest relation r+ which contains
r as a subset and which is transitive; r+ = {(a, b), (a, c), (b, d), (c, d), (a, d)}.

Definition 6.5.1 Transitive Closure. Let A be a set and r be a relation on
A. The transitive closure of r, denoted by r+, is the smallest transitive relation
that contains r as a subset. ♢

Let A = {1, 2, 3, 4}, and let S = {(1, 2), (2, 3), (3, 4)} be a relation on A.
This relation is called the successor relation on A since each element is related
to its successor. How do we compute S+? By inspection we note that (1, 3)
must be in S+ . Let’s analyze why. This is so because (1, 2) ∈ S and (2, 3) ∈ S,
and the transitive property forces (1, 3) to be in S+.

In general, it follows that if (a, b) ∈ S and (b, c) ∈ S, then (a, c) ∈ S+. This
condition is exactly the membership requirement for the pair (a, c) to be in
the composition SS = S2. So every element in S2 must be an element in S+

CHAPTER 6. RELATIONS 121

. So we now know that, S+ contains at least S ∪ S2 . In particular, for this
example, since S = {(1, 2), (2, 3), (3, 4)} and S2 = {(1, 3), (2, 4)}, we have

S ∪ S2 = {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4)}

Is the relation S ∪ S2 transitive? Again, by inspection, (1, 4) is not an
element of S ∪ S2, but (1, 3) ∈ S2 and (3, 4) ∈ S. Therefore, the composition
S2S = S3 produces (1, 4), and it must be an element of S+ since (1, 3) and
(3, 4) are required to be in S+. This shows that S3 ⊆ S+. This process must
be continued until the resulting relation is transitive. If A is finite, as is true in
this example, the transitive closure will be obtained in a finite number of steps.
For this example,

S+ = S ∪ S2 ∪ S3 = {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4)}

Theorem 6.5.2 Transitive Closure on a Finite Set. If r is a relation on
a set A and |A| = n, then the transitive closure of r is the union of the first n
powers of r. That is,

r+ = r ∪ r2 ∪ r3 ∪ · · · ∪ rn.
Let’s now consider the matrix analogue of the transitive closure.
Consider the relation

r = {(1, 4), (2, 1), (2, 2), (2, 3), (3, 2), (4, 3), (4, 5), (5, 1)}

on the set A = {1, 2, 3, 4, 5}. The matrix of r is

R =

0 0 0 1 0
1 1 1 0 0
0 1 0 0 0
0 0 1 0 1
1 0 0 0 0

Recall that r2, r3, . . . can be determined through computing the matrix

powers R2, R3, For our example,

Table 6.5.3

R2 =

0 0 1 0 1
1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
0 0 0 1 0

 R3 =

1 1 0 0 0
1 1 1 1 1
1 1 1 1 0
1 1 1 1 0
0 0 1 0 1

R4 =

1 1 1 1 0
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 0 0 0

 R5 =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0

How do we relate

5
∪

i=1
ri to the powers of R?

Theorem 6.5.4 Matrix of a Transitive Closure. Let r be a relation on a
finite set and R its matrix. Let R+ be the matrix of r+, the transitive closure
of r. Then R+ = R + R2 + · · ·+ Rn, using Boolean arithmetic.

Using this theorem, we find R+ is the 5 × 5 matrix consisting of all 1′s,
thus, r+ is all of A×A.

CHAPTER 6. RELATIONS 122

6.5.2 Algorithms for computing transitive closure
Let r be a relation on the set {1, 2, . . . , n} with relation matrix R. The
matrix of the transitive closure R+, can be computed by the equation R+ =
R + R2 + · · ·+ Rn. By using ordinary polynomial evaluation methods, you can
compute R+ with n− 1 matrix multiplications:

R+ = R(I + R(I + (· · ·R(I + R) · · ·)))

For example, if n = 3, R+ = R(I + R(I + R)).
We can make use of the fact that if T is a relation matrix, T + T = T due

to the fact that 1 + 1 = 1 in Boolean arithmetic. Let Sk = R + R2 + · · ·+ Rk.
Then

R = S1

S1(I + S1) = R(I + R) = R + R2 = S2

S2(I + S2) = (R + R2)(I + R + R2)
= (R + R2) + (R2 + R3) + (R3 + R4)
= R + R2 + R3 + R4 = S4

.

Similarly,
S4(I + S4) = S8

and by induction we can prove

S2k (I + S2k) = S2k+1

Notice how each matrix multiplication doubles the number of terms that
have been added to the sum that you currently have computed. In algorithmic
form, we can compute R+ as follows.

Algorithm 6.5.5 Transitive Closure Algorithm. Let R be a relation
matrix and let R+ be its transitive closure matrix, which is to be computed as
matrix T

1.0. S = R
2.0 T= S*(I+S)
3.0 While T != S

3.1 S = T
3.2 T= S*(I+S) // using Boolean arithmetic

4.0 Return T

Listing 6.5.6
Note 6.5.7

• Often the higher-powered terms in Sn do not contribute anything to R+.
When the condition T = S becomes true in Step 3, this is an indication
that no higher-powered terms are needed.

• To compute R+ using this algorithm, you need to perform no more than
⌈log2 n⌉ matrix multiplications, where ⌈x⌉ is the least integer that is
greater than or equal to x. For example, if r is a relation on 25 elements,
no more than ⌈log2 25⌉ = 5 matrix multiplications are needed.

A second algorithm, Warshall’s Algorithm, reduces computation time to
the time that it takes to multiply two square matrices with the same order as
the relation matrix in question.

CHAPTER 6. RELATIONS 123

Algorithm 6.5.8 Warshall’s Algorithm. Let R be an n×n relation matrix
and let R+ be its transitive closure matrix, which is to be computed as matrix
T using Boolean arithmetic

1.0 T = R
2.0 for k = 1 to n:

for i = 1 to n:
for j = 1 to n:

T[i,j]= T[i,j] + T[i,k] * T[k,j]
3.0 Return T

Listing 6.5.9

6.5.3 Exercises
1. Let A = {0, 1, 2, 3, 4} and S = {(0, 1), (1, 3), (2, 3), (3, 4), (4, 1)}. Compute

S+ using the matrix representation of S. Verify your results by checking
against the result obtained directly from the definition of transitive closure.

2. Let A = {1, 2, 3, 4, 6, 12} and t = {(a, b) | b/a is a prime number}. Deter-
mine t+ by any means. Represent your answer as a matrix.

3.
(a) Draw digraphs of the relations S, S2, S3 , and S+ where S is defined

in the first exercise above.

(b) Verify that in terms of the graph of S, aS+b if and only if b is
reachable from a along a path of any finite nonzero length.

4. Let r be the relation represented by the following digraph.
(a) Find r+ using the definition based on order pairs.

(b) Determine the digraph of r+ directly from the digraph of r.

(c) Verify your result in part (b) by computing the digraph from your
result in part (a).

Figure 6.5.10 Digraph of r in exercise 4.

CHAPTER 6. RELATIONS 124

5.
(a) Define reflexive closure and symmetric closure by imitating the

definition of transitive closure.

(b) Use your definitions to compute the reflexive and symmetric closures
of examples in the text.

(c) What are the transitive reflexive closures of these examples?

(d) Convince yourself that the reflexive closure of the relation < on the
set of positive integers P is ≤.

6. What common relations on Z are the transitive closures of the following
relations?

(a) aSb if and only if a + 1 = b.

(b) aRb if and only if |a− b| = 2.
7.

(a) Let A be any set and r a relation on A, prove that (r+)+ = r+.

(b) Is the transitive closure of a symmetric relation always both sym-
metric and reflexive? Explain.

8. The definition of the Transitive Closure of r refers to the “smallest transitive
relation that contains r as a subset.” Show that the intersection of all
transitive relations on A containing r is a transitive relation containing r
and is precisely r+.

Chapter 7

Functions

countably infinite

A countably infinite set
Is as simple as things like this get.

Just start counting at 1,
Then continue—it’s fun!

I’ll check back when you’re done, so don’t sweat.

Chris Doyle, The Omnificent English Dictionary In Limerick Form

In this chapter we will consider some basic concepts of the relations that are
called functions. A large variety of mathematical ideas and applications can be
more completely understood when expressed through the function concept.

7.1 Definition and Notation

7.1.1 Fundamentals
Definition 7.1.1 Function. A function from a set A into a set B is a relation
from A into B such that each element of A is related to exactly one element
of the set B. The set A is called the domain of the function and the set B is
called the codomain. ♢

The reader should note that a function f is a relation from A into B with
two important restrictions:

• Each element in the set A, the domain of f , must be related to some
element of B, the codomain.

• The phrase “is related to exactly one element of the set B” means that if
(a, b) ∈ f and (a, c) ∈ f , then b = c.

Example 7.1.2 A function as a list of ordered pairs. Let A =
{−2,−1, 0, 1, 2} and B = {0, 1, 2, 3, 4}, and if s = {(−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4)},
then s is a function from A into B. □

Example 7.1.3 A function as a set of ordered pairs in set-builder
notation. Let R be the real numbers. Then L = {(x, 3x) | x ∈ R} is a function
from R into R, or, more simply, L is a function on R. □
It is customary to use a different system of notation for functions than the one
we used for relations. If f is a function from the set A into the set B, we will
write f : A→ B.

125

CHAPTER 7. FUNCTIONS 126

The reader is probably more familiar with the notation for describing
functions that is used in basic algebra or calculus courses. For example, y = 1

x
or f(x) = 1

x both define the function
{(

x, 1
x

)∣∣x ∈ R, x ̸= 0
}

. Here the domain
was assumed to be those elements of R whose substitutions for x make sense,
the nonzero real numbers, and the codomain was assumed to be R. In most
cases, we will make a point of listing the domain and codomain in addition to
describing what the function does in order to define a function.

The terms mapping, map, and transformation are also used for functions.

Definition 7.1.4 The Set of Functions Between Two Sets. Given two
sets, A and B, the set of all functions from A into B is denoted BA. ♢

The notation used for sets of functions makes sense in light of Exercise 5.
One way to imagine a function and what it does is to think of it as a machine.

The machine could be mechanical, electronic, hydraulic, or abstract. Imagine
that the machine only accepts certain objects as raw materials or input. The
possible raw materials make up the domain. Given some input, the machine
produces a finished product that depends on the input. The possible finished
products that we imagine could come out of this process make up the codomain.

Example 7.1.5 A definition based on images. We can define a function
based on specifying the codomain element to which each domain element is
related. For example, f : R→ R defined by f(x) = x2 is an alternate description
of f =

{(
x, x2)∣∣x ∈ R

}
. □

Definition 7.1.6 Image of an element under a function. Let f : A→ B,
read “Let f be a function from the set A into the set B.” If a ∈ A, then f(a)
is used to denote that element of B to which a is related. f(a) is called the
image of a, or, more precisely, the image of a under f . We write f(a) = b to
indicate that the image of a is b. ♢

In Example 7.1.5, the image of 2 under f is 4; that is, f(2) = 4. In
Example 7.1.2, the image of −1 under s is 1; that is, s(−1) = 1.

Definition 7.1.7 Range of a Function. The range of a function is the set
of images of its domain. If f : X → Y , then the range of f is denoted f(X),
and

f(X) = {f(a) | a ∈ X} = {b ∈ Y | ∃a ∈ X such that f(a) = b}.

♢
Note that the range of a function is a subset of its codomain. f(X) is also

read as “the image of the set X under the function f” or simply “the image of
f .”

In Example 7.1.2, s(A) = {0, 1, 4}. Notice that 2 and 3 are not images of
any element of A. In addition, note that both 1 and 4 are related to more than
one element of the domain: s(1) = s(−1) = 1 and s(2) = s(−2) = 4. This does
not violate the definition of a function. Go back and read the definition if this
isn’t clear to you.

In Example 7.1.3, the range of L is equal to its codomain, R. If b is any real
number, we can demonstrate that it belongs to L(R) by finding a real number
x for which L(x) = b. By the definition of L, L(x) = 3x, which leads us to the
equation 3x = b. This equation always has a solution, b

3 ; thus L(R) = R.
The formula that we used to describe the image of a real number under

L, L(x) = 3x, is preferred over the set notation for L due to its brevity. Any
time a function can be described with a rule or formula, we will use this form
of description. In Example 7.1.2, the image of each element of A is its square.

CHAPTER 7. FUNCTIONS 127

To describe that fact, we write s(a) = a2 (a ∈ A), or S : A → B defined by
S(a) = a2.

There are many ways that a function can be described. Many factors, such
as the complexity of the function, dictate its representation.

Example 7.1.8 Data as a function. Suppose a survey of 1,000 persons is
done asking how many hours of television each watches per day. Consider the
function W : {0, 1, . . . , 24} → {0, 1, 2, . . . , 1000} defined by

W (t) = the number of persons who gave a response of t hours

This function will probably have no formula such as the ones for s and L above.
□

Example 7.1.9 Conditional definition of a function. Consider the
function m : P→ Q defined by the set

m = {(1, 1), (2, 1/2), (3, 9), (4, 1/4), (5, 25), ...}

No simple single formula could describe m, but if we assume that the pattern
given continues, we can write

m(x) =
{

x2 if x is odd
1/x if x is even

□

7.1.2 Functions of Two Variables
If the domain of a function is the Cartesian product of two sets, then our
notation and terminology changes slightly. For example, consider the function
G : N×N→ N defined by G ((n1, n2)) = n2

1 + n2
2−n1n2 + 10. For this function,

we would drop one set of parentheses and write G(4, 2) = 22, not G((4, 2)) = 22.
We call G a function of two variables. From one point of view, this function is
no different from any others that we have seen. The elements of the domain
happen to be slightly more complicated. On the other hand, we can look at the
individual components of the ordered pairs as being separate. If we interpret G
as giving us the cost of producing quantities of two products, we can imagine
varying n1 while n2 is fixed, or vice versa.

The same observations can be made for function of three or more variables.

7.1.3 SageMath Note
There are several ways to define a function in Sage. The simplest way to
implement f is as follows.

f(x)=x^2
f

x |--> x^2

[f(4),f(1.2)]

[16, 1.44000000000000]

CHAPTER 7. FUNCTIONS 128

Sage is built upon the programming language Python, which is a strongly
typed language and so you can’t evaluate expressions such as f('Hello'). How-
ever a function such as f , as defined above, will accept any type of number, so
a bit more work is needed to restrict the inputs of f to the integers.

A second way to define a function in Sage is based on Python syntax.

def fa(x):
return x^2

#end of definition - now we test it:
[fa(2),fa(1.2)]

[16, 1.44000000000000]

7.1.4 Non-Functions
We close this section with two examples of relations that are not functions.

Example 7.1.10 A non-function. Let A = B = {1, 2, 3} and let f =
{(1, 2), (2, 3)}. Here f is not a function from A into B since f does not act on,
or “use,” all elements of A. □

Example 7.1.11 Another non-function. Let A = B = {1, 2, 3} and let
g = {(1, 2), (2, 3), (2, 1), (3, 2)}. We note that g acts on all of A. However, g is
still not a function since (2, 3) ∈ g and (2, 1) ∈ g and the condition on each
domain being related to exactly one element of the codomain is violated. □

7.1.5 Exercises
1. Let A = {1, 2, 3, 4} and B = {a, b, c, d}. Determine which of the following

are functions. Explain.
(a) f ⊆ A×B, where f = {(1, a), (2, b), (3, c), (4, d)}.

(b) g ⊆ A×B, where g = {(1, a), (2, a), (3, b), (4, d)}.

(c) h ⊆ A×B, where h = {(1, a), (2, b), (3, c)}.

(d) k ⊆ A×B, where k = {(1, a), (2, b), (2, c), (3, a), (4, a)}.

(e) L ⊆ A×A, where L = {(1, 1), (2, 1), (3, 1), (4, 1)}.
2. Find the ranges of the following functions on Z:

(a) g = {(x, 4x + 1)|x ∈ Z}.

(b) h(x) = the least integer that is greater than or equal to
√
|x|.

(c) P (x) = x + 10.
3. Find the ranges of each of the relations that are functions in Exercise 1.
4. Let U be a set and let S be any subset of U . Let χS : U → {0, 1} be

defined by

χS(x) =
{

1 if x ∈ S

0 if x /∈ S

The function χS is called the characteristic function of S.

(a) If U = {a, b, c} and S = {a, b}, list the elements of χS .

(b) If U = {a, b, c, d, e} and S = {a, c, e}, list the elements of χS .

CHAPTER 7. FUNCTIONS 129

(c) If U = {a, b, c}, what are χ∅ and χU ?
5. If A and B are finite sets, how many different functions are there from A

into B?
6. Let U be a set with subsets A and B.

(a) Show that g : U → {0, 1} defined by g(a) = min (χA(a), χB(a)) is
the characteristic function of A ∩B.

(b) What characteristic function is h : U → {0, 1} defined by h(a) =
max (χA(a), χB(a))?

(c) How are the characteristic functions of A and Ac related?
7. Let f be a function with domain A and codomain B. Consider the relation

K ⊆ A × A defined on the domain of f by (x, y) ∈ K if and only if
f(x) = f(y). The relation K is called the kernel of f .

(a) Prove that K is an equivalence relation.

(b) For the specific case of A = Z, where Z is the set of integers, let
f : Z→ Z be defined by f(x) = x2. Describe the equivalence classes
of the kernel for this specific function.

8. Let f : P→ P, where f(a) is the largest power of two that evenly divides
a; for example, f(12) = 4, f(9) = 1, andf(8) = 8. Describe the equivalence
classes of the kernel of f .

7.2 Properties of Functions

7.2.1 Properties
Consider the following functions:

Let A = {1, 2, 3, 4} and B = {a, b, c, d}, and define f : A→ B by

f(1) = a, f(2) = b, f(3) = c and f(4) = d

Let A = {1, 2, 3, 4} and B = {a, b, c, d}, and define g : A→ B by

g(1) = a, g(2) = b, g(3) = a and g(4) = b.

The first function, f , gives us more information about the set B than
the second function, g. Since A clearly has four elements, f tells us that
B contains at least four elements since each element of A is mapped onto a
different element of B. The properties that f has, and g does not have, are the
most basic properties that we look for in a function. The following definitions
summarize the basic vocabulary for function properties.

Definition 7.2.1 Injective Function, Injection. A function f : A→ B is
injective if

∀a, b ∈ A, a ̸= b⇒ f(a) ̸= f(b)

An injective function is called an injection, or a one-to-one function. ♢
Notice that the condition for an injective function is logically equivalent to

f(a) = f(b)⇒ a = b.

for all a, b ∈ A. This is often a more convenient condition to prove than what
is given in the definition.

CHAPTER 7. FUNCTIONS 130

Definition 7.2.2 Surjective Function, Surjection. A function f : A→ B
is surjective if its range, f(A), is equal to its codomain, B. A surjective function
is called a surjection, or an onto function. ♢

Notice that the condition for a surjective function is equivalent to

For all b ∈ B, there exists a ∈ A such that f(a) = b.

Definition 7.2.3 Bijective Function, Bijection. A function f : A→ B is
bijective if it is both injective and surjective. Bijective functions are also called
one-to-one, onto functions. ♢

The function f that we opened this section with is bijective. The function
g is neither injective nor surjective.

Example 7.2.4 Injective but not surjective function. Let A = {1, 2, 3}
and B = {a, b, c, d}, and define f : A→ B by f(1) = b, f(2) = c, and f(3) = a.
Then f is injective but not surjective. □

Example 7.2.5 Characteristic Functions. The characteristic function, χS ,
in Exercise 7.1.5.4 is surjective if S is a proper subset of A, but never injective
if |A| > 2. □

7.2.2 Counting
Example 7.2.6 Seating Students. Let A be the set of students who are
sitting in a classroom, let B be the set of seats in the classroom, and let s
be the function which maps each student into the chair he or she is sitting in.
When is s one to one? When is it onto? Under normal circumstances, s would
always be injective since no two different students would be in the same seat.
In order for s to be surjective, we need all seats to be used, so s is a surjection
if the classroom is filled to capacity. □

Functions can also be used for counting the elements in large finite sets or
in infinite sets. Let’s say we wished to count the occupants in an auditorium
containing 1,500 seats. If each seat is occupied, the answer is obvious, 1,500
people. What we have done is to set up a one-to-one correspondence, or
bijection, from seats to people. We formalize in a definition.

Definition 7.2.7 Cardinality. Two sets are said to have the same cardinality
if there exists a bijection between them. If a set has the same cardinality as
the set {1, 2, 3, . . . , n}, then we say its cardinality is n. ♢

The function f that opened this section serves to show that the two sets
A = {1, 2, 3, 4} and B = {a, b, c, d} have the same cardinality. Notice in
applying the definition of cardinality, we don’t actually appear to count either
set, we just match up the elements. However, matching the letters in B with
the numbers 1, 2, 3, and 4 is precisely how we count the letters.

Definition 7.2.8 Countable Set. If a set is finite or has the same cardinality
as the set of positive integers, it is called a countable set. ♢

Example 7.2.9 Counting the Alphabet. The alphabet {A, B, C, ..., Z}
has cardinality 26 through the following bijection into the set {1, 2, 3, . . . , 26}.

A B C · · · Z

↓ ↓ ↓ · · · ↓
1 2 3 · · · 26

.

□

CHAPTER 7. FUNCTIONS 131

Example 7.2.10 As many evens as all positive integers. Recall that
2P = {b ∈ P | b = 2k for some k ∈ P}. Paradoxically, 2P has the same
cardinality as the set P of positive integers. To prove this, we must find a
bijection from P to 2P. Such a function isn’t unique, but this one is the simplest:
f : P→ 2P where f(m) = 2m. Two statements must be proven to justify our
claim that f is a bijection:

• f is one-to-one.
Proof: Let a, b ∈ P and assume that f(a) = f(b). We must prove that
a = b.

f(a) = f(b) =⇒ 2a = 2b =⇒ a = b.

• f is onto.
Proof: Let b ∈ 2P. We want to show that there exists an element a ∈ P
such that f(a) = b. If b ∈ 2P, b = 2k for some k ∈ P by the definition of
2P. So we have f(k) = 2k = b. Hence, each element of 2P is the image of
some element of P.

□
Another way to look at any function with P as its domain is creating a list

of the form f(1), f(2), f(3), In the previous example, the list is 2, 4, 6,
This infinite list clearly has no duplicate entries and every even positive integer
appears in the list eventually.

A function f : P → A is a bijection if the infinite list f(1), f(2), f(3), . . .
contains no duplicates, and every element of A appears on in the list. In this
case, we say the A is countably infinite, or simply countable.

Readers who have studied real analysis should recall that the set of rational
numbers is a countable set, while the set of real numbers is not a countable set.
See the exercises at the end of this section for an another example of such a set.

We close this section with a theorem called the Pigeonhole Principle, which
has numerous applications even though it is an obvious, common-sense state-
ment. Never underestimate the importance of simple ideas. The Pigeonhole
Principle states that if there are more pigeons than pigeonholes, then two or
more pigeons must share the same pigeonhole. A more rigorous mathematical
statement of the principle follows.

Theorem 7.2.11 The Pigeonhole Principle. Let f be a function from a
finite set X into a finite set Y . If n ≥ 1 and |X| > n|Y |, then there exists an
element of Y that is the image under f of at least n + 1 elements of X.
Proof. Assume no such element exists. For each y ∈ Y , let Ay = {x ∈ X |
f(x) = y}. Then it must be that |Ay| ≤ n. Furthermore, the set of nonempty
Ay form a partition of X. Therefore,

|X| =
∑
y∈Y

|Ay| ≤ n|Y |

which is a contradiction. ■

Example 7.2.12 A duplicate name is assured. Assume that a room
contains four students with the first names John, James, and Mary. Prove that
two students have the same first name. We can visualize a mapping from the
set of students to the set of first names; each student has a first name. The
pigeonhole principle applies with n = 1, and we can conclude that at least two
of the students have the same first name. □

CHAPTER 7. FUNCTIONS 132

7.2.3 Exercises
1. Determine which of the functions in Exercise 7.1.5.1 of Section 7.1 are one-

to-one and which are onto.
2.

(a) Determine all bijections from {1, 2, 3} into {a, b, c}.

(b) Determine all bijections from {1, 2, 3} into {a, b, c, d}.
3. Which of the following are one-to-one, onto, or both?

(a) f1 : R→ R defined by f1(x) = x3 − x.

(b) f2 : Z→ Z defined by f2(x) = −x + 2.

(c) f3 : N× N→ N defined by f3(j, k) = 2j3k.

(d) f4 : P→ P defined by f4(n) = ⌈n/2⌉, where ⌈x⌉ is the ceiling of x,
the smallest integer greater than or equal to x.

(e) f5 : N→ N defined by f5(n) = n2 + n.

(f) f6 : N→ N× N defined by f6(n) = (2n, 2n + 1).
4. Which of the following are injections, surjections, or bijections on R, the

set of real numbers?
(a) f(x) = −2x.

(b) g(x) = x2 − 1.

(c) h(x) =
{

x x < 0
x2 x ≥ 0

(d) q(x) = 2x

(e) r(x) = x3

(f) s(x) = x3 − x

5. Suppose that m pairs of socks are mixed up in your sock drawer. Use the
Pigeonhole Principle to explain why, if you pick m + 1 socks at random,
at least two will make up a matching pair.

6. In your own words explain the statement “The sets of integers and even
integers have the same cardinality.”

7. Let A = {1, 2, 3, 4, 5}. Find functions, if they exist that have the properties
specified below.

(a) A function that is one-to-one and onto.

(b) A function that is neither one-to-one nor onto.

(c) A function that is one-to-one but not onto.

(d) A function that is onto but not one-to-one.
8.

(a) Define functions, if they exist, on the positive integers, P, with the
same properties as in Exercise 7 (if possible).

(b) Let A and B be finite sets where |A| = |B|. Is it possible to define a
function f : A→ B that is one-to-one but not onto? Is it possible to
find a function g : A→ B that is onto but not one-to-one?

CHAPTER 7. FUNCTIONS 133

9.
(a) Prove that the set of natural numbers is countable.

(b) Prove that the set of integers is countable.

(c) Prove that the set of rational numbers is countable.
10.

(a) Prove that the set of finite strings of 0’s and 1’s is countable.

(b) Prove that the set of odd integers is countable.

(c) Prove that the set N× N is countable.
11. Use the Pigeonhole Principle to prove that an injection cannot exist

between a finite set A and a finite set B if the cardinality of A is greater
than the cardinality of B.

12. The important properties of relations are not generally of interest for
functions. Most functions are not reflexive, symmetric, antisymmetric,
or transitive. Can you give examples of functions that do have these
properties?

13. Prove that the set of all infinite sequences of 0’s and 1’s is not a countable
set.

13. Prove that the set of all functions on the integers is an uncountable set.
14. Given five points on the unit square, {(x, y) | 0 ≤ x, y ≤ 1}, prove that

there are two of the points a distance of no more than
√

2
2 from one another.

7.3 Function Composition
Now that we have a good understanding of what a function is, our next step
is to consider an important operation on functions. Our purpose is not to
develop the algebra of functions as completely as we did for the algebras of
logic, matrices, and sets, but the reader should be aware of the similarities
between the algebra of functions and that of matrices. We first define equality
of functions.

7.3.1 Function Equality
Definition 7.3.1 Equality of Functions. Let f, g : A→ B; that is, let f
and g both be functions from A into B. Then f is equal to g (denoted f = g)
if and only if f(x) = g(x) for all x ∈ A. ♢

Two functions that have different domains cannot be equal. For example,
f : Z → Z defined by f(x) = x2 and g : R → R defined by g(x) = x2 are not
equal even though the formula that defines them is the same.

On the other hand, it is not uncommon for two functions to be equal
even though they are defined differently. For example consider the functions
h and k, where h : {−1, 0, 1, 2} → {0, 1, 2} is defined by h(x) = |x| and
k : {−1, 0, 1, 2} → {0, 1, 2} is defined by k(x) = −x3

3 + x2 + x
3 appear to be

very different functions. However, they are equal because h(x) = k(x) for
x = −1, 0, 1, and 2.

7.3.2 Function Composition
One of the most important operations on functions is that of composition.

CHAPTER 7. FUNCTIONS 134

Definition 7.3.2 Composition of Functions. Let f : A→ B and g : B → C.
Then the composition of f followed by g, written g ◦ f , is a function from A
into C defined by (g ◦ f)(x) = g(f(x)), which is read “g of f of x.” ♢

The reader should note that it is traditional to write the composition of
functions from right to left. Thus, in the above definition, the first function
performed in computing g ◦ f is f . On the other hand, for relations, the
composition rs is read from left to right, so that the first relation is r.

Example 7.3.3 A basic example. Let f : {1, 2, 3} → {a, b} be defined by
f(1) = a, f(2) = a, and f(3) = b. Let g : {a, b} → {5, 6, 7} be defined by g(a) =
5 and g(b) = 7. Then g ◦ f : {1, 2, 3} → {5, 6, 7} is defined by (g ◦ f)(1) = 5,
(g ◦ f)(2) = 5, and (g ◦ f)(3) = 7. For example, (g ◦ f)(1) = g(f(l)) = g(a) = 5.
Note that f ◦ g is not defined. Why?

Let f : R → R be defined by f(x) = x3 and let g : R → R be defined by
g(x) = 3x + 1. Then, since

(g ◦ f)(x) = g(f(x)) = g
(
x3) = 3x3 + 1

we have g ◦ f : R → R is defined by (g ◦ f)(x) = 3x3 + 1. Here f ◦ g
is also defined and f ◦ g : R → R is defined by (f ◦ g)(x) = (3x + 1)3 .
Moreover, since 3x3 + 1 ̸= (3x + 1)3 for at least one real number, g ◦ f ̸= f ◦ g.
Therefore, the commutative law is not true for functions under the operation
of composition. However, the associative law is true for functions under the
operation of composition. □

Theorem 7.3.4 Function composition is associative. If f : A → B,
g : B → C, and h : C → D, then h ◦ (g ◦ f) = (h ◦ g) ◦ f .
Proof. Note: In order to prove that two functions are equal, we must use the
definition of equality of functions. Assuming that the functions have the same
domain, they are equal if, for each domain element, the images of that element
under the two functions are equal.

We wish to prove that (h ◦ (g ◦ f))(x) = ((h ◦ g) ◦ f)(x) for all x ∈ A, which
is the domain of both functions.

(h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) by the definition of composition
= h(g(f(x))) by the definition of composition

Similarly,

((h ◦ g) ◦ f)(x) = (h ◦ g)(f(x)) by the definition of composition
= h(g(f(x))) by the definition of composition

.

Notice that no matter how the functions in the expression h◦g◦f is grouped,
the final image of any element of x ∈ A is h(g(f(x))) and so h◦(g◦f) = (h◦g)◦f .

■
If f is a function on a set A, then the compositions f ◦ f , f ◦ f ◦ f, . . . are

valid, and we denote them as f2 , f3, Repeated compositions of f with
itself can be defined recursively. We will discuss this form of definition in detail
in Section 8.1.
Definition 7.3.5 Powers of Functions. Let f : A→ A.

• f1 = f ; that is, f1(a) = f(a), for a ∈ A.

• For n ≥ 1, fn+1 = f ◦ fn; that is, fn+1(a) = f (fn(a)) for a ∈ A.

♢

CHAPTER 7. FUNCTIONS 135

Two useful theorems concerning composition are given below. The proofs
are left for the exercises.
Theorem 7.3.6 The composition of injections is an injection. If
f : A→ B and g : B → C are injections, then g ◦ f : A→ C is an injection.
Theorem 7.3.7 The composition of surjections is a surjection. If
f : A→ B and g : B → C are surjections, then g ◦ f : A→ C is a surjection.

We would now like to define the concepts of identity and inverse for functions
under composition. The motivation and descriptions of the definitions of these
terms come from the definitions of the terms in the set of real numbers and
for matrices. For real numbers, the numbers 0 and 1 play the unique role
that x + 0 = 0 + x = x and x · 1 = 1 · x = x for any real number x. 0 and 1
are the identity elements for the reals under the operations of addition and
multiplication, respectively. Similarly, the n× n zero matrix 0 and the n× n
identity matrix I are such that for any n×n matrix A, A + 0 = 0 + A = A and
AI = IA = A. Hence, an elegant way of defining the identity function under
the operation of composition would be to imitate the above well-known facts.

Definition 7.3.8 Identity Function. For any set A, the identity function
on A is a function from A onto A, denoted by i (or, more specifically, iA) such
that i(a) = a for all a ∈ A. ♢

Based on the definition of i, we can show that for all functions f : A→ A,
f ◦ i = i ◦ f = f .

Example 7.3.9 The identity function on {1, 2, 3}. If A = {1, 2, 3}, then
the identity function i : A→ A is defined by i(1) = 1, i(2) = 2, and i(3) = 3.

□

Example 7.3.10 The identity function on R. The identity function on R
is i : R→ R defined by i(x) = x. □

7.3.3 Inverse Functions
We will introduce the inverse of a function with a special case: the inverse of a
function on a set. After you’ve taken the time to understand this concept, you
can read about the inverse of a function from one set into another. The reader
is encouraged to reread the definition of the inverse of a matrix in Section 5.2
(Definition 5.2.5) to see that the following definition of the inverse function is a
direct analogue of that definition.

Definition 7.3.11 Inverse of a Function on a Set. Let f : A → A. If
there exists a function g : A→ A such that g ◦ f = f ◦ g = i, then g is called
the inverse of f and is denoted by f−1 , read “f inverse.” ♢

Notice that in the definition we refer to “the inverse” as opposed to “an
inverse.” It can be proven that a function can never have more than one inverse
(see exercises).

An alternate description of the inverse of a function, which can be proven
from the definition, is as follows: Let f : A→ A be such that f(a) = b. Then
when it exists, f−1 is a function from A to A such that f−1(b) = a. Note that
f−1 “undoes” what f does.

Example 7.3.12 The inverse of a function on {1, 2, 3}. Let A = {1, 2, 3}
and let f be the function defined on A such that f(1) = 2, f(2) = 3, and
f(3) = 1. Then f−1 : A → A is defined by f−1(1) = 3, f−1(2) = 1, and
f−1(3) = 2. □

CHAPTER 7. FUNCTIONS 136

Example 7.3.13 Inverse of a real function. If g : R → R is defined by
g(x) = x3 , then g−1 is the function that undoes what g does. Since g cubes
real numbers, g−1 must be the “reverse” process, namely, takes cube roots.
Therefore, g−1 : R → R is defined by g−1(x) = 3

√
x. We should show that

g−1 ◦ g = i and g ◦ g−1 = i. We will do the first, and the reader is encouraged
to do the second.(

g−1 ◦ g
)

(x) = g−1(g(x)) Definition of composition
= g−1 (x3) Definition of g

= 3√
x3 Definition of g−1

= x Definition of cube root
= i(x) Definition of the identity function

Therefore, g−1 ◦ g = i. Why? □
The definition of the inverse of a function alludes to the fact that not all

functions have inverses. How do we determine when the inverse of a function
exists?
Theorem 7.3.14 Bijections have inverses. Let f : A→ A. f−1 exists if
and only if f is a bijection; i. e. f is one-to-one and onto.
Proof. (⇒) In this half of the proof, assume that f−1 exists and we must prove
that f is one-to-one and onto. To do so, it is convenient for us to use the
relation notation, where f(s) = t is equivalent to (s, t) ∈ f . To prove that f
is one-to-one, assume that f(a) = f(b) = c. Alternatively, that means (a, c)
and (b, c) are elements of f . We must show that a = b. Since (a, b), (c, b) ∈ f ,
(c, a) and (c, b) are in f−1. By the fact that f−1 is a function and c cannot
have two images, a and b must be equal, so f is one-to-one.

Next, to prove that f is onto, observe that for f−1 to be a function, it must
use all of its domain, namely A. Let b be any element of A. Then b has an
image under f−1 , f−1(b). Another way of writing this is

(
b, f−1(b)

)
∈ f−1,

By the definition of the inverse, this is equivalent to
(
f−1(b), b

)
∈ f . Hence, b

is in the range of f . Since b was chosen arbitrarily, this shows that the range of
f must be all of A.

(⇐) Assume f is one-to-one and onto and we are to prove f−1 exists. We
leave this half of the proof to the reader. □ ■

Definition 7.3.15 Permutation. A bijection of a set A into itself is called a
permutation of A. ♢

Next, we will consider the functions for which the domain and codomain
are not necessarily equal. How do we define the inverse in this case?

Definition 7.3.16 Inverse of a Function (General Case). Let f : A→ B,
If there exists a function g : B → A such that g ◦ f = iA and f ◦ g = iB , then
g is called the inverse of f and is denoted by f−1 , read “f inverse.” ♢

Note the slightly more complicated condition for the inverse in this case
because the domains of f ◦ g and g ◦ f are different if A and B are different.
The proof of the following theorem isn’t really very different from the special
case where A = B.
Theorem 7.3.17 When does a function have an inverse? Let f : A→ B.
f−1 exists if and only if f is a bijection.
Example 7.3.18 Another inverse. Let A = {1, 2, 3} and B = {a, b, c}.
Define f : A→ B by f(1) = a, f(2) = b, and f(3) = c. Then g : B → A defined

CHAPTER 7. FUNCTIONS 137

by g(a) = 1, g(b) = 2, and g(c) = 3 is the inverse of f .

(g ◦ f)(1) = 1
(g ◦ f)(2) = 2
(g ◦ f)(3) = 3

⇒ g ◦ f = iA and
(f ◦ g)(a) = a

(f ◦ g)(b) = b

(f ◦ g)(c) = c

⇒ f ◦ g = iB

□

7.3.4 Exercises
1. Let A = {1, 2, 3, 4, 5}, B = {a, b, c, d, e, f}, and C = {+,−}. Define

f : A → B by f(k) equal to the kth letter in the alphabet, and define
g : B → C by g(α) = + if α is a vowel and g(α) = − if α is a consonant.

(a) Find g ◦ f .

(b) Does it make sense to discuss f ◦ g? If not, why not?

(c) Does f−1 exist? Why?

(d) Does g−1 exist? Why?
2. Let A = {1, 2, 3}. Definef : A→ A by f(1) = 2, f(2) = 1, and f(3) = 3.

Find f2, f3, f4 and f−1.
3. Let A = {1, 2, 3}.

(a) List all permutations of A.

(b) Find the inverse and square of each of the permutations of part a,
where the square of a permutation, f , is the composition f ◦ f .

(c) Show that the composition of any two permutations of A is a per-
mutation of A.

(d) Prove that if A is any set where |A| = n, then the number of
permutations of A is n!.

4. Define s, u, and d, all functions on the integers, by s(n) = n2 , u(n) = n+1,
and d(n) = n− 1. Determine:

(a) u ◦ s ◦ d

(b) s ◦ u ◦ d

(c) d ◦ s ◦ u

5. Consider the following functions on the set of bit strings of length 4. In
these definitions, addition is done modulo 2, so that 1 + 1 = 0. Which of
these functions has an inverse? For those that have an inverse, what is it?
For those that don’t explain why.

(a) f1(b1b2b3b4) = b2b3b4b1

(b) f2(b1b2b3b4) = b4b3b2b1

(c) f3(b1b2b3b4) = (b1 + b2)(b2 + b3)(b3 + b4)(b4 + b1)

(d) f4(b1b2b3b4) = b1(b1 + b2)(b1 + b2 + b3)(b1 + b2 + b3 + b4)
6. Inverse images. If f is any function from A into B, we can describe the

inverse image as a function from B into P(A), which is also commonly
denoted f−1. If b ∈ B, f−1(b) = {a ∈ A | f(a) = b}. If f does have an
inverse, the inverse image of b is

{
f−1(b)

}
.

CHAPTER 7. FUNCTIONS 138

(a) Let g : R → R be defined by g(x) = x2. What are g−1(4), g−1(0)
and g−1(−1)?

(b) If r : R→ Z, where r(x) = ⌈x⌉, what is r−1(1)?
7. Let f, g, and h all be functions from Z into Z defined by f(n) = n + 5,

g(n) = n− 2, and h(n) = n2. Define:
(a) f ◦ g

(b) f3

(c) f ◦ h

8. Define the following functions on the integers by f(k) = k + 1, g(k) = 2k,
and h(k) = ⌈k/2⌉

(a) Which of these functions are one-to-one?

(b) Which of these functions are onto?

(c) Express in simplest terms the compositions f ◦ g, g ◦ f , g ◦ h, h ◦ g,
and h2.

9. Let A be a nonempty set. Prove that if f is a bijection on A and f ◦ f = f ,
then f is the identity function, i

Hint. You have seen a similar proof in matrix algebra.

10. For the real matrix A =
(

a b

c d

)
, det(A) = ad− bc.

Recall that a bijection from a set to itself is also referred to as a
permutation of the set. Let π be a permutation of {a, b, c, d} such that
a becomes π(a), b becomes π(b), etc.

Let B =
(

π(a) π(b)
π(c) π(d)

)
. How many permutations of π leave the

determinant of A invariant, that is, det A = det B?
11. State and prove a theorem on inverse functions analogous to the one that

says that if a matrix has an inverse, that inverse is unique.
12. Let f and g be functions whose inverses exist. Prove that (f ◦ g)−1 =

g−1 ◦ f−1.
Hint. See Exercise 3 of Section 5.4.

13. Prove Theorem 7.3.6 and Theorem 7.3.7.
14. Prove the second half of Theorem 7.3.14.
15. Prove by induction that if n ≥ 2 and f1, f2, . . . , fn are invertible functions

on some nonempty set A, then (f1 ◦ f2 ◦ · · · ◦ fn) −1 = f−1
n ◦· · ·◦f−1

2 ◦f−1
1 .

The basis has been taken care of in Exercise 7.3.4.12.
16.

(a) Our definition of cardinality states that two sets, A and B, have
the same cardinality if there exists a bijection between the two sets.
Why does it not matter whether the bijection is from A into B or B
into A?

(b) Prove that “has the same cardinality as” is an equivalence relation
on sets.

17. Construct a table listing as many “Laws of Function Composition” as you
can identify. Use previous lists of laws as a guide.

18. Based on the definition of the identity function, show that for all functions
f : A→ A, f ◦ i = i ◦ f = f .

Chapter 8

Recursion and Recurrence
Relations

Fibonacci sequence

Zero, one! One, two, three! Five and eight!
Then thirteen, twenty-one! At this rate

Fibonacci appears;
The man’s sequence for years

Has kept math students studying late.

Goldie, The Omnificent English Dictionary In Limerick Form

An essential tool that anyone interested in computer science must master is how
to think recursively. The ability to understand definitions, concepts, algorithms,
etc., that are presented recursively and the ability to put thoughts into a
recursive framework are essential in computer science. One of our goals in this
chapter is to help the reader become more comfortable with recursion in its
commonly encountered forms.

A second goal is to discuss recurrence relations. We will concentrate on
methods of solving recurrence relations, including an introduction to generating
functions.

8.1 The Many Faces of Recursion
Consider the following definitions, all of which should be somewhat familiar to
you. When reading them, concentrate on how they are similar.

8.1.1 Binomial Coefficients
Here is a recursive definition of binomial coefficients, which we introduced in
Chapter 2.

Definition 8.1.1 Binomial Coefficient - Recursion Definition. Assume
n ≥ 0 and n ≥ k ≥ 0. We define

(
n
k

)
by

•
(

n

0

)
= 1

•
(

n
n

)
= 1 and

139

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 140

•
(

n
k

)
=
(

n−1
k

)
+
(

n−1
k−1
)

if n > k > 0

♢

Observation 8.1.2 A word about definitions: Strictly speaking, when mathe-
matical objects such as binomial coefficients are defined, they should be defined
just once. Since we defined binomial coefficients earlier, in Definition 2.4.3,
other statements describing them should be theorems. The theorem, in this
case, would be that the “definition” above is consistent with the original defini-
tion. Our point in this chapter in discussing recursion is to observe alternative
definitions that have a recursive nature. In the exercises, you will have the
opportunity to prove that the two definitions are indeed equivalent.

Here is how we can apply the recursive definition to compute
(5

2
)
.(

5
2

)
=
(

4
2

)
+
(

4
1

)
= (
(

3
2

)
+
(

3
1

)
) + (

(
3
1

)
+
(

3
0

)
)

=
(

3
2

)
+ 2
(

3
1

)
+ 1

= (
(

2
2

)
+
(

2
1

)
) + 2(

(
2
1

)
+
(

2
0

)
) + 1

= (1 +
(

2
1

)
) + 2(

(
2
1

)
+ 1) + 1

= 3
(

2
1

)
+ 4

= 3(
(

1
1

)
+
(

1
0

)
) + 4

= 3(1 + 1) + 4 = 10

8.1.2 Polynomials and Their Evaluation
Definition 8.1.3 Polynomial Expression in x over S (Non-Recursive).
Let n be an integer, n ≥ 0. An nth degree polynomial in x is an expression
of the form anxn + an−1xn−1 + · · ·+ a1x + a0, where an, an−1, . . . , a1, a0 are
elements of some designated set of numbers, S, called the set of coefficients and
an ̸= 0. ♢

We refer to x as a variable here, although the more precise term for x is
an indeterminate. There is a distinction between the terms indeterminate and
variable, but that distinction will not come into play in our discussions.

Zeroth degree polynomials are called constant polynomials and are simply
elements of the set of coefficients.

This definition is often introduced in algebra courses to describe expressions
such as f(n) = 4n3 + 2n2 − 8n + 9, a third-degree, or cubic, polynomial in
n. This definition has a drawback when the variable is given a value and the
expression must be evaluated. For example, suppose that n = 7. Your first
impulse is likely to do this:

f(7) = 4 · 73 + 2 · 72 − 8 · 7 + 9
= 4 · 343 + 2 · 49− 8 · 7 + 9
= 1423

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 141

A count of the number of operations performed shows that five multi-
plications and three additions/subtractions were performed. The first two
multiplications compute 72 and 73, and the last three multiply the powers of 7
times the coefficients. This gives you the four terms; and adding/subtracting a
list of k numbers requires k − 1 addition/subtractions. The following definition
of a polynomial expression suggests another more efficient method of evaluation.

Definition 8.1.4 Polynomial Expression in x over S (Recursive). Let
S be a set of coefficients and x a variable.

(a) A zeroth degree polynomial expression in x over S is a nonzero element
of S.

(b) For n ≥ 1, an nth degree polynomial expression in x over S is an expression
of the form p(x)x+a where p(x) is an (n−1)st degree polynomial expression
in x and a ∈ S.

♢
We can easily verify that f(n) = 4n3 + 2n2 − 8n + 9 is a third-degree

polynomial expression in n over Z based on this definition:

f(n) = 4n3 + 2n2 − 8n + 9 = ((4n + 2)n− 8)n + 9

Notice that 4 is a zeroth degree polynomial since it is an integer. Therefore
4n + 2 is a first-degree polynomial; therefore, (4n + 2)n− 8 is a second-degree
polynomial in n over Z; therefore, f(n) is a third-degree polynomial in n over
Z. The final expression for f(n) is called its telescoping form. If we use
it to calculate f(7), we need only three multiplications and three additions/
subtractions. This is called Horner’s method for evaluating a polynomial
expression.

Example 8.1.5 More Telescoping Polynomials.
(a) The telescoping form of p(x) = 5x4 + 12x3− 6x2 + x + 6 is (((5x + 12)x−

6)x+1)x+6. Using Horner’s method, computing the value of p(c) requires
four multiplications and four additions/subtractions for any real number
c.

(b) g(x) = −x5 + 3x4 + 2x2 + x has the telescoping form ((((−x + 3)x)x +
2)x + 1)x.

□
Many computer languages represent polynomials as lists of coefficients,

usually starting with the constant term. For example, g(x) = −x5+3x4+ 2x2+x
would be represented with the list {0, 1, 2, 0, 3,−1}. In both Mathematica and
Sage, polynomial expressions can be entered and manipulated, so the list
representation is only internal. Some programming languages require users to
program polynomial operations with lists. We will leave these programming
issues to another source.

8.1.3 Recursive Searching - The Binary Search
Next, we consider a recursive algorithm for a binary search within a sorted list
of items. Suppose r = {r(1), r(2), . . . , r(n)} represent a list of n items sorted
by a numeric key in descending order. The jth item is denoted r(j) and its key
value by r(j).key. For example, each item might contain data on the buildings
in a city and the key value might be the height of the building. Then r(1)
would be the item for the tallest building and r(1).key would be its height. The

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 142

algorithm BinarySearch(j, k) can be applied to search for an item in r with key
value C. This would be accomplished by the execution of BinarySearch(1, n).
When the algorithm is completed, the variable Found will have a value of true
if an item with the desired key value was found, and the value of location will
be the index of an item whose key is C. If Found keeps the value false, no
such item exists in the list. The general idea behind the algorithm is illustrated
in Figure 8.1.6

Figure 8.1.6 General Scheme for a Binary Search
In the following implementation of the Binary Search in SageMath, we

search within a sorted list of integers. Therefore, the items themselves are the
keys.

def BinarySearch(r,j,k,C):
found = False
if j <= k:

mid = floor((j + k)/2)
print('probing␣at␣position␣'+str(mid))
if r[mid] == C:

location = mid
found = True
print('found␣in␣position␣'+str(location))
return location

else:
if r[mid] > C:

BinarySearch(r,j, mid - 1,C)
else:

BinarySearch(r,mid + 1,k,C)
else:

print('not␣found')
return False

s=[1,9,13,16,30,31,32,33,36,37,38,45,49,50,52,61,63,64,69,77,79,80,81,83,86,90,93,96]
BinarySearch(s,0,len(s) -1,30)

probing at position 13
probing at position 6
probing at position 2
probing at position 4
found in position 4

8.1.4 Recursively Defined Sequences
For the next two examples, consider a sequence of numbers to be a list of
numbers consisting of a zeroth number, first number, second number, If
a sequence is given the name S, the kth number of S is usually written Sk or
S(k).

Example 8.1.7 Geometric Growth Sequence. Define the sequence of
numbers B by

B0 = 100 and

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 143

Bk = 1.08Bk−1 for k ≥ 1.

These rules stipulate that each number in the list is 1.08 times the previous
number, with the starting number equal to 100. For example

B3 = 1.08B2

= 1.08 (1.08B1)
= 1.08 (1.08 (1.08B0))
= 1.08(1.08(1.08 · 100))
= 1.083 · 100 = 125.971

□

Example 8.1.8 The Fibonacci Sequence. The Fibonacci sequence is the
sequence F defined by

F0 = 1, F1 = 1 and

Fk = Fk−2 + Fk−1 for k ≥ 2

□

8.1.5 Recursion
All of the previous examples were presented recursively. That is, every “object”
is described in one of two forms. One form is by a simple definition, which is
usually called the basis for the recursion. The second form is by a recursive
description in which objects are described in terms of themselves, with the
following qualification. What is essential for a proper use of recursion is that
the objects can be expressed in terms of simpler objects, where “simpler” means
closer to the basis of the recursion. To avoid what might be considered a circular
definition, the basis must be reached after a finite number of applications of
the recursion.

To determine, for example, the fourth item in the Fibonacci sequence we
repeatedly apply the recursive rule for F until we are left with an expression
involving F0 and F1:

F4 = F2 + F3

= (F0 + F1) + (F1 + F2)
= (F0 + F1) + (F1 + (F0 + F1))
= (1 + 1) + (1 + (1 + 1))
= 5

8.1.6 Iteration
On the other hand, we could compute a term in the Fibonacci sequence such
as F5 by starting with the basis terms and working forward as follows:

Table 8.1.9

F2 = F0 + F1 = 1 + 1 = 2
F3 = F1 + F2 = 1 + 2 = 3
F4 = F2 + F3 = 2 + 3 = 5
F5 = F3 + F4 = 3 + 5 = 8

This is called an iterative computation of the Fibonacci sequence. Here we
start with the basis and work our way forward to a less simple number, such

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 144

as 5. Try to compute F5 using the recursive definition for F as we did for F4.
It will take much more time than it would have taken to do the computations
above. Iterative computations usually tend to be faster than computations that
apply recursion. Therefore, one useful skill is being able to convert a recursive
formula into a nonrecursive formula, such as one that requires only iteration or
a faster method, if possible.

An iterative formula for
(

n
k

)
is also much more efficient than an application

of the recursive definition. The recursive definition is not without its merits,
however. First, the recursive equation is often useful in manipulating algebraic
expressions involving binomial coefficients. Second, it gives us an insight into
the combinatoric interpretation of

(
n
k

)
. In choosing k elements from {1, 2, ..., n},

there are
(

n−1
k

)
ways of choosing all k from {1, 2, ..., n− 1}, and there are

(
n−1
k−1
)

ways of choosing the k elements if n is to be selected and the remaining k − 1
elements come from {1, 2, ..., n− 1}. Note how we used the Law of Addition
from Chapter 2 in our reasoning.

BinarySearch Revisited. In the binary search algorithm, the place where
recursion is used is easy to pick out. When an item is examined and the key
is not the one you want, the search is cut down to a sublist of no more than
half the number of items that you were searching in before. Obviously, this
is a simpler search. The basis is hidden in the algorithm. The two cases that
complete the search can be thought of as the basis. Either you find an item
that you want, or the sublist that you have been left to search in is empty,
when j > k.

BinarySearch can be translated without much difficulty into any language
that allows recursive calls to its subprograms. The advantage to such a program
is that its coding would be much shorter than a nonrecursive program that does
a binary search. However, in most cases the recursive version will be slower
and require more memory at execution time.

8.1.7 Induction and Recursion
The definition of the positive integers in terms of Peano’s Postulates is a
recursive definition. The basis element is the number 1 and the recursion is
that if n is a positive integer, then so is its successor. In this case, n is the
simple object and the recursion is of a forward type. Of course, the validity of
an induction proof is based on our acceptance of this definition. Therefore, the
appearance of induction proofs when recursion is used is no coincidence.

Example 8.1.10 Proof of a formula for B. A formula for the sequence B
in Example 8.1.7 is B = 100(1.08)k for k ≥ 0. A proof by induction follow.

If k = 0, then B = 100(1.08)0 = 100, as defined. Now assume that for some
k ≥ 1, the formula for Bk is true.

Bk+1 = 1.08Bk by the recursive definition
= 1.08

(
100(1.08)k

)
by the induction hypothesis

= 100(1.08)k+1

hence the formula is true for k + 1
The formula that we have just proven for B is called a closed form expression.

It involves no recursion or summation signs. □

Definition 8.1.11 Closed Form Expression. Let E = E (x1, x2, . . . , xn) be
an algebraic expression involving variables x1, x2, . . . , xn which are allowed to
take on values from some predetermined set. E is a closed form expression
if there exists a number T such that the evaluation of E with any allowed

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 145

values of the variables will take no more than T operations (alternatively, T
time units). ♢

Example 8.1.12 Reducing a summation to closed form. The sum
E(n) =

∑n
k=1 k is not a closed form expression because the number of additions

needed to evaluate E(n) grows indefinitely with n. A closed form expression
that computes the value of E(n) is n(n+1)

2 , which only requires T = 3 operations.
□

8.1.8 Exercises
1. By the recursive definition of binomial coefficients,

(7
2
)

=
(6

2
)

+
(6

1
)
. Con-

tinue expanding
(7

2
)

to express it in terms of quantities defined by the
basis. Check your result by applying the factorial definition of

(
n
k

)
.

2. Define the sequence L by L0 = 5 and for k ≥ 1, Lk = 2Lk−1−7. Determine
L4 and prove by induction that Lk = 7− 2k+1.

3. Let p(x) = x5 + 3x4 − 15x3 + x− 10.
(a) Write p(x) in telescoping form.

(b) Use a calculator to compute p(3) using the original form of p(x).

(c) Use a calculator to compute p(3) using the telescoping form of p(x).

(d) Compare your speed in parts b and c.
4. Suppose that a list of nine items, (r(l), r(2), ..., r(9)), is sorted by key in

decending order so that r(3).key = 12 and r(4).key = 10. List the execu-
tions of the BinarySearch algorithms that would be needed to complete
BinarySearch(1,9) when:

(a) The search key is C = 12 (b) The search key is C = 11

Assume that distinct items have distinct keys.
5. What is wrong with the following definition of f : R→ R? f(0) = 1 and

f(x) = f(x/2)/2 if x ̸= 0.
6. Prove the two definitions of binomials coefficients, Definition 2.4.3 and

Definition 8.1.1, are equivalent.
7. Prove by induction that if n ≥ 0,

∑n
k=0

(
n
k

)
= 2n

8.2 Sequences

8.2.1 Sequences and Ways They Are Defined
Definition 8.2.1 Sequence. A sequence is a function from the natural
numbers into some predetermined set. The image of any natural number k can
be written as S(k) or Sk and is called the kth term of S. The variable k is
called the index or argument of the sequence. ♢

For example, a sequence of integers would be a function S : N→ Z.

Example 8.2.2 Three sequences defined in different ways.
(a) The sequence A defined by A(k) = k2−k, k ≥ 0, is a sequence of integers.

(b) The sequence B defined recursively by B(0) = 2 and B(k) = B(k− 1) + 3
for k ≥ 1 is a sequence of integers. The terms of B can be computed

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 146

either by applying the recursion formula or by iteration. For example,

B(3) = B(2) + 3
= (B(1) + 3) + 3
= ((B(0) + 3) + 3) + 3
= ((2 + 3) + 3) + 3 = 11

or
B(1) = B(0) + 3 = 2 + 3 = 5
B(2) = B(1) + 3 = 5 + 3 = 8
B(3) = B(2) + 3 = 8 + 3 = 11

(c) Let Cr be the number of strings of 0’s and 1’s of length r having no
consecutive zeros. These terms define a sequence C of integers.

□
Remarks:

(1) A sequence is often called a discrete function.

(2) Although it is important to keep in mind that a sequence is a function,
another useful way of visualizing a sequence is as a list. For example, the se-
quence A in the previous example could be written as (0, 0, 2, 6, 12, 20, . . .).
Finite sequences can appear much the same way when they are the input
to or output from a computer. The index of a sequence can be thought of
as a time variable. Imagine the terms of a sequence flashing on a screen
every second. Then sk would be what you see in the kth second. It is con-
venient to use terminology like this in describing sequences. For example,
the terms that precede the kth term of A would be A(0), A(1), ..., A(k−1).
They might be called the earlier terms.

8.2.2 A Fundamental Problem
Given the definition of any sequence, a fundamental problem that we will
concern ourselves with is to devise a method for determining any specific term
in a minimum amount of time. Generally, time can be equated with the number
of operations needed. In counting operations, the application of a recursive
formula would be considered an operation.

(a) The terms of A in Example 8.2.2 are very easy to compute because of
the closed form expression. No matter what term you decide to compute,
only three operations need to be performed.

(b) How to compute the terms of B is not so clear. Suppose that you wanted to
know B(100). One approach would be to apply the definition recursively:

B(100) = B(99) + 3 = (B(98) + 3) + 3 = · · ·

The recursion equation for B would be applied 100 times and 100 additions
would then follow. To compute B(k) by this method, 2k operations are
needed. An iterative computation of B(k) is an improvement: B(1) =
B(0) + 3 = 2 + 3 = 5

B(2) = B(1) + 3 = 5 + 3 = 8

etc. Only k additions are needed. This still isn’t a good situation. As k
gets large, we take more and more time to compute B(k). The formula

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 147

B(k) = B(k − 1) + 3 is called a recurrence relation on B. The process of
finding a closed form expression for B(k), one that requires no more than
some fixed number of operations, is called solving the recurrence relation.

(c) The determination of Ck is a standard kind of problem in combinatorics.
One solution is by way of a recurrence relation. In fact, many problems
in combinatorics are most easily solved by first searching for a recurrence
relation and then solving it. The following observation will suggest the
recurrence relation that we need to determine Ck. If k ≥ 2, then every
string of 0’s and 1’s with length k and no two consecutive 0’s is either
1sk−1 or 01sk−2, where sk−1 and sk−2 are strings with no two consecutive
0’s of length k − 1 and k − 2 respectively. From this observation we can
see that Ck = Ck−2 + Ck−1 for k ≥ 2. The terms C0 = 1 and C1 = 2
are easy to determine by enumeration. Now, by iteration, any Ck can
be easily determined. For example, C5 = 21 can be computed with five
additions. A closed form expression for Ck would be an improvement.
Note that the recurrence relation for Ck is identical to the one for The
Fibonacci Sequence. Only the basis is different.

8.2.3 Exercises
1. Prove by induction that B(k) = 3k + 2, k ≥ 0, is a closed form expression

for the sequence B in Example 8.2.2
2.

(a) Consider sequence Q defined by Q(k) = 2k + 9, k ≥ 1. Complete
the table below and determine a recurrence relation that describes

Q.

k Q(k) Q(k)−Q(k − 1)
2
3
4
5
6
7

(b) Let A(k) = k2 − k, k ≥ 0. Complete the table below and determine
a recurrence relation for A.

k A(k) A(k)−A(k − 1) A(k)− 2A(k − 1) + A(k − 2)
2
3
4
5

3. Given k lines (k ≥ 0) on a plane such that no two lines are parallel and
no three lines meet at the same point, let P (k) be the number of regions
into which the lines divide the plane (including the infinite ones (see
Figure 8.2.3). Describe how the recurrence relation P (k) = P (k − 1) + k
can be derived. Given that P (0) = 1, determine P (5).

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 148

Figure 8.2.3 A general configuration of three lines
4. A sample of a radioactive substance is expected to decay by 0.15 percent

each hour. If wt, t ≥ 0, is the weight of the sample t hours into an
experiment, write a recurrence relation for w.

5. Let M(n) be the number of multiplications needed to evaluate an nth

degree polynomial. Use the recursive definition of a polynomial expression
to define M recursively.

6. Let S be sequence of integers. Using short English sentences, not sym-
bols, describe what the following propositions say about S. Are the two
propositions equivalent?

(a) (∀M)N((∃n)N(S(n) ≥M))

(b) (∀M)N((∃N)N((∀n)N(n ≥ N → S(n) ≥M)))

8.3 Recurrence Relations
In this section we will begin our study of recurrence relations and their solutions.
Our primary focus will be on the class of finite order linear recurrence relations
with constant coefficients (shortened to finite order linear relations). First, we
will examine closed form expressions from which these relations arise. Second,
we will present an algorithm for solving them. In later sections we will consider
some other common relations (8.4) and introduce two additional tools for
studying recurrence relations: generating functions (8.5) and matrix methods
(Chapter 12).

8.3.1 Definition and Terminology
Definition 8.3.1 Recurrence Relation. Let S be a sequence of numbers.
A recurrence relation on S is a formula that relates all but a finite number of
terms of S to previous terms of S. That is, there is a k0 in the domain of S
such that if k ≥ k0, then S(k) is expressed in terms of some (and possibly all)
of the terms that precede S(k). If the domain of S is {0, 1, 2, . . . }, the terms
S(0), S(1), ..., S (k0 − 1) are not defined by the recurrence formula. Their values
are the initial conditions (or boundary conditions, or basis) that complete the
definition of S. ♢

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 149

Example 8.3.2 Some Examples of Recurrence Relations.
(a) The Fibonacci sequence is defined by the recurrence relation Fk = Fk−2 +

Fk−1, k ≥ 2, with the initial conditions F0 = 1 and F1 = 1. The
recurrence relation is called a second-order relation because Fk depends
on the two previous terms of F . Recall that the sequence C in Section
8.2, Example 8.2.2, can be defined with the same recurrence relation, but
with different initial conditions.

(b) The relation T (k) = 2T (k − 1)2 − kT (k − 3) is a third-order recurrence
relation. If values of T (0), T (1), and T (2) are specified, then T is
completely defined.

(c) The recurrence relation S(n) = S(⌊n/2⌋) + 5, n > 0, with S(0) = 0 has
infinite order. To determine S(n) when n is even, you must go back n/2
terms. Since n/2 grows unbounded with n, no finite order can be given
to S.

□

8.3.2 Solving Recurrence Relations
Sequences are often most easily defined with a recurrence relation; however,
the calculation of terms by directly applying a recurrence relation can be time-
consuming. The process of determining a closed form expression for the terms
of a sequence from its recurrence relation is called solving the relation. There
is no single technique or algorithm that can be used to solve all recurrence
relations. In fact, some recurrence relations cannot be solved. The relation
that defines T above is one such example. Most of the recurrence relations
that you are likely to encounter in the future are classified as finite order linear
recurrence relations with constant coefficients. This class is the one that we
will spend most of our time with in this chapter.

Definition 8.3.3 nth Order Linear Recurrence Relation. Let S be a
sequence of numbers with domain k ≥ 0. An nth order linear recurrence relation
on S with constant coefficients is a recurrence relation that can be written in
the form

S(k) + C1S(k − 1) + ... + CnS(k − n) = f(k) for k ≥ n

where C1, C2, . . . , Cn are constants and f is a numeric function that is defined
for k ≥ n. ♢

Note: We will shorten the name of this class of relations to nth order linear
relations. Therefore, in further discussions, S(k) + 2kS(k − 1) = 0 would not
be considered a first-order linear relation.
Example 8.3.4 Some Finite Order Linear Relations.

(a) The Fibonacci sequence is defined by the second-order linear relation
because Fk − Fk−1 − Fk−2 = 0

(b) The relation P (j) + 2P (j− 3) = j2 is a third-order linear relation. In this
case, C1 = C2 = 0.

(c) The relation A(k) = 2(A(k−1)+k) can be written as A(k)−2A(k−1) = 2k.
Therefore, it is a first-order linear relation.

□

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 150

8.3.3 Recurrence Relations Obtained from “Solutions”
Before giving an algorithm for solving finite order linear relations, we will
examine recurrence relations that arise from certain closed form expressions.
The closed form expressions are selected so that we will obtain finite order
linear relations from them. This approach may seem a bit contrived, but if you
were to write down a few simple algebraic expressions, chances are that most
of them would be similar to the ones we are about to examine.

For our first example, consider D, defined by D(k) = 5 · 2k, k ≥ 0. If k ≥ 1,
D(k) = 5 · 2k = 2 · 5 · 2k−1 = 2D(k − 1). Therefore, D satisfies the first order
linear relation D(k)− 2D(k − 1) = 0 and the initial condition D(0) = 5 serves
as an initial condition for D.

As a second example, consider C(k) = 3k−1 + 2k+1 + k , k ≥ 0. Quite a bit
more algebraic manipulation is required to get our result:

Table 8.3.5

C(k) = 3k−1 + 2k+1 + k Original equation
3C(k − 1) = 3k−1 + 3 · 2k + 3(k − 1) Substitute k − 1 for k

and multiply by 3
Subtract the second equation
from the first.

C(k)− 3C(k − 1) = −2k − 2k + 3 3k−1 term is eliminated.
This is a first order relation.

2C(k − 1)− 6C(k − 2) = −2k − 2(2(k − 1)) + 6 Substitute k − 1 for k in the
third equation, multiply by 2.
Subtract the 4th equation from the 3rd.

C(k)− 5C(k − 1) + 6C(k − 2) = 2k − 7 2k+1term is eliminated.
This is 2nd order relation.

The recurrence relation that we have just obtained, defined for k ≥ 2,
together with the initial conditions C(0) = 7/3 and C(1) = 6, define C.

Table 8.3.6 summarizes our results together with a few other examples that
we will let the reader derive. Based on these results, we might conjecture that
any closed form expression for a sequence that combines exponential expressions
and polynomial expressions will be solutions of finite order linear relations. Not
only is this true, but the converse is true: a finite order linear relation defines a
closed form expression that is similar to the ones that were just examined. The
only additional information that is needed is a set of initial conditions.

Table 8.3.6 Recurrence Relations Obtained from Given Sequences

Closed Form Expression Recurrence Relation
D(k) = 5 · 2k D(k)− 2D(k − 1) = 0

C(k) = 3k−1 + 2k+1 + k C(k)− 2C(k − 1)− 6C(k − 2) = 2k − 7
Q(k) = 2k + 9 Q(k)−Q(k − 1) = 2
A(k) = k2 − k A(k)− 2A(k − 1) + A(k − 2) = 2
B(k) = 2k2 + 1 B(k)− 2B(k − 1) + B(k − 2) = 4

G(k) = 2 · 4k − 5(−3)k G(k)−G(k − 1) + 12G(k − 2) = 0
J(k) = (3 + k)2k J(k)− 4J(k − 1) + 4J(k − 2) = 0

Definition 8.3.7 Homogeneous Recurrence Relation. An nth order
linear relation is homogeneous if f(k) = 0 for all k. For each recurrence relation
S(k) + C1S(k − 1) + . . . + CnS(k − n) = f(k), the associated homogeneous
relation is S(k) + C1S(k − 1) + . . . + CnS(k − n) = 0 ♢

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 151

Example 8.3.8 First Order Homogeneous Recurrence Relations.
D(k)− 2D(k − 1) = 0 is a first-order homogeneous relation. Since it can also
be written as D(k) = 2D(k − 1), it should be no surprise that it arose from an
expression that involves powers of 2. More generally, you would expect that
the solution of L(k) − aL(k − 1) would involve ak. Actually, the solution is
L(k) = L(0)ak, where the value of L(0) is given by the initial condition. □

Example 8.3.9 A Second Order Example. Consider the second-order
homogeneous relation S(k) − 7S(k − 1) + 12S(k − 2) = 0 together with the
initial conditions S(0) = 4 and S(1) = 4. From our discussion above, we can
predict that the solution to this relation involves terms of the form bak, where
b and a are nonzero constants that must be determined. If the solution were to
equal this quantity exactly, then

S(k) = bak

S(k − 1) = bak−1

S(k − 2) = bak−2

Substitute these expressions into the recurrence relation to get

bak − 7bak−1 + 12bak−2 = 0

Each term on the left-hand side of this equation has a factor of bak−2, which is
nonzero. Dividing through by this common factor yields

a2 − 7a + 12 = (a− 3)(a− 4) = 0 (8.3.1)

Therefore, the only possible values of a are 3 and 4. Equation (8.3.1)
is called the characteristic equation of the recurrence relation. The fact is
that our original recurrence relation is true for any sequence of the form
S(k) = b13k + b24k, where b1 and b2 are real numbers. This set of sequences is
called the general solution of the recurrence relation. If we didn’t have initial
conditions for S, we would stop here. The initial conditions make it possible
for us to find definite values for b1 and b2.{

S(0) = 4
S(1) = 4

}
⇒
{

b130 + b240 = 4
b131 + b241 = 4

}
⇒
{

b1 + b2 = 4
3b1 + 4b2 = 4

}
The solution of this set of simultaneous equations is b1 = 12 and b2 = −8

and so the solution is S(k) = 12 · 3k − 8 · 4k. □

Definition 8.3.10 Characteristic Equation. The characteristic equation of
the homogeneous nth order linear relation S(k)+C1S(k−1)+. . .+CnS(k−n) = 0
is the nth degree polynomial equation

an +
n∑

j=1
Cjan−j = an + C1an−1 + · · ·+ Cn−1a + Cn = 0

The left-hand side of this equation is called the characteristic polynomial. The
roots of the characteristic polynomial are called the characteristic roots of the
equation. ♢

Example 8.3.11 Some characteristic equations.
(a) The characteristic equation of F (k)−F (k−1)−F (k−2) = 0 is a2−a−1 =

0.

(b) The characteristic equation of Q(k)+2Q(k−1)−3Q(k−2)−6Q(k−4) = 0

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 152

is a4 + 2a3 − 3a2 − 6 = 0. Note that the absence of a Q(k − 3) term
means that there is not an x4−3 = x term appearing in the characteristic
equation.

□

Algorithm 8.3.12 Algorithm for Solving Homogeneous Finite Order
Linear Relations.

(a) Write out the characteristic equation of the relation S(k) + C1S(k − 1) +
. . . + CnS(k − n) = 0, which is an + C1an−1 + · · ·+ Cn−1a + Cn = 0.

(b) Find all roots of the characteristic equation, the characteristic roots.

(c) If there are n distinct characteristic roots, a1, a2, . . . an, then the general
solution of the recurrence relation is S(k) = b1a1

k + b2a2
k + · · ·+ bnan

k.
If there are fewer than n characteristic roots, then at least one root is a
multiple root. If aj is a double root, then the bjaj

k term is replaced with
(bj,0 + bj,1k) ak

j . In general, if aj is a root of multiplicity p, then the bjaj
k

term is replaced with
(
bj,0 + bj,1k + · · ·+ bj,(p−1)k

p−1) ak
j .

(d) If n initial conditions are given, we get n linear equations in n unknowns
(the bj

′s from Step 3) by substitution. If possible, solve these equations to
determine a final form for S(k).

Although this algorithm is valid for all values of n, there are limits to the
size of n for which the algorithm is feasible. Using just a pencil and paper, we
can always solve second-order equations. The quadratic formula for the roots
of ax2 + bx + c = 0 is

x = −b±
√

b2 − 4ac

2a
The solutions of a2 + C1a + C2 = 0 are then

1
2

(
−C1 +

√
C12 − 4C2

)
and 1

2

(
−C1 −

√
C12 − 4C2

)
Although cubic and quartic formulas exist, they are too lengthy to introduce

here. For this reason, the only higher-order relations (n ≥ 3) that you could be
expected to solve by hand are ones for which there is an easy factorization of
the characteristic polynomial.

Example 8.3.13 A solution using the algorithm. Suppose that T is
defined by T (k) = 7T (k − 1)− 10T (k − 2), with T (0) = 4 and T (1) = 17. We
can solve this recurrence relation with Algorithm 8.3.12:

(a) Note that we have written the recurrence relation in “nonstandard” form.
To avoid errors in this easy step, you might consider a rearrangement of
the equation to, in this case, T (k)−7T (k−1)+10T (k−2) = 0. Therefore,
the characteristic equation is a2 − 7a + 10 = 0.

(b) The characteristic roots are 1
2
(
7 +
√

49− 40
)

= 5 and 1
2
(
7−
√

49− 40
)

=
2. These roots can be just as easily obtained by factoring the characteristic
polynomial into (a− 5)(a− 2).

(c) The general solution of the recurrence relation is T (k) = b12k + b25k.

(d)
{

T (0) = 4
T (1) = 17

}
⇒
{

b120 + b250 = 4
b121 + b251 = 17

}
⇒
{

b1 + b2 = 4
2b1 + 5b2 = 17

}
The simultaneous equations have the solution b1 = 1 and b2 = 3. There-
fore, T (k) = 2k + 3 · 5k.

□

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 153

Here is one rule that might come in handy: If the coefficients of the
characteristic polynomial are all integers, with the constant term equal to m,
then the only possible rational characteristic roots are divisors of m (both
positive and negative).

With the aid of a computer (or possibly only a calculator), we can increase
n. Approximations of the characteristic roots can be obtained by any of several
well-known methods, some of which are part of standard software packages.
There is no general rule that specifies the values of n for which numerical
approximations will be feasible. The accuracy that you get will depend on the
relation that you try to solve. (See Exercise 17 of this section.)

Example 8.3.14 Solution of a Third Order Recurrence Relation. Solve
S(k)− 7S(k − 2) + 6S(k − 3) = 0, where S(0) = 8, S(1) = 6, and S(2) = 22.

(a) The characteristic equation is a3 − 7a + 6 = 0.

(b) The only rational roots that we can attempt are ±1,±2,±3, and± 6. By
checking these, we obtain the three roots 1, 2, and −3.

(c) The general solution is S(k) = b11k + b22k + b3(−3)k. The first term can
simply be written b1 .

(d)

S(0) = 8
S(1) = 6
S(2) = 22

 ⇒

b1 + b2 + b3 = 8

b1 + 2b2 − 3b3 = 6
b1 + 4b2 + 9b3 = 22

 You can solve this sys-

tem by elimination to obtain b1 = 5, b2 = 2, and b3 = 1. Therefore,
S(k) = 5 + 2 · 2k + (−3)k = 5 + 2k+1 + (−3)k

□

Example 8.3.15 Solution with a Double Characteristic Root. Solve
D(k)− 8D(k − 1) + 16D(k − 2) = 0, where D(2) = 16 and D(3) = 80.

(a) Characteristic equation: a2 − 8a + 16 = 0.

(b) a2− 8a + 16 = (a− 4)2. Therefore, there is a double characteristic root, 4.

(c) General solution: D(k) = (b1,0 + b1,1k) 4k.

(d) {
D(2) = 16
D(3) = 80

}
⇒
{

(b1,0 + b1,12) 42 = 16
(b1,0 + b1,13) 43 = 80

}
⇒
{

16b1,0 + 32b1,1 = 16
64b1,0 + 192b1,1 = 80

}
⇒
{

b1,0 = 1
2

b1,1 = 1
4

}

Therefore D(k) = (1/2 + (1/4)k)4k = (2 + k)4k−1.

□

8.3.4 Solution of Nonhomogeneous Finite Order Linear
Relations

Our algorithm for nonhomogeneous relations will not be as complete as for
the homogeneous case. This is due to the fact that different right-hand sides
(f(k)’s) call for different rules in obtaining a particular solution.

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 154

Algorithm 8.3.16 Algorithm for Solving Nonhomogeneous Finite
Order Linear Relations. To solve the recurrence relation S(k) + C1S(k −
1) + . . . + CnS(k − n) = f(k)

(1) Write the associated homogeneous relation and find its general solution
(Steps (a) through (c) of Algorithm 8.3.12). Call this the homogeneous
solution, S(h)(k).

(2) Start to obtain what is called a particular solution, S(p)(k) of the recurrence
relation by taking an educated guess at the form of a particular solution.
For a large class of right-hand sides, this is not really a guess, since
the particular solution is often the same type of function as f(k) (see
Table 8.3.17).

(3) Substitute your guess from Step 2 into the recurrence relation. If you made
a good guess, you should be able to determine the unknown coefficients of
your guess. If you made a wrong guess, it should be apparent from the
result of this substitution, so go back to Step 2.

(4) The general solution of the recurrence relation is the sum of the homoge-
neous and particular solutions. If no conditions are given, then you are
finished. If n initial conditions are given, they will translate to n linear
equations in n unknowns and solve the system to get a complete solution.

Table 8.3.17 Particular solutions for given right-hand sides

Right Hand Side, f(k) Form of Particular Solution, S(p)(k)
Constant, q Constant, d

Linear Function, q0 + q1k Linear Function, d0 + d1k

mth degree polynomial, q0 + q1k + · · ·+ qmkm mth degree polynomial, d0 + d1k + · · ·+ dmkm

exponential function, qak exponential function, dak

Example 8.3.18 Solution of a Nonhomogeneous First Order Recur-
rence Relation. Solve S(k) + 5S(k − 1) = 9, with S(0) = 6.

(a) The associated homogeneous relation,S(k) + 5S(k − 1) = 0 has the
characteristic equation a + 5 = 0; therefore, a = −5. The homogeneous
solution is S(h)(k) = b(−5)k.

(b) Since the right-hand side is a constant, we guess that the particular
solution will be a constant, d.

(c) If we substitute S(p)(k) = d into the recurrence relation, we get d+5d = 9,
or 6d = 9. Therefore, S(p)(k) = 1.5.

(d) The general solution of the recurrence relation is S(k) = S(h)(k) +
S(p)(k) = b(−5)k + 1.5 The initial condition will give us one equation
to solve in order to determine b. S(0) = 6 ⇒ b(−5)0 + 1.5 = 6 ⇒
b + 1.5 = 6 Therefore, b = 4.5 and S(k) = 4.5(−5)k + 1.5.

□

Example 8.3.19 Solution of a Nonhomogeneous Second Order Re-
currence Relation. Consider T (k)− 7T (k − 1) + 10T (k − 2) = 6 + 8k with
T (0) = 1 and T (1) = 2.

(a) From Example 8.3.13, we know that T (h)(k) = b12k +b25k. Caution:Don’t
apply the initial conditions to T (h) until you add T (p)!

(b) Since the right-hand side is a linear polynomial, T (p) is linear; that is,

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 155

T (p)(k) = d0 + d1k.

(c) Substitution into the recurrence relation yields: (d0 + d1k)−7 (d0 + d1(k − 1))+
10 (d0 + d1(k − 2)) = 6 + 8k ⇒ (4d0 − 13d1) + (4d1) k = 6 + 8k Two
polynomials are equal only if their coefficients are equal. Therefore,{

4d0 − 13d1 = 6
4d1 = 8

}
⇒
{

d0 = 8
d1 = 2

}
(d) Use the general solution T (k) = b12k + b25k + 8 + 2k and the initial condi-

tions to get a final solution:
{

T (0) = 1
T (1) = 2

}
⇒
{

b1 + b2 + 8 = 1
2b1 + 5b2 + 10 = 2

}
⇒
{

b1 + b2 = −7
2b1 + 5b2 = −8

}
⇒
{

b1 = −9
b2 = 2

}
Therefore, T (k) = −9 · 2k + 2 · 5k + 8 + 2k.

□

Note 8.3.20 A quick note on interest rates. When a quantity, such as a
savings account balance, is increased by some fixed percent, it is most easily
computed with a multiplier. In the case of an 8% increase, the multiplier is
1.08 because any original amount A, has 0.08A added to it, so that the new
balance is A + 0.08A = (1 + 0.08)A = 1.08A.

Another example is that if the interest rate is 3.5%, the multiplier would
be 1.035. This presumes that the interest is applied at the end of year for
3.5% annual interest, often called simple interest. If the interest is applied
monthly, and we assume a simplifed case where each month has the same
length, the multiplier after every month would be

(
1 + 0.035

12
)
≈ 1.00292. After

a year passes, this multiplier would be applied 12 times, which is the same as
multiplying by 1.0029212 ≈ 1.03557. That increase from 1.035 to 1.03557 is the
effect of compound interest.
Example 8.3.21 A Sort of Annuity. Suppose you open a savings account
that pays an annual interest rate of 8%. In addition, suppose you decide to
deposit one dollar when you open the account, and you intend to double your
deposit each year. Let B(k) be your balance after k years. B can be described
by the relation B(k) = 1.08B(k− 1) + 2k, with S(0) = 1. If, instead of doubling
the deposit each year, you deposited a constant amount, q, the 2k term would
be replaced with q. A sequence of regular deposits such as this is called a simple
annuity.

Returning to the original situation,

(a) B(h)(k) = b1(1.08)k

(b) B(p)(k) should be of the form d2k.

(c)

d2k = 1.08d2k−1 + 2k ⇒ (2d)2k−1 = 1.08d2k−1 + 2 · 2k−1

⇒ 2d = 1.08d + 2
⇒ .92d = 2
⇒ d = 2.174 to the nearest thousandth)

Therefore B(p)(k) = 2.174 · 2k.

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 156

(d) B(0) = 1⇒ b1 + 2.174 = 1

⇒ b1 = −1.174
Therefore, B(k) = −1.174 · 1.08k + 2.174 · 2k.

□

Example 8.3.22 Matching Roots. Find the general solution to S(k) −
3S(k − 1)− 4S(k − 2) = 4k.

(a) The characteristic roots of the associated homogeneous relation are −1
and 4. Therefore, S(h)(k) = b1(−1)k + b24k.

(b) A function of the form d4k will not be a particular solution of the nonho-
mogeneous relation since it solves the associated homogeneous relation.
When the right-hand side involves an exponential function with a base
that equals a characteristic root,you should multiply your guess at a
particular solution by k. Our guess at S(p)(k) would then be dk4k . See
Observation 8.3.23 for a more complete description of this rule.

(c) Substitute dk4k into the recurrence relation for S(k):

dk4k − 3d(k − 1)4k−1 − 4d(k − 2)4k−2 = 4k

16dk4k−2 − 12d(k − 1)4k−2 − 4d(k − 2)4k−2 = 4k

Each term on the left-hand side has a factor of 4k−2

16dk − 12d(k − 1)− 4d(k − 2) = 4220d = 16⇒ d = 0.8

Therefore, S(p)(k) = 0.8k4k.

(d) The general solution to the recurrence relation is

S(k) = b1(−1)k + b24k + 0.8k4k

□

Observation 8.3.23 When the base of right-hand side is equal to a
characteristic root. If the right-hand side of a nonhomogeneous relation
involves an exponential with base a, and a is also a characteristic root of
multiplicity p, then multiply your guess at a particular solution as prescribed
in Table 8.3.17 by kp, where k is the index of the sequence.
Example 8.3.24 Examples of matching bases.

(a) If S(k)− 9S(k − 1) + 20S(k − 2) = 2 · 5k, the characteristic roots are 4
and 5. Since 5 matches the base of the right side, S(p)(k) will take the
form dk5k.

(b) If S(n) − 6S(n − 1) + 9S(n − 2) = 3n+1 the only characteristic root is
3, but it is a double root (multiplicity 2). Therefore, the form of the
particular solution is dn23n.

(c) If Q(j)−Q(j−1)−12Q(j−2) = (−3)j +6 ·4j , the characteristic roots are
−3 and 4. The form of the particular solution will be d1j(−3)j + d2j · 4j .

(d) If S(k)− 9S(k − 1) + 8S(k − 2) = 9k + 1 = (9k + 1)1k, the characteristic
roots are 1 and 8. If the right-hand side is a polynomial, as it is in this
case, then the exponential factor 1k can be introduced. The particular
solution will take the form k (d0 + d1k).

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 157

□
We conclude this section with a comment on the situation in which the

characteristic equation gives rise to complex roots. If we restrict the coefficients
of our finite order linear relations to real numbers, or even to integers, we
can still encounter characteristic equations whose roots are complex. Here,
we will simply take the time to point out that our algorithms are still valid
with complex characteristic roots, but the customary method for expressing
the solutions of these relations is different. Since an understanding of these
representations requires some background in complex numbers, we will simply
suggest that an interested reader can refer to a more advanced treatment of
recurrence relations (see also difference equations).

8.3.5 Exercises

Exercise Group. Solve the following sets of recurrence relations and initial
conditions:

1. S(k)− 10S(k − 1) + 9S(k − 2) = 0, S(0) = 3, S(1) = 11
2. S(k)− 9S(k − 1) + 18S(k − 2) = 0, S(0) = 0, S(1) = 3
3. S(k)− 0.25S(k − 1) = 0, S(0) = 6
4. S(k)− 20S(k − 1) + 100S(k − 2) = 0, S(0) = 2, S(1) = 50
5. S(k)− 2S(k − 1) + S(k − 2) = 2, S(0) = 25, S(1) = 16
6. S(k)− S(k − 1)− 6S(k − 2) = −30, S(0) = 7, S(1) = 6
7. S(k)− 5S(k − 1) = 5k, S(0) = 3
8. S(k)− 5S(k − 1) + 6S(k − 2) = 2, S(0) = −1, S(1) = 0
9. S(k)− 4S(k − 1) + 4S(k − 2) = 3k + 2k, S(0) = 1, S(1) = 1
10. S(k) = rS(k − 1) + a, S(0) = 0, r, a ≥ 0, r ̸= 1
11. S(k) − 4S(k − 1) − 11S(k − 2) + 30S(k − 3) = 0, S(0) = 0,S(1) =

−35, S(2) = −85
12. Find a closed form expression for P (k) in Exercise 3 of Section 8.2.
13.

(a) Find a closed form expression for the terms of the Fibonacci sequence
(see Example 8.1.8).

(b) The sequence C was defined by Cr = the number of strings of zeros
and ones with length r having no consecutive zeros (Example 8.2.2(c)).
Its recurrence relation is the same as that of the Fibonacci sequence.
Determine a closed form expression for Cr, r ≥ 1.

14. If S(n) =
∑n

j=1 g(j),n ≥ 1, then S can be described with the recurrence
relation S(n) = S(n− 1) + g(n). For each of the following sequences that
are defined using a summation, find a closed form expression:

(a) S(n) =
∑n

j=1 j, n ≥ 1

(b) Q(n) =
∑n

j=1 j2, n ≥ 1

(c) P (n) =
∑n

j=1
(1

2
)j , n ≥ 0

(d) T (n) =
∑n

j=1 j3, n ≥ 1

15. Let D(n) be the number of ways that the set {1, 2, ..., n}, n ≥ 1, can be
partitioned into two nonempty subsets.

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 158

(a) Find a recurrence relation for D. (Hint: It will be a first-order linear
relation.)

(b) Solve the recurrence relation.
16. If you were to deposit a certain amount of money at the end of each

year for a number of years, this sequence of payments would be called an
annuity (see Example 8.3.21).

(a) Find a closed form expression for the balance or value of an annuity
that consists of payments of q dollars at a rate of interest of i. Note
that for a normal annuity, the first payment is made after one year.

(b) With an interest rate of 5.5 percent, how much would you need to
deposit into an annuity to have a value of one million dollars after
18 years?

(c) The payment of a loan is a form of annuity in which the initial value
is some negative amount (the amount of the loan) and the annuity
ends when the value is raised to zero. How much could you borrow
if you can afford to pay $5,000 per year for 25 years at 11 percent
interest?

17. Suppose that C is a small positive number. Consider the recurrence relation
B(k)−2B(k−1)+

(
1− C2)B(k−2) = C2, with initial conditions B(0) = 1

and B(1) = 1. If C is small enough, we might consider approximating the
relation by replacing 1−C2 with 1 and C2 with 0. Solve the original relation
and its approximation. Let Ba a be the solution of the approximation.
Compare closed form expressions for B(k) and Ba(k). Their forms are
very different because the characteristic roots of the original relation were
close together and the approximation resulted in one double characteristic
root. If characteristic roots of a relation are relatively far apart, this
problem will not occur. For example, compare the general solutions of
S(k) + 1.001S(k− 1)− 2.004002S(k− 2) = 0.0001 and Sa(k) + Sa(k− 1)−
2Sa(k − 2) = 0.

8.4 Some Common Recurrence Relations
In this section we intend to examine a variety of recurrence relations that are
not finite-order linear with constant coefficients. For each part of this section,
we will consider a concrete example, present a solution, and, if possible, examine
a more general form of the original relation.

8.4.1 A First Basic Example
Consider the homogeneous first-order linear relation without constant coeffi-
cients, S(n)−nS(n−1) = 0, n ≥ 1, with initial condition S(0) = 1. Upon close
examination of this relation, we see that the nth term is n times the (n− 1)st

term, which is a property of n factorial. S(n) = n! is a solution of this relation,
for if n ≥ 1,

S(n) = n! = n · (n− 1)! = n · S(n− 1)

In addition, since 0! = 1, the initial condition is satisfied. It should be pointed
out that from a computational point of view, our “solution” really isn’t much
of an improvement since the exact calculation of n! takes n− 1 multiplications.

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 159

If we examine a similar relation, G(k)− 2kG(k− 1), k ≥ 1 with G(0) = 1, a
table of values for G suggests a possible solution:

k 0 1 2 3 4 5
G(k) 1 2 23 26 210 215

The exponent of 2 in G(k) is growing according to the relation E(k) = E(k −
1) + k, with E(0) = 0. Thus E(k) = k(k+1)

2 and G(k) = 2k(k+1)/2. Note that
G(k) could also be written as 202122 · · · 2k, for k ≥ 0, but this is not a closed
form expression.

In general, the relation P (n) = f(n)P (n− 1) for n ≥ 1 with P (0) = f(0),
where f is a function that is defined for all n ≥ 0, has the “solution”

P (n) =
n∏

k=0
f(k)

This product form of P (n) is not a closed form expression because as n grows,
the number of multiplications grow. Thus, it is really not a true solution. Often,
as for G(k) above, a closed form expression can be derived from the product
form.

8.4.2 An Analysis of the Binary Search Algorithm
8.4.2.1

Suppose you intend to use a binary search algorithm (see Subsection 8.1.3) on
lists of zero or more sorted items, and that the items are stored in an array,
so that you have easy access to each item. A natural question to ask is “How
much time will it take to complete the search?” When a question like this is
asked, the time we refer to is often the so-called worst-case time. That is, if
we were to search through n items, what is the longest amount of time that
we will need to complete the search? In order to make an analysis such as this
independent of the computer to be used, time is measured by counting the
number of steps that are executed. Each step (or sequence of steps) is assigned
an absolute time, or weight; therefore, our answer will not be in seconds, but
in absolute time units. If the steps in two different algorithms are assigned
weights that are consistent, then analyses of the algorithms can be used to
compare their relative efficiencies. There are two major steps that must be
executed in a call of the binary search algorithm:

(1) If the lower index is less than or equal to the upper index, then the middle
of the list is located and its key is compared to the value that you are
searching for.

(2) In the worst case, the algorithm must be executed with a list that is
roughly half as large as in the previous execution. If we assume that Step
1 takes one time unit and T (n) is the worst-case time for a list of n items,
then

T (n) = 1 + T (⌊n/2⌋), n > 0 (8.4.1)

For simplicity, we will assume that

T (0) = 0 (8.4.2)

even though the conditions of Step 1 must be evaluated as false if n = 0.
You might wonder why n/2 is truncated in (8.4.1). If n is odd, then

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 160

n = 2k + 1 for some k ≥ 0, the middle of the list will be the (k + 1)st

item, and no matter what half of the list the search is directed to, the
reduced list will have k = ⌊n/2⌋ items. On the other hand, if n is even,
then n = 2k for k > 0. The middle of the list will be the kth item, and
the worst case will occur if we are directed to the k items that come after
the middle (the (k + 1)st through (2k)th items). Again the reduced list
has ⌊n/2⌋ items.

Solution to (8.4.1) and (8.4.2). To determine T (n), the easiest case is when
n is a power of two. If we compute T (2m), m ≥ 0 , by iteration, our results are

T (1) = 1 + T (0) = 1
T (2) = 1 + T (1) = 2
T (4) = 1 + T (2) = 3
T (8) = 1 + T (4) = 4

The pattern that is established makes it clear that T (2m) = m + 1. This result
would seem to indicate that every time you double the size of your list, the
search time increases by only one unit.

A more complete solution can be obtained if we represent n in binary form.
For each n ≥ 1, there exists a non-negative integer r such that

2r−1 ≤ n < 2r (8.4.3)

For example, if n = 21, 24 ≤ 21 < 25; therefore, r = 5. If n satisfies (8.4c), its
binary representation requires r digits. For example, 21ten = 10101two.

In general, n = (a1a2 . . . ar)two. where a1 = 1. Note that in this form,
⌊n/2⌋ is easy to describe: it is the r − 1 digit binary number (a1a2 . . . ar−1)two

Therefore,

T (n) = T (a1a2 . . . ar)
= 1 + T (a1a2 . . . ar−1)
= 1 + (1 + T (a1a2 . . . ar−2))
= 2 + T (a1a2 . . . ar−2)

...
= (r − 1) + T (a1)
= (r − 1) + 1 since T (1) = 1
= r

.

From the pattern that we’ve just established, T (n) reduces to r. A formal
inductive proof of this statement is possible. However, we expect that most
readers would be satisfied with the argument above. Any skeptics are invited
to provide the inductive proof.

For those who prefer to see a numeric example, suppose n = 21.

T (21) = T (10101)
= 1 + T (1010)
= 1 + (1 + T (101))
= 1 + (1 + (1 + T (10)))
= 1 + (1 + (1 + (1 + T (1))))
= 1 + (1 + (1 + (1 + (1 + T (0)))))
= 5

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 161

Our general conclusion is that the solution to (8.4.1) and (8.4.2) is that for
n ≥ 1, T (n) = r, where 2r−1 ≤ n < 2r.

A less cumbersome statement of this fact is that T (n) = ⌊log2 n⌋+ 1. For
example, T (21) = ⌊log2 21⌋+ 1 = 4 + 1 = 5.

8.4.2.2 Review of Logarithms

Any discussion of logarithms must start by establishing a base, which can be
any positive number other than 1. With the exception of Theorem 5, our base
will be 2. We will see that the use of a different base (10 and e ≈ 2.171828
are the other common ones) only has the effect of multiplying each logarithm
by a constant. Therefore, the base that you use really isn’t very important.
Our choice of base 2 logarithms is convenient for the problems that we are
considering.

Definition 8.4.1 Base 2 logarithm. The base 2 logarithm of a positive
number represents an exponent and is defined by the following equivalence for
any positive real numbers a.

log2 a = x ⇔ 2x = a.

♢

Figure 8.4.2 Plot of the logarithm, bases 2, function
For example, log2 8 = 3 because 23 = 8 and log2 1.414 ≈ 0.5 because

20.5 ≈ 1.414. A graph of the function f(x) = log2 x in Figure 8.4.2 shows that
if a < b, the log2 a < log2 b; that is, when x increases, log2 x also increases.
However, if we move x from 210 = 1024 to 211 = 2048, log2 x only increases
from 10 to 11. This slow rate of increase of the logarithm function is an
important point to remember. An algorithm acting on n pieces of data that
can be executed in log2 n time units can handle significantly larger sets of data
than an algorithm that can be executed in n/100 or

√
n time units. The graph

of T (n) = ⌊log2 n⌋+ 1 would show the same behavior.
A few more properties that we will use in subsequent discussions involving

logarithms are summarized in the following theorem.

Theorem 8.4.3 Fundamental Properties of Logarithms. Let a and b be

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 162

positive real numbers, and r a real number.

log2 1 = 0 (8.4.4)
log2 ab = log2 a + log2 b (8.4.5)

log2
a

b
= log2 a− log2 b (8.4.6)

log2 ar = r log2 a (8.4.7)
2log2 a = a (8.4.8)

Definition 8.4.4 Logarithms base b. If b > 0, b ̸= 1, then for a > 0,

logb a = x⇔ bx = a

♢

Theorem 8.4.5 How logarithms with different bases are related. Let
b > 0, b ̸= 1. Then for all a > 0, logb a = log2 a

log2 b . Therefore, if b > 1, base b
logarithms can be computed from base 2 logarithms by dividing by the positive
scaling factor log2 b. If b < 1, this scaling factor is negative.
Proof. By an analogue of (8.4.8), a = blogb a. Therefore, if we take the base 2
logarithm of both sides of this equality we get:

log2 a = log2
(
blogb a

)
⇒ log2 a = logb a · log2 b

Finally, divide both sides of the last equation by log2 b. ■

Note 8.4.6 log2 10 ≈ 3.32192 and log2 e ≈ 1.4427.

8.4.2.3

Returning to the binary search algorithm, we can derive the final expression for
T (n) using the properties of logarithms, including that the logarithm function
is increasing so that inequalities are maintained when taking logarithms of
numbers.

T (n) = r ⇔ 2r−1 ≤ n < 2r

⇔ log2 2r−1 ≤ log2 n < log2 2r

⇔ r − 1 ≤ log2 n < r

⇔ r − 1 = ⌊log2 n⌋
⇔ T (n) = r = ⌊log2 n⌋+ 1

We can apply several of these properties of logarithms to get an alternate
expression for T (n):

⌊log2 n⌋+ 1 = ⌊log2 n + 1⌋
= ⌊log2 n + log2 2⌋
= ⌊log2 2n⌋

If the time that was assigned to Step 1 of the binary search algorithm is
changed, we wouldn’t expect the form of the solution to be very different. If
T (n) = a + T (⌊n/2⌋) with T (0) = c, then T (n) = c + a ⌊log2 2n⌋.

A further generalization would be to add a coefficient to T (⌊n/2⌋): T (n) =
a + bT (⌊n/2⌋) with T (0) = c, where a, b, c ∈ R, and b ̸= 0 is not quite as simple

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 163

to derive. First, if we consider values of n that are powers of 2:

T (1) = a + bT (0) = a + bc

T (2) = a + b(a + bc) = a + ab + cb2

T (4) = a + b
(
a + ab + cb2) = a + ab + ab2 + cb3

...
T (2r) = a + ab + ab2 + · · ·+ abr + cbr+1

If n is not a power of 2, by reasoning that is identical to what we used to (8.4.1)
and (8.4.2),

T (n) =
r∑

k=0
abk + cbr+1

where r = ⌊log2 n⌋.
The first term of this expression is a geometric sum, which can be written

in closed form. Let x be that sum:

x = a + ab + ab2 + · · ·+ abr

bx = ab + ab2 + · · ·+ abr + abr+1

We’ve multiplied each term of x by b and aligned the identical terms in x and
bx. Now if we subtract the two equations,

x− bx = a− abr+1 ⇒ x(1− b) = a
(
1− br+1)

Therefore, x = a br+1−1
b−1 .

A closed form expression for T (n) is

T (n) = a
br+1 − 1

b− 1 + cbr+1 where r = ⌊log2 n⌋

8.4.3 Analysis of Bubble Sort and Merge Sort
The efficiency of any search algorithm such as the binary search relies on fact
that the search list is sorted according to a key value and that the search is
based on the key value. There are several methods for sorting a list. One
example is the bubble sort. You might be familiar with this one since it is a
popular “first sorting algorithm.” A time analysis of the algorithm shows that
if B(n) is the worst-case time needed to complete the bubble sort on n items,
then B(n) = (n− 1) + B(n− 1) and B(1) = 0. The solution of this relation is a
quadratic function B(n) = 1

2
(
n2 − n

)
. The growth rate of a quadratic function

such as this one is controlled by its squared term. Any other terms are dwarfed
by it as n gets large. For the bubble sort, this means that if we double the
size of the list that we are to sort, n changes to 2n and so n2 becomes 4n2 .
Therefore, the time needed to do a bubble sort is quadrupled. One alternative
to bubble sort is the merge sort. Here is a simple version of this algorithm for
sorting F = {r(1), r(2), . . . , r(n)}, n ≥ 1. If n = 1, the list is sorted trivially. If
n ≥ 2 then:

(1) Divide F into F1 = {r(1), . . . , r(⌊n/2⌋)} and F2 = {r(⌊n/2⌋+1), . . . , r(n)}.

(2) Sort F1 and F2 using a merge sort.

(3) Merge the sorted lists F1 and F2 into one sorted list. If the sort is to be
done in descending order of key values, you continue to choose the higher
key value from the fronts of F1 and F2 and place them in the back of F .

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 164

Note that F1 will always have ⌊n/2⌋ items and F2 will have ⌈n/2⌉ items;
thus, if n is odd, F2 gets one more item than F1. We will assume that the time
required to perform Step 1 of the algorithm is insignificant compared to the
other steps; therefore, we will assign a time value of zero to this step. Step 3
requires roughly n comparisons and n movements of items from F1 and F2 to
F ; thus, its time is proportional to n. For this reason, we will assume that Step
3 takes n time units. Since Step 2 requires T (⌊n/2⌋) + T (⌈n/2⌉) time units,

T (n) = n + T (⌊n/2⌋) + T (⌈n/2⌉) (8.4.9)

with the initial condition

T (1) = 0 (8.4.10)

Instead of an exact solution of these equations, we will be content with an
estimate for T (n). First, consider the case of n = 2r, r ≥ 1:

T
(
21) = T (2) = 2 + T (1) + T (1) = 2 = 1 · 2

T
(
22) = T (4) = 4 + T (2) + T (2) = 8 = 2 · 4

T
(
23) = T (8) = 8 + T (4) + T (4) = 24 = 3 · 8

...
T (2r) = r2r = 2r log2 2r

Thus, if n is a power of 2, T (n) = n log2 n. Now if, for some r ≥ 2,
2r−1 ≤ n ≤ 2r, then (r−1)2r−1 ≤ T (n) < r2r. This can be proved by induction
on r. As n increases from 2r−1 to 2r, T (n) increases from (r − 1)2r−1to r2r

and is slightly larger than ⌊n log2 n⌋. The discrepancy is small enough so that
Te(n) = ⌊n log2 n⌋ can be considered a solution of (8.4.9) and (8.4.10) for
the purposes of comparing the merge sort with other algorithms. Table 8.4.7
compares B(n) with Te(n) for selected values of n.

Table 8.4.7 Comparison of Times for Bubble Sort and Merge Sort

n B(n) Te(n)
10 45 34
50 1225 283
100 4950 665
500 124750 4483
1000 499500 9966

8.4.4 Derangements
A derangement is a permutation on a set that has no “fixed points”. Here is a
formal definition:
Definition 8.4.8 Derangement. A derangement of a nonempty set A is a
permutation of A (i.e., a bijection from A into A) such that f(a) ̸= a for all
a ∈ A. ♢

If A = {1, 2, ..., n}, an interesting question might be “How many derange-
ments are there of A?” We know that our answer is bounded above by n!. We
can also expect our answer to be quite a bit smaller than n! since n is the image
of itself for (n− 1)! of the permutations of A.

Let D(n) be the number of derangements of {1, 2, ..., n}. Our answer will
come from discovering a recurrence relation on D. Suppose that n ≥ 3. If we
are to construct a derangement of {1, 2, . . . , n}, f , then f(n) = k ̸= n. Thus,

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 165

the image of n can be selected in n− 1 different ways. No matter which of the
n− 1 choices we make, we can complete the definition of f in one of two ways.
First, we can decide to make f(k) = n, leaving D(n− 2) ways of completing
the definition of f , since f will be a derangement of {1, 2, . . . , n} − {n, k}.
Second, if we decide to select f(k) ̸= n, each of the D(n− 1) derangements of
{1, 2, . . . , n−1} can be used to define f . If g is a derangement of {1, 2, . . . , n−1}
such that g(p) = k, then define f by

f(j) =

n if j = p

k if j = n

g(j) otherwise

Note that with our second construction of f , f(f(n)) = f(k) ̸= n, while
in the first construction, f(f(n)) = f(k) = n. Therefore, no derangement of
{1, 2, ..., n} with f(n) = k can be constructed by both methods.

To recap our result, we see that f is determined by first choosing one
of n − 1 images of n and then constructing the remainder of f in one of
D(n− 2) + D(n− 1) ways. Therefore,

D(n) = (n− 1)(D(n− 2) + D(n− 1)) (8.4.11)

This homogeneous second-order linear relation with variable coefficients,
together with the initial conditions D(1) = 0 and D(2) = 1, completely defines
D. Instead of deriving a solution of this relation by analytical methods, we
will give an empirical derivation of an approximation of D(n). Since the
derangements of {1, 2..., n} are drawn from a pool of n! permutations, we will
see what percentage of these permutations are derangements by listing the
values of n!, D(n), and D(n)

n! . The results we observe will indicate that as n

grows, D(n)
n! hardly changes at all. If this quotient is computed to eight decimal

places, for n ≥ 12, D(n)/n! = 0.36787944. The reciprocal of this number,
which D(n)/n! seems to be tending toward, is, to eight places, 2.7182818. This
number appears in so many places in mathematics that it has its own name, e.
An approximate solution of our recurrence relation on D is then D(n) ≈ n!

e .

def D(n):
if n<=2:

return n-1
else:

return (n-1)*(D(n-2)+D(n-1))

list(map(lambda
k:[k,D(k),(D(k)/factorial(k)).n(digits =8)],range (1,16)))

[[1, 0, 0.00000000] ,
[2, 1, 0.50000000] ,
[3, 2, 0.33333333] ,
[4, 9, 0.37500000] ,
[5, 44, 0.36666667] ,
[6, 265, 0.36805556] ,
[7, 1854, 0.36785714] ,
[8, 14833, 0.36788194] ,
[9, 133496 , 0.36787919] ,
[10, 1334961 , 0.36787946] ,
[11, 14684570 , 0.36787944] ,
[12, 176214841 , 0.36787944] ,
[13, 2290792932 , 0.36787944] ,

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 166

[14, 32071101049 , 0.36787944] ,
[15, 481066515734 , 0.36787944]]

8.4.5 Exercises
1. Solve the following recurrence relations. Indicate whether your solution is

an improvement over iteration.
(a) nS(n)− S(n− 1) = 0, S(0) = 1.

(b) T (k) + 3kT (k − 1) = 0, T (0) = 1.

(c) U(k)− k−1
k U(k − 1) = 0, k ≥ 2, U(1) = 1.

2. Prove that if n ≥ 0, ⌊n/2⌋ + ⌈n/2⌉ = n. (Hint: Consider the cases of n
odd and n even separately.)

3. Solve as completely as possible:
(a) T (n) = 3 + T (⌊n/2⌋), T (0) = 0.

(b) T (n) = 1 + 1
2 T (⌊n/2⌋), T (0) = 2.

(c) V (n) = 1 + V ⌊n/8⌋), V (0) = 0. (Hint: Write n in octal form.)
4. Prove by induction that if T (n) = 1 + T (⌊n/2⌋), T (0) = 0, and 2r−1 ≤

n < 2r , r ≥ 1, then T (n) = r.
Hint. Prove by induction on r.

5. Use the substitution S(n) = T (n + 1)/T (n) to solve T (n)T (n − 2) =
T (n− 1)2 for n ≥ 2, with T (0) = 1, T (1) = 6, and T (n) ≥ 0.

6. Use the substitution G(n) = T (n)2 to solve T (n)2 − T (n − 1)2 = 1 for
n ≥ 1, with T (0) = 10.

7. Solve as completely as possible:
(a) Q(n) = 1 + Q (⌊

√
n⌋), n ≥ 2, Q(1) = 0.

(b) R(n) = n + R(⌊n/2⌋), n ≥ 1, R(0) = 0.
8. Suppose Step 1 of the merge sort algorithm did take a significant amount

of time. Assume it takes 0.1 time unit, independent of the value of n.
(a) Write out a new recurrence relation for T (n) that takes this factor

into account.

(b) Solve for T (2r), r ≥ 0.

(c) Assuming the solution for powers of 2 is a good estimate for all n,
compare your result to the solution in the text. As gets large, is
there really much difference?

8.5 Generating Functions
This section contains an introduction to the topic of generating functions and
how they are used to solve recurrence relations, among other problems. Methods
that employ generating functions are based on the concept that you can take a
problem involving sequences and translate it into a problem involving generating
functions. Once you’ve solved the new problem, a translation back to sequences
gives you a solution of the original problem.

This section covers:

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 167

(1) The definition of a generating function.

(2) Solution of a recurrence relation using generating functions to identify
the skills needed to use generating functions.

(3) An introduction and/or review of the skills identified in point 2.

(4) Some applications of generating functions.

8.5.1 Definition
Definition 8.5.1 Generating Function of a Sequence. The generating
function of a sequence S with terms S0, S1, S2, . . ., is the infinite sum

G(S; z) =
∞∑

n=0
Snzn = S0 + S1z + S2z2 + S3z3 + · · ·

The domain and codomain of generating functions will not be of any concern
to us since we will only be performing algebraic operations on them. ♢

Example 8.5.2 First Examples.
(a) If Sn = 3n,n ≥ 0, then

G(S; z) = 1 + 3z + 9z2 + 27z3 + · · ·

=
∞∑

n=0
3nzn

=
∞∑

n=0
(3z)n

We can get a closed form expression for G(S; z) by observing that G(S; z)−
3zG(S; z) = 1. Therefore, G(S; z) = 1

1−3z .

(b) Finite sequences have generating functions. For example, the sequence of
binomial coefficients

(
n
0
)
,
(

n
1
)
, . . .,

(
n
n

)
, n ≥ 1 has generating function

G(
(

n

·

)
; z) =

(
n

0

)
+
(

n

1

)
z + · · ·+

(
n

n

)
zn

=
∞∑

k=0

(
n

k

)
zk

= (1 + z)n

by application of the binomial formula.

(c) If Q(n) = n2, G(Q; z) =
∑∞

n=0 n2zn =
∑∞

k=0 k2zk. Note that the index
that is used in the summation has no significance. Also, note that the
lower limit of the summation could start at 1 since Q(0) = 0.

□

8.5.2 Solution of a Recurrence Relation Using Generating
Functions

We illustrate the use of generating functions by solving S(n) − 2S(n − 1) −
3S(n− 2) = 0, n ≥ 2, with S(0) = 3 and S(1) = 1.

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 168

(1) Translate the recurrence relation into an equation about generating func-
tions.
Let V (n) = S(n) − 2S(n − 1) − 3S(n − 2), n ≥ 2, with V (0) = 0 and
V (1) = 0. Therefore,

G(V ; z) = 0 + 0z +
∞∑

n=2
(S(n)− 2S(n− 1)− 3S(n− 2))zn = 0

(2) Solve for the generating function of the unknown sequence, G(S; z) =∑∞
n=0 Snzn.

0 =
∞∑

n=2
(S(n)− 2S(n− 1)− 3S(n− 2))zn

=
∞∑

n=2
S(n)zn − 2

(∞∑
n=2

S(n− 1)zn

)
− 3

(∞∑
n=2

S(n− 2)zn

)

Close examination of the three sums above shows:

(a)

∞∑
n=2

Snzn =
∞∑

n=0
Snzn − S(0)− S(1)z

= G(S; z)− 3− z

since S(0) = 3 and S(1) = 1.
(b)

∞∑
n=2

S(n− 1)zn = z

(∞∑
n=2

S(n− 1)zn−1

)

= z

(∞∑
n=1

S(n)zn

)

= z

(∞∑
n=0

S(n)zn − S(0)
)

= z(G(S; z)− 3)

(c)

∞∑
n=2

S(n− 2)zn = z2

(∞∑
n=2

S(n− 2)zn−2

)
= z2G(S; z)

Therefore,

(G(S; z)− 3− z)− 2z(G(S; z)− 3)− 3z2G(S; z) = 0
⇒ G(S; z)− 2zG(S; z)− 3z2G(S; z) = 3− 5z

⇒ G(S; z) = 3− 5z

1− 2z − 3z2

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 169

(3) Determine the sequence whose generating function is the one we got in
Step 2.
For our example, we need to know one general fact about the closed form
expression of an exponential sequence (a proof will be given later):

T (n) = ban, n ≥ 0⇔ G(T ; z) = b

1− az
(8.5.1)

Now, in order to recognize S in our example, we must write our closed
form expression for G(S; z) as a sum of terms like G(T ; z) above. Note
that the denominator of G(S; z) can be factored:

G(S; z) = 3− 5z

1− 2z − 3z2 = 3− 5z

(1− 3z)(1 + z)

If you look at this last expression for G(S; z) closely, you can imagine
how it could be the result of addition of two fractions,

3− 5z

(1− 3z)(1 + z) = A

1− 3z
+ B

1 + z
(8.5.2)

where A and B are two real numbers that must be determined. Starting
on the right of (8.5.2), it should be clear that the sum, for any A and B,
would look like the left-hand side. The process of finding values of A and
B that make (8.5.2) true is called the partial fractions decomposition
of the left-hand side:

A

1− 3z
+ B

1 + z
= A(1 + z)

(1− 3z)(1 + z) + B(1− 3z)
(1− 3z)(1 + z)

= (A + B) + (A− 3B)z
(1− 3z)(1 + z)

Therefore, {
A + B = 3

A− 3B = −5

}
⇒
{

A = 1
B = 2

}
and

G(S; z) = 1
1− 3z

+ 2
1 + z

We can apply (8.5.1) to each term of G(S; z):

• 1
1−3z is the generating function for S1(n) = 1 · 3n = 3n

• 2
1+z is the generating function for S2(n) = 2(−1)n.

Therefore, S(n) = 3n + 2(−1)n.

From this example, we see that there are several skills that must be mastered
in order to work with generating functions. You must be able to:

(a) Manipulate summation expressions and their indices (in Step 2).

(b) Solve algebraic equations and manipulate algebraic expressions, including
partial function decompositions (Steps 2 and 3).

(c) Identify sequences with their generating functions (Steps 1 and 3).

We will concentrate on the last skill first, a proficiency in the other skills is
a product of doing as many exercises and reading as many examples as possible.

First, we will identify the operations on sequences and on generating func-
tions.

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 170

8.5.3 Operations on Sequences
Definition 8.5.3 Operations on Sequences. Let S and T be sequences of
numbers and let c be a real number. Define the sum S + T , the scalar product
cS, the product ST , the convolution S ∗ T , the pop operation S ↑ (read “S
pop”), and the push operation S ↓ (read “S push”) term-wise for k ≥ 0 by

(S + T)(k) = S(k) + T (k) (8.5.3)

(cS)(k) = cS(k) (8.5.4)

(S · T)(k) = S(k)T (k) (8.5.5)

(S ∗ T)(k) =
k∑

j=0
S(j)T (k − j) (8.5.6)

(S ↑)(k) = S(k + 1) (8.5.7)

(S ↓)(k) =
{

0 if k = 0
S(k − 1) if k > 0 (8.5.8)

♢
If one imagines a sequence to be a matrix with one row and an infinite

number of columns, S + T and cS are exactly as in matrix addition and scalar
multiplication. There is no obvious similarity between the other operations and
matrix operations.

The pop and push operations can be understood by imagining a sequence
to be an infinite stack of numbers with S(0) at the top, S(1) next, etc., as in
Figure 8.5.4a. The sequence S ↑ is obtained by “popping” S(0) from the stack,
leaving a stack as in Figure 8.5.4b, with S(1) at the top, S(2) next, etc. The
sequence S ↓ is obtained by placing a zero at the top of the stack, resulting in
a stack as in Figure 8.5.4c. Keep these figures in mind when we discuss the
pop and push operations.

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 171

Figure 8.5.4 Stack interpretation of pop and push operation

Example 8.5.5 Some Sequence Operations. If S(n) = n, T (n) = n2,
U(n) = 2n, and R(n) = n2n:

(a) (S + T)(n) = n + n2

(b) (U + R)(n) = 2n + n2n = (1 + n)2n

(c) (2U)(n) = 2 · 2n = 2n+1

(d)
(

1
2R

)
(n) = 1

2n2n = n2n−1

(e) (S · T)(n) = nn2 = n3

(f) (S ∗ T)(n) =
n∑

j=0
S(j)T (n− j) =

n∑
j=0

j(n− j)2

=
n∑

j=0

(
jn2 − 2nj2 + j3)

= n2
n∑

j=0
j − 2n

n∑
j=0

j2 +
n∑

j=0
j3

= n2
(

n(n + 1)
2

)
− 2n

(
(2n + 1)(n + 1)n

6

)
+ 1

4n2(n + 1)2

= n2(n + 1)(n− 1)
12

(g) (U ∗ U)(n) =
n∑

j=0
U(j)U(n− j)

=
n∑

j=0
2j2n−j

= (n + 1)2n

(h) (S ↑)(n) = n + 1

(i) (S ↓)(n) = max(0, n− 1)

(j) ((S ↓) ↓)(n) = max(0, n− 2)

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 172

(k) (U ↓)(n) =
{

2n−1 if n > 0
0 if n = 0

(l) ((U ↓) ↑)(n) = (U ↓)(n + 1) = 2n = U(n)

(m) ((U ↑) ↓)(n) =
{

0 if n = 0
U(n) if n > 0

□
Note that (U ↓) ↑≠ (U ↑) ↓.

Definition 8.5.6 Multiple Pop and Push. If S is a sequence of numbers
and p a positive integer greater than 1, define

S ↑ p = (S ↑ (p− 1)) ↑ if p ≥ 2 and S ↑ 1 = S ↑

Similarly, define

S ↓ p = (S ↓ (p− 1)) ↓ if p ≥ 2 and S ↓ 1 = S ↓

♢
In general, (S ↑ p)(k) = S(k + p), and

(S ↓ p)(k) =
{

0 if k < p

S(k − p) if k ≥ p

8.5.4 Operations on Generating Functions
Definition 8.5.7 Operations on Generating Functions. If G(z) =∑∞

k=0 akzk and H(z) =
∑∞

k=0 bkzk are generating functions and c is a real
number, then the sum G + H, scalar product cG, product GH, and monomial
product zpG, p ≥ 1 are generating functions, where

(G + H)(z) =
∞∑

k=0
(ak + bk) zk (8.5.9)

(cG)(z) =
∞∑

k=0
cakzk (8.5.10)

(GH)(z) =
∞∑

k=0
czk where ck =

k∑
j=0

ajbk−j (8.5.11)

(zpG) (z) = zp
∞∑

k=0
akzk =

∞∑
k=0

akzk+p =
∞∑

n=p

an−pzn (8.5.12)

The last sum is obtained by substituting n−p for k in the previous sum. ♢

Example 8.5.8 Some operations on generating functions. If D(z) =∑∞
k=0 kzk and H(z) =

∑∞
k=0 2kzk then

(D + H)(z) =
∞∑

k=0

(
k + 2k

)
zk

(2H)(z) =
∞∑

k=0
2 · 2kzk =

∞∑
k=0

2k+1zk

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 173

(zD)(z) = z

∞∑
k=0

kzk =
∞∑

k=0
kzk+1

=
∞∑

k=1
(k − 1)zk = D(z)−

∞∑
k=1

zk

(DH)(z) =
∞∑

k=0

 k∑
j=0

j2k−j

 zk

(HH)(z) =
∞∑

k=0

 k∑
j=0

2j2k−j

 zk =
∞∑

k=0
(k + 1)2kzk

Note: D(z) = G(S; z), and H(z) = G(U ; z) from Example 5. □

Now we establish the connection between the operations on sequences and
generating functions. Let S and T be sequences and let c be a real number.

G(S + T ; z) = G(S; z) + G(T ; z) (8.5.13)
G(cS; z) = cG(S; z) (8.5.14)

G(S ∗ T ; z) = G(S; z)G(T ; z) (8.5.15)
G(S ↑; z) = (G(S; z)− S(0))/z (8.5.16)

G(S ↓; z) = zG(S; z) (8.5.17)
In words, (8.5.13) says that the generating function of the sum of two

sequences equals the sum of the generating functions of those sequences. Take
the time to write out the other four identities in your own words. From the
previous examples, these identities should be fairly obvious, with the possible
exception of the last two. We will prove (8.5.16) as part of the next theorem
and leave the proof of (8.5.17) to the interested reader. Note that there is no
operation on generating functions that is related to sequence multiplication;
that is, G(S · T ; z) cannot be simplified.

Theorem 8.5.9 Generating functions related to Pop and Push. If
p > 1,

(a) G(S ↑ p; z) =
(

G(S; z)−
p−1∑
k=0

S(k)zk

)
/zk

(b) G(S ↓ p; z) = zpG(S; z).
Proof. We prove (a) by induction and leave the proof of (b) to the reader.

Basis:

G(S ↑; z) =
∞∑

k=0
S(k + 1)zk

=
∞∑

k=1
S(k)zk−1

=
(∞∑

k=1
S(k)zk

)/
z

=
(

S(0) +
∞∑

k=1
S(k)zk − S(0)

)/
z

= (G(S; z)− S(0))/z

Therefore, part (a) is true for p = 1.

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 174

Induction: Suppose that for some p ≥ 1, the statement in part (a) is true:

G(S ↑ (p + 1); z) = G((S ↑ p) ↑; z)
= (G(S ↑ p; z)− (S ↑ p)(0))/z by the basis

=

(
G(S;z)−

∑p−1
k=0

S(k)zk
)

zp − S(p)
z

by the induction hypothesis. Now write S(p) in the last expression above as
(S(p)zp) /zp so that it fits into the finite summation:

G(S ↑ (p + 1); z) =
(

G(S; z)−
∑p

k=0 S(k)zk

zp

)/
z

=
(

G(S; z)−
p∑

k=0
S(k)zk

)
/zp+1

Therefore the statement is true for p + 1. ■

8.5.5 Closed Form Expressions for Generating Functions
The most basic tool used to express generating functions in closed form is the
closed form expression for the geometric series, which is an expression of the
form a + ar + ar2 + · · ·. It can either be terminated or extended infinitely.

Finite Geometric Series:

a + ar + ar2 + · · ·+ arn = a

(
1− rn+1

1− r

)
(8.5.18)

Infinite Geometric Series:

a + ar + ar2 + · · · = a

1− r
(8.5.19)

Restrictions: a and r represent constants and the right sides of the two
equations apply under the following conditions:

(1) r must not equal 1 in the finite case. Note that a+ar + · · · arn = (n+1)a
if r = 1.

(2) In the infinite case, the absolute value of r must be less than 1.

These restrictions don’t come into play with generating functions. We
could derive (8.5.18) by noting that if S(n) = a + ar + · · ·+ arn, n > 0, then
S(n) = rS(n−1) + a (See Exercise 10 of Section 8.3). An alternative derivation
was used in Section 8.4. We will take the same steps to derive (8.5.19). Let
x = a + ar + ar2 + · · ·. Then

rx = ar + ar2 + · · · = x− a⇒ x− rx = a⇒ x = a

1− r

Example 8.5.10 Generating Functions involving Geometric Sums.
(a) If S(n) = 9 · 5n, n ≥ 0, G(S; z) is an infinite geometric series with a = 9

and r = 5z.Therefore, G(S; z) = 9
1−5z .

(b) If T (n) = 4, n ≥0, then G(T ; z) = 4/(1− z).

(c) If U(n) = 3(−1)n, then G(U ; z) = 3/(1 + z).

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 175

(d) Let C(n) = S(n) + T (n) + U(n) = 9 · 5n + 4 + 3(−1)n. Then

G(C; z) = G(S; z) + G(T ; z) + G(U ; z)

= 9
1− 5z

+ 4
1− z

+ 3
1 + z

= − 14z2 + 34z − 16
5z3 − z2 − 5z + 1

.

Given a choice between the last form of G(C; z) and the previous sum
of three fractions, we would prefer leaving it as a sum of three functions.
As we saw in an earlier example, a partial fractions decomposition of a
fraction such as the last expression requires some effort to produce.

(e) If G(Q; z) = 34/(2− 3z), then Q can be determined by multiplying the
numerator and denominator by 1/2 to obtain 17

1− 3
2 z

. We recognize this
fraction as the sum of the infinite geometric series with a = 17 and r = 3

2 z.
Therefore Q(n) = 17(3/2)n.

(f) If G(A; z) = (1 + z)3 , then we expand (1 + z)3 to 1 + 3z + 3z2 + z3 .
Therefore A(0) = 1, A(1) = 3 A(2) = 3, A(3) = 1, and, since there are no
higher-powered terms, A(n) = 0, n ≥ 4. A more concise way of describing
A is A(k) =

(3
k

)
, since

(
n
k

)
is interpreted as 0 of k > n.

□
Table 8.5.11 lists some closed form expressions for the generating functions

of some common sequences.

Table 8.5.11 Closed Form Expressions of some Generating Functions

Sequence Generating Function
S(k) = bak G(S; z) = b

1−az

S(k) = k G(S; z) = z
(1−z)2

S(k) = bkak G(S; z) = abz
(1−az)2

S(k) = 1
k! G(S; z) = ez

S(k) =
{ (

n
k

)
0 ≤ k ≤ n

0 k > n
G(S; z) = (1 + z)n

Example 8.5.12 Another Complete Solution. Solve S(k) + 3S(k − 1)−
4S(k − 2) = 0, k ≥ 2, with S(0) = 3 and S(1) = −2. The solution will be
derived using the same steps that were used earlier in this section, with one
variation.

(1) Translate to an equation about generating functions. First, we change
the index of the recurrence relation by substituting n + 2 for k. The
result is S(n + 2) + 3S(n + 1) − 4S(n) = 0, n ≥ 0. Now, if V (n) =
S(n + 2) + 3S(n + 1) − 4S(n), then V is the zero sequence, which has
a zero generating function. Furthermore, V = S ↑ 2 + 3(S ↑) − 4S.

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 176

Therefore,

0 = G(V ; z)
= G(S ↑ 2; z) + 3G(S ↑; z)− 4G(S; z)

= G(S; z)− S(0)− S(1)z
z2 + 4(G(S; z)− S(0))

z
− 4G(S; z)

(2) We want to now solve the following equation for G(S; z):

G(S; z)− S(0)− S(1)z
z2 + 4(G(S; z)− S(0))

z
− 4G(S; z) = 0

Multiply by z2 :

G(S; z)− 3 + 2z + 3z(G(S; z)− 3)− 4z2G(S; z) = 0

Expand and collect all terms involving G(S; z) on one side of the equation:

G(S; z) + 3zG(S; z)− 4z2G(S; z) = 3 + 7z(
1 + 3z − 4z2)G(S; z) = 3 + 7z

Therefore,
G(S; z) = 3 + 7z

1 + 3z − 4z2

(3) Determine S from its generating function. 1 + 3z − 4z2 = (1 + 4z)(1− z)
thus a partial fraction decomposition of G(S; z) would be:

A

1 + 4z
+ B

1− z
= Az −A− 4Bz −B

(z − 1)(4z + 1) = (A + B) + (4B −A)z
(z − 1)(4z + 1)

Therefore, A+B = 3 and 4B−A = 7. The solution of this set of equations
is A = 1 and B = 2. G(S; z) = 1

1+4z + 2
1−z .

1
1+4z is the generating function of S1(n) = (−4)n, and

2
1−z is the generating function of S2(n) = 2(1)n = 2

In conclusion, since G(S; z) = G (S1; z) + G (S2; z), S(n) = 2 + (−4)n.

□

Example 8.5.13 An Application to Counting. Let A = {a, b, c, d, e}
and let A∗ be the set of all strings of length zero or more that can be made
using each of the elements of A zero or more times. By the generalized rule
of products, there are 5n such strings that have length n, n ≥ 0, Suppose that
Xn is the set of strings of length n with the property that all of the a’s and b’s
precede all of the c’s, d’s, and e’s. Thus aaabde ∈ X6, but abcabc /∈ X6. Let
R(n) = |Xn|. A closed form expression for R can be obtained by recognizing R
as the convolution of two sequences. To illustrate our point, we will consider
the calculation of R(6).

Note that if a string belongs to X6, it starts with k characters from {a, b}
and is followed by 6− k characters from {c, d, e}. Let S(k) be the number of
strings of a’s and b’s with length k and let T (k) be the number of strings of c’s,
d’s, and e’s with length k. By the generalized rule of products, S(k) = 2k and
T (k) = 3k. Among the strings in X6 are the ones that start with two a’s and
b’s and end with c’s, d’s, and e’s. There are S(2)T (4) such strings. By the law

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 177

of addition,

|X6| = R(6) = S(0)T (6) + S(1)T (5) + · · ·+ S(5)T (1) + S(6)T (0)

Note that the sixth term of R is the sixth term of the convolution of S with T ,
S ∗ T . Think about the general situation for a while and it should be clear that
R = S ∗ T . Now, our course of action will be to:

(a) Determine the generating functions of S and T ,

(b) Multiply G(S; z) and G(T ; z) to obtain G(S ∗ T ; z) = G(R; z), and

(c) Determine R on the basis of G(R; z).

(a) G(S; z) =
∑∞

k=0 2kzk = 1
1−2z , and G(T ; z) =

∑∞
k=0 3kzk = 1

1−3z

(b) G(R; z) = G(S; z)G(T ; z) = 1
(1− 2z)(1− 3z)

(c) To recognize R from G(R; z), we must do a partial fractions decomposition:

1
(1− 2z)(1− 3z) = A

1− 2z
+ B

1− 3z
= −3Az + A− 2Bz + B

(2z − 1)(3z − 1) = (A + B) + (−3A− 2B)z
(2z − 1)(3z − 1)

Therefore, A + B = 1 and −3A − 2B = 0. The solution of this pair of
equations is A = −2 and B = 3. Since G(R; z) = −2

1−2z + 3
1−3z , which

is the sum of the generating functions of −2(2)k and 3(3)k, R(k) =
−2(2)k + 3(3)k = 3k+1 − 2k+1

For example, R(6) = 37 − 27 = 2187− 128 = 2059. Naturally, this equals
the sum that we get from (S ∗ T)(6). To put this number in perspective,
the total number of strings of length 6 with no restrictions is 56 = 15625,
and 2059

15625 ≈ 0.131776. Therefore approximately 13 percent of the strings
of length 6 satisfy the conditions of the problem.

□

8.5.6 Extra for Experts
The remainder of this section is intended for readers who have had, or who
intend to take, a course in combinatorics. We do not advise that it be included
in a typical course. The method that was used in the previous example is a
very powerful one and can be used to solve many problems in combinatorics.
We close this section with a general description of the problems that can be
solved in this way, followed by some examples.

Consider the situation in which P1, P2, . . ., Pm are m actions that must be
taken, each of which results in a well-defined outcome. For each k = 1, 2, ..., m
define Xk to be the set of possible outcomes of Pk . We will assume that
each outcome can be quantified in some way and that the quantification of
the elements of Xk is defined by the function Qk : Xk → {0, 1, 2, ...}. Thus,
each outcome has a non-negative integer associated with it. Finally, define a
frequency function Fk : {0, 1, 2, ...} → {0, 1, 2, ...} such that Fk(n) is the number
of elements of Xk that have a quantification of n.

Now, based on these assumptions, we can define the problems that can be
solved. If a process P is defined as a sequence of actions P1, P2, . . . , Pm as above,
and if the outcome of P , which would be an element of X1 ×X2 × · · · ×Xm, is

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 178

quantified by

Q (a1, a2, . . . , am) =
m∑

k=1
Qk (ak)

then the frequency function, F , for P is the convolution of the frequency
functions forP1, P2, . . ., Pm, which has a generating function equal to the
product of the generating functions of the frequency functions F1, F2, . . ., Fm.
That is,

G(F ; z) = G (F1; z) G (F2; z) · · · (Fm; z)
Example 8.5.14 Rolling Two Dice. Suppose that you roll a die two times
and add up the numbers on the top face for each roll. Since the faces on
the die represent the integers 1 through 6, the sum must be between 2 and
12. How many ways can any one of these sums be obtained? Obviously, 2
can be obtained only one way, with two 1’s. There are two sequences that
yield a sum of 3: 1-2 and 2-1. To obtain all of the frequencies with which the
numbers 2 through 12 can be obtained, we set up the situation as follows. For
j = 1, 2; Pj is the rolling of the die for the jth time. Xj = {1, 2, ..., 6} and
Qj : Xj → {0, 1, 2, 3, . . .} is defined by Qj(x) = x. Since each number appears
on a die exactly once, the frequency function is Fj(k) = 1 if 1 ≤ k ≤ 6, and
Fj(k) = 0 otherwise. The process of rolling the die two times is quantified by
adding up the Qj

′s; that is, Q (a1, a2) = Q1 (a1) + Q2 (a2) . The generating
function for the frequency function of rolling the die two times is then

G(F ; z) = G (F1; z) G (F2; z)
= (z6 + z5 + z4 + z3 + z2 + z)2

= z12 + 2z11 + 3z10 + 4z9 + 5z8 + 6z7 + 5z6 + 4z5 + 3z4 + 2z3 + z2

Now, to get F (k), just read the coefficient of zk. For example, the coefficient
of z5 is 4, so there are four ways to roll a total of 5.

To apply this method, the crucial step is to decompose a large process in
the proper way so that it fits into the general situation that we’ve described.

□

Example 8.5.15 Distribution of a Committee. Suppose that an orga-
nization is divided into three geographic sections, A, B, and C. Suppose that
an executive committee of 11 members must be selected so that no more than
5 members from any one section are on the committee and that Sections A,
B, and C must have minimums of 3, 2, and 2 members, respectively, on the
committee. Looking only at the number of members from each section on the
committee, how many ways can the committee be made up? One example of a
valid committee would be 4 A’s, 4 B’s, and 3 C’s.

Let PA be the action of deciding how many members (not who) from Section
A will serve on the committee. XA = {3, 4, 5} and QA(k) = k. The frequency
function, FA , is defined by FA(k) = 1 if k ∈ Xk , with FA(k) = 0 otherwise.
G (FA; z) is then z3+z4+z5 . Similarly, G (FB ; z) = z2+z3+z4+z5 = G (FC ; z).
Since the committee must have 11 members, our answer will be the coefficient
of z11 in G (FA; z) G (FB ; z) G (FC ; z), which is 10.

%display latex
var('z')
expand ((z^3+ z^4+z^5)*(z^2+ z^3+ z ^4 + z^5)^2)

z^15 + 3*z^14 + 6*z^13 + 9*z^12 + 10*z^11 + 9*z^10 + 6*z^9 +
3*z^8 + z^7

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 179

□

8.5.7 Exercises
1. What sequences have the following generating functions?

(a) 1

(b) 10
2− z

(c) 1 + z

(d) 3
1 + 2z

+ 3
1− 3z

2. What sequences have the following generating functions?

(a) 1
1 + z

(b) 1
4− 3z

(c) 2
1− z

+ 1
1 + z

(d) z + 2
z + 3

3. Find closed form expressions for the generating functions of the following
sequences:

(a) V (n) = 9n

(b) P , where P (k)− 6P (k− 1) + 5P (k− 2) = 0 for k ≥ 2, with P (0) = 2
and P (1) = 2.

(c) The Fibonacci sequence: F (k + 2) = F (k + 1) + F (k), k ≥ 0, with
F (0) = F (1) = 1.

4. Find closed form expressions for the generating functions of the following
sequences:

(a) W (n) =
(5

n

)
2n for 0 ≤ n ≤ 5 and W (n) = 0 for n > 5.

(b) Q, where Q(k) + Q(k− 1)− 42Q(k− 2) = 0 for k ≥ 2, with Q(0) = 2
and Q(1) = 2.

(c) G, where G(k + 3) = G(k + 2) + G(k + 1) + G(k) for k ≥ 0, with
G(0) = G(1) = G(2) = 1.

5. For each of the following expressions, find the partial fraction decomposition
and identify the sequence having the expression as a generating function.

(a) 5 + 2z

1− 4z2

(b) 32− 22z

2− 3z + z2

(c) 6− 29z

1− 11z + 30z2

6. Find the partial fraction decompositions and identify the sequence having
the following expressions:

CHAPTER 8. RECURSION AND RECURRENCE RELATIONS 180

(a) 1
1− 9z2

(b) 1 + 3z

16− 8z + z2

(c) 2z

1− 6z − 7z2

7. Given that S(k) = k and T (k) = 10k, what is the kth term of the generating
function of each of the following sequences:

(a) S + T

(b) S ↑ ∗T

(c) S ∗ T

(d) S ↑ ∗S ↑

8. Given that P (k) =
(10

k

)
and Q(k) = k!, what is the kth term of the

generating function of each of the following sequences:
(a) P ∗ P

(b) P + P ↑

(c) P ∗Q

(d) Q ∗Q

9. A game is played by rolling a die five times. For the kth roll, one point is
added to your score if you roll a number higher than k. Otherwise, your
score is zero for that roll. For example, the sequence of rolls 2, 3, 4, 1, 2
gives you a total score of three; while a sequence of 1,2,3,4,5 gives you a
score of zero. Of the 65 = 7776 possible sequences of rolls, how many give
you a score of zero?, of one? . . . of five?

10. Suppose that you roll a die ten times in a row and record the square of
each number that you roll. How many ways could the sum of the squares
of your rolls equal 40? What is the most common outcome?

Chapter 9

Graph Theory

Bipartite

Draw some lines joining dots in set A
To some dots in set B. Then we say

It’s bipartite if we
Have no “B” joined to “B”

And no “A” joined to “A”. That okay?

Chris Howlett, The Omnificent English Dictionary In Limerick Form

This chapter has three principal goals. First, we will identify the basic com-
ponents of a graph and some of the features that many graphs have. Second,
we will discuss some of the questions that are most commonly asked of graphs.
Third, we want to make the reader aware of how graphs are used. In Section
9.1, we will discuss these topics in general, and in later sections we will take a
closer look at selected topics in graph theory.

Chapter 10 will continue our discussion with an examination of trees, a
special type of graph.

9.1 Graphs - General Introduction

9.1.1 Definitions
Recall that we introduced directed graphs in Chapter 6 as a tool to visualize
relations on a set. Here is a formal definition.
Definition 9.1.1 Simple Directed Graph. A simple directed graph consists
of a nonempty set of vertices, V , and a set of edges, E, that is a subset of
the set V × V . ♢

Note 9.1.2 Some Terminology and Comments. Each edge is an ordered
pair of elements from the vertex set. The first entry is the initial vertex of the
edge and the second entry is the terminal vertex. Despite the set terminology
in this definition, we often think of a graph as a picture, an aid in visualizing a
situation. In Chapter 6, we introduced this concept to help understand relations
on sets. Although those relations were principally of a mathematical nature,
it remains true that when we see a graph, it tells us how the elements of a
set are related to one another. We have chosen not to allow a graph with an
empty vertex set, the so-called empty graph. There are both advantages and
disadvantages to allowing the empty graph, so you may encounter it in other

181

CHAPTER 9. GRAPH THEORY 182

references.
Example 9.1.3 A Simple Directed Graph. Figure 9.1.4 is an example of
a simple directed graph. In set terms, this graph is (V, E), where V = {s, a, b}
and E = {(s, a), (s, b), (a, b), (b, a), (b, b)}. Note how each edge is labeled either
0 or 1. There are often reasons for labeling even simple graphs. Some labels
are to help make a graph easier to discuss; others are more significant. We will
discuss the significance of the labels on this graph later.

Figure 9.1.4 A directed graph
□

There are cases where the order of the vertices is not significant and so we
use a different mathematical model for this situation:
Definition 9.1.5 Simple Undirected Graph. A simple undirected graph
consists of a nonempty set V , called a vertex set, and a set E of two-element
subsets of V , called the edge set. ♢

Henceforth, we will refer to simple undirected graphs as undirected graphs.
When drawing an undirected graph, the two-element subsets are drawn as
undirected lines or arcs connecting the vertices. It is customary to not allow
“self loops” in undirected graphs since {v, v} isn’t a two element subset of
vertices.
Note 9.1.6 On Empty Graphs. It may occur to some readers that a graph
could be empty, in the sense that it has empty vertex and edge sets. We might
refer to this graph as the empty graph. However, there doesn’t seem to be a
universally agreed upon definition of an empty graph. In some works, a graph
with any number of vertices and no edges is called an empty graph. To avoid
this dilemma, we have defined both directed and undirected graphs to have
nonempty vertex sets. For convenience, we’ve relaxed this rule in our definition
of a Binary Tree and allowed for an empty binary tree.
Example 9.1.7 An Undirected Graph. A network of computers can
be described easily using a graph. Figure 9.1.8 describes a network of five
computers, a, b, c, d, and e. An edge between any two vertices indicates that
direct two-way communication is possible between the two computers. Note
that the edges of this graph are not directed. This is due to the fact that the
relation that is being displayed is symmetric (i.e., if X can communicate with
Y , then Y can communicate with X). Although directed edges could be used
here, it would simply clutter the graph.

CHAPTER 9. GRAPH THEORY 183

Figure 9.1.8 Communications Map Figure 9.1.9 Island Road Map
This undirected graph, in set terms, is V = {a, b, c, d, e} and E = {{a, b}, {a, d}, {b, c}, {b, d}, {c, e}, {b, e}}
There are several other situations for which this graph can serve as a model.

One of them is to interpret the vertices as cities and the edges as roads, an
abstraction of a map such as the one in Figure 9.1.9 . Another interpretation is
as an abstraction of the floor plan of a house. See Exercise 9.1.5.11. Vertex a
represents the outside of the house; all others represent rooms. Two vertices
are connected if there is a door between them. □

Definition 9.1.10 Complete Undirected Graph. A complete undirected
graph on n vertices is an undirected graph with the property that each pair of
distinct vertices are connected to one another. Such a graph is usually denoted
by Kn. ♢

In certain cases there may be a need for more than one edge between two
vertices, and we need to expand the class of directed graphs.

Definition 9.1.11 Multigraph. A multigraph is a set of vertices V with a
set of edges that can contain more than one edge between the vertices. ♢

One important point to keep in mind is that if we identify a graph as being
a multigraph, it isn’t necessary that there are two or more edges between some
of the vertices. It is only just allowed. In other words, every simple graph is a
multigraph. This is analogous to how a rectangle is a more general geometric
figure than a square, but a square is still considered a rectangle.

Example 9.1.12 A Multigraph. A common occurrence of a multigraph is
a road map. The cities and towns on the map can be thought of as vertices,
while the roads are the edges. It is not uncommon to have more than one
road connecting two cities. In order to give clear travel directions, we name
or number roads so that there is no ambiguity. We use the same method to
describe the edges of the multigraph in Figure 9.1.13. There is no question
what e3 is; however, referring to the edge (2, 3) would be ambiguous.

CHAPTER 9. GRAPH THEORY 184

Figure 9.1.13 A directed multigraph
□

Example 9.1.14 A Labeled Graph. A flowchart is a common example
of a simple graph that requires labels for its vertices and some of its edges.
Figure 9.1.15 is one such example that illustrates how many problems are solved.

Figure 9.1.15 A flow chart - an example of a labeled graph
At the start of the problem-solving process, we are at the vertex labeled

“Start” and at the end (if we are lucky enough to have solved the problem)
we will be at the vertex labeled “End.” The sequence of vertices that we pass
through as we move from “Start” to “End” is called a path. The “Start” vertex
is called the initial vertex of the path, while the “End” is called the final,
or terminal, vertex. Suppose that the problem is solved after two attempts;
then the path that was taken is Start, R, A, Q, L, A, Q, End. An alternate path
description would be to list the edges that were used: 1, 2, 3, No, 4, 3, Yes. This
second method of describing a path has the advantage of being applicable for
multigraphs. On the graph in Figure 9.1.13, the vertex list 1, 2, 3, 4, 3 does not

CHAPTER 9. GRAPH THEORY 185

clearly describe a path between 1 and 3, but e1, e4, e6, e7 is unambiguous. □

Note 9.1.16 A Summary of Path Notation and Terminology. If x and
y are two vertices of a graph, then a path between x and y describes a motion
from x to y along edges of the graph. Vertex x is called the initial vertex of the
path and y is called the terminal vertex. A path between x and y can always
be described by its edge list, the list of edges that were used: (e1, e2, . . . , en),
where: (1) the initial vertex of e1 is x; (2) the terminal vertex of ei is the initial
vertex of ei+1, i = 1, 2, . . . , n− 1; and (3) the terminal vertex of en is y. The
number of edges in the edge list is the path length. A path on a simple graph
can also be described by a vertex list. A path of length n will have a list of n+1
vertices v0 = x, v1, v2, . . . , vn = y, where, for k = 0, 1, 2, . . . , n− 1, (vk, vk+1) is
an edge on the graph. A circuit is a path that terminates at its initial vertex.

Suppose that a path between two vertices has an edge list (e1, e2, ..., en). A
subpath of this graph is any portion of the path described by one or more
consecutive edges in the edge list. For example, (3, No, 4) is a subpath of
(1, 2, 3, No, 4, 3, Yes). Any path is its own subpath; however, we call it an
improper subpath of itself. All other nonempty subpaths are called proper
subpaths.

A path or circuit is simple if it contains no proper subpath that is a circuit.
This is the same as saying that a path or circuit is simple if it does not visit
any vertex more than once except for the common initial and terminal vertex
in the circuit. In the problem-solving method described in Figure 9.1.15, the
path that you take is simple only if you reach a solution on the first try.

9.1.2 Subgraphs
Intuitively, you could probably predict what the term “subgraph” means. A
graph contained within a graph, right? But since a graph involves two sets,
vertices and edges, does it involve a subset of both of these sets, or just one of
them? The answer is it could be either. There are different types of subgraphs.
The two that we will define below will meet most of our future needs in discussing
the theory of graphs.

Definition 9.1.17 Subgraph. Let G = (V, E) be a graph of any kind:
directed, directed multigraph, or undirected. G′ = (V ′, E′) is a subgraph of G
if V ′ ̸= ∅, V ′ ⊆ V and e ∈ E′ only if e ∈ E and the vertices of e are in V ′. You
create a subgraph of G by removing zero or more vertices and all edges that
include the removed vertices and then you possibly remove some other edges.

If the only removed edges are those that include the removed vertices, then
we say that G′ is an induced subgraph. Finally, G′ is a spanning subgraph
of G if V ′ = V , or, in other words, no vertices are removed from G, only edges.

♢

Example 9.1.18 Some subgraphs. Consider the graph, G, in the top left
of Figure 9.1.19. The other three graphs in that figure are all subgraphs of G.
The graph in the top right was created by first removing vertex 5 and all edges
connecting it. In addition, we have removed the edge {1, 4}. That removed
edge disqualifies the graph from being an induced subgraph. The graphs in the
bottom left and right are both spanning subgraphs. The one on the bottom
right is a tree, and is referred to as a spanning subtree. Spanning subtrees will
be discussed in the chapter on Trees.

CHAPTER 9. GRAPH THEORY 186

Figure 9.1.19 A few subgraphs
□

One set of subgraphs of any graph is the connected components of a graph.
For simplicity, we will define them for undirected graphs. Given a graph
G = (V, E), consider the relation “is connected to” on V . We interpret this
relation so that each vertex is connected to itself, and any two distinct vertices
are related if there is a path along edges of the graph from one to the other.
It shouldn’t be too difficult to convince yourself that this is an equivalence
relation on V .
Definition 9.1.20 Connected Component. Given a graph G = (V, E), let
C be the relation “is connected to” on V . Then the connected components of
G are the induced subgraphs of G each with a vertex set that is an equivalence
class with respect to C. ♢

Example 9.1.21 If you ignore the duplicate names of vertices in the four
graphs of Figure 9.1.19, and consider the whole figure as one large graph, then
there are four connected components in that graph. It’s as simple as that! It’s
harder to describe precisely than to understand the concept. □

From the examples we’ve seen so far, we can see that although a graph can
be defined, in short, as a collection of vertices and edges, an integral part of
most graphs is the labeling of the vertices and edges that allows us to interpret
the graph as a model for some situation. We continue with a few more examples
to illustrate this point.

Example 9.1.22 A Graph as a Model for a Set of Strings. Suppose
that you would like to mechanically describe the set of strings of 0’s and 1’s
having no consecutive 1’s. One way to visualize a string of this kind is with
the graph in Figure 9.1.4. Consider any path starting at vertex s. If the label
on each graph is considered to be the output to a printer, then the output will
have no consecutive 1’s. For example, the path that is described by the vertex
list (s, a, b, b, a, b, b, a, b) would result in an output of 10010010. Conversely, any
string with no consecutive 1’s determines a path starting at s. □

Example 9.1.23 A Tournament Graph. Suppose that four teams compete
in a round-robin sporting event; that is, each team meets every other team once,
and each game is played until a winner is determined. If the teams are named
A, B, C, and D, we can define the relation β on the set of teams by XβY if X
beat Y . For one set of results, the graph of β might look like Figure 9.1.24.

CHAPTER 9. GRAPH THEORY 187

Figure 9.1.24 Round-robin tournament graph with four vertices
□

There are many types of tournaments and they all can be modeled by
different types of graphs.

Definition 9.1.25 Tournament Graph.
(a) A tournament graph is a directed graph with the property that no edge

connects a vertex to itself, and between any two vertices there is at most
one edge.

(b) A complete (or round-robin) tournament graph is a tournament graph
with the property that between any two distinct vertices there is exactly
one edge.

(c) A single-elimination tournament graph is a tournament graph with the
properties that: (i) one vertex (the champion) has no edge terminating
at it and at least one edge initiating from it; (ii) every other vertex is
the terminal vertex of exactly one edge; and (iii) there is a path from the
champion vertex to every other vertex.

♢

Example 9.1.26 Graph of a Single Elimination Tournament. The major
league baseball championship is decided with a single-elimination tournament,
where each “game” is actually a series of games. From 1969 to 1994, the two
divisional champions in the American League (East and West) competed in
a series of games. The loser is eliminated and the winner competed against
the winner of the National League series (which is decided as in the American
League). The tournament graph of the 1983 championship is in Figure 9.1.27

CHAPTER 9. GRAPH THEORY 188

Figure 9.1.27 A single elimination tournament graph
□

9.1.3 Graph Isomorphisms
Next, we establish the relation “is isomorphic to,” a form of equality on graphs.
The graphs in Figure 9.1.28 obviously share some similarities, such as the
number of vertices and the number of edges. It happens that they are even
more similar than just that. If the letters a, b, c, and d in the left graph are
replaced with the numbers 1,3,4, and 2, respectively, and the vertices are moved
around so that they have the same position as the graph on the right, you get
the graph on the right.

Figure 9.1.28 Isomorphic Graphs
Here is a more precise definition that reflects the fact that the actual

positioning (or embedding) of vertices isn’t an essential part of a graph.

Definition 9.1.29 Isomorphic Graphs. Two graphs (V, E) and (V ′, E′) are
isomorphic if there exists a bijection f : V → V ′ such that (vi, vj) ∈ E if and
only if (f (vi) , f (vj)) ∈ E′. For multigraphs, we add that the number of edges
connecting vi to vj must equal the number of edges from f (vi) to f (vj). ♢

The most significant local characteristic of a vertex within a graph is its
degree. Collectively, the degrees can partially characterize a graph.

CHAPTER 9. GRAPH THEORY 189

Definition 9.1.30 Degree of a vertex.
(a) Let v be a vertex of an undirected graph. The degree of v, denoted deg(v),

is the number of edges that connect v to the other vertices in the graph.

(b) If v is a vertex of a directed graph, then the outdegree of v, denoted
outdeg(v), is the number of edges of the graph that initiate at v. The
indegree of v, denoted indeg(v), is the number of edges that terminate at
v.

♢

Definition 9.1.31 Degree Sequence of a Graph. The degree sequence of
a simple undirected graph is the non-increasing sequence of its vertex degrees.

♢

Example 9.1.32 Some degrees.

Figure 9.1.33 An undirected graph

(a) The degrees of vertices 1 through 5 in Figure 9.1.33 are 2, 3, 4, 1, and 2,
respectively. The degree sequence of the graph is (4, 3, 2, 2, 1).

(b) In a tournament graph, outdeg(v) is the number of wins for v and indeg(v)
is the number of losses. In a complete (round-robin) tournament graph
with n vertices, outdeg(v) + indeg(v) = n− 1 for each vertex.

□

Definition 9.1.34 Graphic Sequence. A finite nonincreasing sequence of
integers d1, d2, . . . , dn is graphic if there exists a simple undirected graph with
n vertices having the sequence as its degree sequence. ♢

For example, 4, 2, 1, 1, 1, 1 is graphic because the degrees of the graph in
Figure 9.1.35 match these numbers. There is no connection between the vertex
number and its degree in this graph.

CHAPTER 9. GRAPH THEORY 190

Figure 9.1.35 A graph that shows that 4, 2, 1, 1, 1, 1 is a graphic sequence.
See [26] for more details on what are also referred to as graphical degree

sequences, including an algorithm for determining whether or not a sequence
is graphic.

9.1.4 Next Steps

List 9.1.36 A Prospectus for the Rest of the Chapter

The question “Once you have a graph, what do you do with it?” might
come to mind. The following list of common questions and comments
about graphs is a partial list that will give you an overview of the
remainder of the chapter.

(1) How can a graph be represented as a data structure for use on a
computer? We will discuss some common data structures that are
used to represent graphs in Section 9.2.

(2) Given two vertices in a graph, does there exist a path between
them? The existence of a path between any or all pairs of vertices
in a graph will be discussed in Section 9.3. A related question is:
How many paths of a certain type or length are there between two
vertices?

(3) Is there a path (or circuit) that passes through every vertex (or uses
every edge) exactly once? Paths of this kind are called traversals.
We will discuss traversals in Section 9.4.

(4) Suppose that a cost is associated with the use of each vertex and/or
edge in a path. What is the “cheapest” path, circuit, or traversal
of a given kind? Problems of this kind will be discussed in Section
9.5.

(5) Given the specifications of a graph, or the graph itself, what is
the best way to draw the graph? The desire for neatness alone
makes this a reasonable question, but there are other motivations.
Another goal might be to avoid having edges of the graph cross
one another. This is discussed in Section 9.6.

CHAPTER 9. GRAPH THEORY 191

9.1.5 Exercises
1. What is the significance of the fact that there is a path connecting vertex

b with every other vertex in Figure 9.1.8, as it applies to various situations
that it models?

2. Draw a graph similar to Figure 9.1.4 that represents the set of strings of
0’s and 1’s containing no more than two consecutive 1’s in any part of the
string.

3. Draw a directed graph that models the set of strings of 0’s and 1’s (zero
or more of each) where all of the 1’s must appear consecutively.

4. In the NCAA final-four basketball tournament, the East champion plays
the West champion, and the champions from the Mideast and Midwest
play. The winners of the two games play for the national championship.
Draw the eight different single-elimination tournament graphs that could
occur.

5. What is the maximum number of edges in an undirected graph with eight
vertices?

6. Which of the graphs in Figure 9.1.37 are isomorphic? What is the corre-
spondence between their vertices?

Figure 9.1.37 Which graphs are isomorphic to one another?
7.

(a) How many edges does a complete tournament graph with n vertices
have?

(b) How many edges does a single-elimination tournament graph with n
vertices have?

CHAPTER 9. GRAPH THEORY 192

8. Draw complete undirected graphs with 1, 2, 3, 4, and 5 vertices. How
many edges does a Kn, a complete undirected graph with n vertices, have?

9. Determine whether the following sequences are graphic. Explain your
logic.

(a) (6, 5, 4, 3, 2, 1, 0)

(b) (2, 2, 2, 2, 2, 2)

(c) (3, 2, 2, 2, 2, 2)

(d) (5, 3, 3, 3, 3, 3)

(e) (1, 1, 1, 1, 1, 1)

(f) (5, 5, 4, 3, 2, 1)
10.

(a) Based on observations you might have made in exercise 9, describe
as many characteristics as you can about graphic sequences of length
n.

(b) Consider the two graphs in Figure 9.1.38. Notice that they have the
same degree sequences, (2, 2, 2, 2, 2, 2). Explain why the two graphs
are not isomorphic.

Figure 9.1.38 Two graphs with the same degree sequences
11. Draw a plan for the rooms of a house so that Figure 9.1.8 models con-

nectedness of the rooms. That is, (a, b) is an edge if and only if a door
connects rooms a and b.

12. How many subgraphs are there of a Kn, n ≥ 1. How many of them are
spanning graphs?

9.2 Data Structures for Graphs
In this section, we will describe data structures that are commonly used to
represent graphs. In addition we will introduce the basic syntax for graphs in
Sage.

CHAPTER 9. GRAPH THEORY 193

9.2.1 Basic Data Structures

List 9.2.1 Data Structures for Graphs

Assume that we have a graph with n vertices that can be indexed by
the integers 1, 2, . . . , n. Here are three different data structures that can
be employed to represent graphs.

(a) Adjacency Matrix: As we saw in Chapter 6, the information about
edges in a graph can be summarized with an adjacency matrix, G,
where Gij = 1 if and only if vertex i is connected to vertex j in
the graph. Note that this is the same as the adjacency matrix for
a relation.

(b) Edge Dictionary: For each vertex in our graph, we maintain a list
of edges that initiate at that vertex. If G represents the graph’s
edge information, then we denote by Gi the list of vertices that
are terminal vertices of edges initiating at vertex i. The exact
syntax that would be used can vary. We will use Sage/Python
syntax in our examples.

(c) Edge List: Note that in creating either of the first two data
structures, we would presume that a list of edges for the graph
exists. A simple way to represent the edges is to maintain this list
of ordered pairs, or two element sets, depending on whether the
graph is intended to be directed or undirected. We will not work
with this data structure here, other than in the first example.

Example 9.2.2 A Very Small Example. We consider the representation
of the following graph:

Figure 9.2.3 Graph for a Very Small Example
The adjacency matrix that represents the graph would be

G =

0 1 0 1
0 0 1 1
0 0 1 0
1 0 0 0

 .

The same graph could be represented with the edge dictionary

{1:[2,4],2:[3,4],3:[3],4:[1]}.

Notice the general form of each item in the dictionary: vertex:[list of
vertices].

Finally, a list of edges [(1,2),(1,4),(2,3),(2,4),(3,3),(4,1)] also de-
scribes the same graph. □

CHAPTER 9. GRAPH THEORY 194

A natural question to ask is: Which data structure should be used in a
given situation? For small graphs, it really doesn’t make much difference. For
larger matrices the edge count would be a consideration. If n is large and the
number of edges is relatively small, it might use less memory to maintain an
edge dictionary or list of edges instead of building an n × n matrix. Some
software for working with graphs will make the decision for you.

Example 9.2.4 NCAA Basketball. Consider the tournament graph repre-
senting a NCAA Division 1 men’s (or women’s) college basketball season in the
United States. There are approximately 350 teams in Division 1. Suppose we
constructed the graph with an edge from team A to team B if A beat B at least
once in the season; and we label the edge with the number of wins. Since the
average team plays around 30 games in a season, most of which will be against
other Division I teams, we could expect around 30·350

2 = 5, 250 edges in the
graph. This would be somewhat reduced by games with lower division teams
and cases where two or more wins over the same team produces one edge. Since
5,250 is much smaller than 3502 = 122, 500 entries in an adjacency matrix, an
edge dictionary or edge list would be more compact than an adjacency matrix.
Even if we were to use software to create an adjacency matrix, many programs
will identify the fact that a matrix such as the one in this example would be
“sparse” and would leave data in list form and use sparse array methods to work
with it. □

9.2.2 Sage Graphs
The most common way to define a graph in Sage is to use an edge dictionary.
Here is how the graph in Example 9.2.2 is generated and then displayed.
Notice that we simply wrap the function DiGraph() around the same dictionary
expression we identified earlier.

G1 = DiGraph({1 : [4, 2], 2 : [3, 4], 3 : [3], 4 : [1]})
G1.show()

You can get the adjacency matrix of a graph with the adjacency_matrix
method.

G1.adjacency_matrix ()

[0 1 0 1]
[0 0 1 1]
[0 0 1 0]
[1 0 0 0]

You can also define a graph based on its adjacency matrix.

M = Matrix ([[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],
[0,0,0,0,1],[1,0,0,0,0]])

DiGraph(M).show()

[0 1 0 1]
[0 0 1 1]
[0 0 1 0]
[1 0 0 0]

The edge list of any directed graph can be easily retrieved. If you replace
edges with edge_iterator, you can iterate through the edge list. The third
coordinate of the items in the edge is the label of the edge, which is None in
this case.

CHAPTER 9. GRAPH THEORY 195

DiGraph(M).edges()

[(0, 1, None), (1, 2, None), (2, 3, None), (3, 4, None),
(4, 0, None)]

Replacing the wrapper DiGraph() with Graph() creates an undirected graph.

G2 = Graph({1 : [4, 2], 2 : [3, 4], 3 : [3], 4 : [1]})
G2.show()

There are many special graphs and graph families that are available in
Sage through the graphs module. They are referenced with the prefix graphs.
followed by the name and zero or more parameters inside parentheses. Here
are a couple of them, first a complete graph with five vertices.

graphs.CompleteGraph (5).show()

Here is a wheel graph, named for an obvious pattern of vertices and edges.
We assign a name to it first and then show the graph without labeling the
vertices.

w=graphs.WheelGraph (20)
w.show(vertex_labels=false)

There are dozens of graph methods, one of which determines the degree
sequence of a graph. In this case, it’s the wheel graph above.

w.degree_sequence ()

[19, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3]

The degree sequence method is defined within the graphs module, but
the prefix graphs. is not needed because the value of w inherits the graphs
methods.

9.2.3 Exercises
1. Estimate the number of vertices and edges in each of the following graphs.

Would the graph be considered sparse, so that an adjacency matrix would
be inefficient?

(a) Vertices: Cities of the world that are served by at least one airline.
Edges: Pairs of cities that are connected by a regular direct flight.

(b) Vertices: ASCII characters. Edges: connect characters that differ in
their binary code by exactly two bits.

(c) Vertices: All English words. Edges: An edge connects word x to
word y if x is a prefix of y.

2. Each edge of a graph is colored with one of the four colors red, blue, yellow,
or green. How could you represent the edges in this graph using a variation
of the adjacency matrix structure?

3. Directed graphs G1, . . . , G6 , each with vertex set {1, 2, 3, 4, 5} are rep-
resented by the matrices below. Which graphs are isomorphic to one
another?

CHAPTER 9. GRAPH THEORY 196

G1 :

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

 G2 :

0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
1 1 1 0 1
0 0 0 0 0

 G3 :

0 0 0 0 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0

G4 :

0 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

 G5 :

0 0 0 0 1
0 0 0 0 0
0 1 0 1 0
0 0 0 0 1
0 0 1 0 0

 G6 :

0 0 0 1 0
0 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0

4. The following Sage command verifies that the wheel graph with four

vertices is isomorphic to the complete graph with four vertices.

graphs.WheelGraph (4).is_isomorphic(graphs.CompleteGraph (4))

True

A list of all graphs in this the graphs database is available via tab
completion. Type "graphs." and then hit the tab key to see which graphs are
available. This can be done using the Sage application or SageMathCloud,
but not sage cells. Find some other pairs of isomorphic graphs in the
database.

9.3 Connectivity
This section is devoted to a question that, when posed in relation to the graphs
that we have examined, seems trivial. That question is: Given two vertices,
s and t, of a graph, is there a path from s to t? If s = t, this question is
interpreted as asking whether there is a circuit of positive length starting at
s. Of course, for the graphs we have seen up to now, this question can be
answered after a brief examination.

9.3.1 Preliminaries
There are two situations under which a question of this kind is nontrivial. One
is where the graph is very large and an “examination” of the graph could take a
considerable amount of time. Anyone who has tried to solve a maze may have
run into a similar problem. The second interesting situation is when we want to
pose the question to a machine. If only the information on the edges between
the vertices is part of the data structure for the graph, how can you put that
information together to determine whether two vertices can be connected by a
path?

Note 9.3.1 Connectivity Terminology. Let v and w be vertices of a
directed graph. Vertex v is connected to vertex w if there is a path from v to
w. Two vertices are strongly connected if they are connected in both directions
to one another. A graph is connected if, for each pair of distinct vertices, v and
w, v is connected to w or w is connected to v. A graph is strongly connected
if every pair of its vertices is strongly connected. For an undirected graph, in
which edges can be used in either direction, the notions of strongly connected
and connected are the same.
Theorem 9.3.2 Maximal Path Theorem. If a graph has n vertices and
vertex u is connected to vertex w, then there exists a path from u to w of length

CHAPTER 9. GRAPH THEORY 197

no more than n.
Proof. (Indirect): Suppose u is connected to w, but the shortest path from u
to w has length m, where m > n. A vertex list for a path of length m will have
m + 1 vertices. This path can be represented as (v0, v1, . . . , vm), where v0 = u
and vm = w. Note that since there are only n vertices in the graph and m
vertices are listed in the path after v0, we can apply the pigeonhole principle
and be assured that there must be some duplication in the last m vertices of
the vertex list, which represents a circuit in the path. This means that our
path of minimum length can be reduced, which is a contradiction. ■

9.3.2 Adjacency Matrix Method
Algorithm 9.3.3 Adjacency Matrix Method. Suppose that the information
about edges in a graph is stored in an adjacency matrix, G. The relation, r,
that G defines is vrw if there is an edge connecting v to w. Recall that the
composition of r with itself, r2, is defined by vr2w if there exists a vertex y such
that vry and yrw; that is, v is connected to w by a path of length 2. We could
prove by induction that the relation rk, k ≥ 1, is defined by vrkw if and only if
there is a path of length k from v to w. Since the transitive closure, r+, is the
union of r, r2 , r3, . . ., we can answer our connectivity question by determining
the transitive closure of r, which can be done most easily by keeping our relation
in matrix form. Theorem 9.3.2 is significant in our calculations because it tells
us that we need only go as far as Gn to determine the matrix of the transitive
closure.

The main advantage of the adjacency matrix method is that the transitive
closure matrix can answer all questions about the existence of paths between
any vertices. If G+ is the matrix of the transitive closure, vi is connected to
vj if and only if (G+)ij = 1. A directed graph is connected if (G+)ij = 1
or (G+)ji = 1 for each i ̸= j. A directed graph is strongly connected if its
transitive closure matrix has no zeros.

A disadvantage of the adjacency matrix method is that the transitive closure
matrix tells us whether a path exists, but not what the path is. The next
algorithm will solve this problem.

9.3.3 Breadth-First Search
We will describe the Breadth-First Search Algorithm first with an example.

The football team at Mediocre State University (MSU) has had a bad year,
2 wins and 9 losses. Thirty days after the end of the football season, the
university trustees are meeting to decide whether to rehire the head coach;
things look bad for him. However, on the day of the meeting, the coach issues
the following press release with results from the past year:

List 9.3.4 Press Release: MSU completes successful season

The Mediocre State University football team compared favorably with
national champion Enormous State University this season.

• Mediocre State defeated Local A and M.

• Local A and M defeated City College.

• City College defeated Corn State U.

• ... (25 results later)

• Tough Tech defeated Enormous State University (ESU).

CHAPTER 9. GRAPH THEORY 198

...and ESU went on to win the national championship!

The trustees were so impressed that they rehired the coach with a raise!
How did the coach come up with such a list?

In reality, such lists exist occasionally and have appeared in newspapers
from time to time. Of course they really don’t prove anything since each team
that defeated MSU in our example above can produce a similar, shorter chain
of results. Since college football records are readily available, the coach could
have found this list by trial and error. All that he needed to start with was
that his team won at least one game. Since ESU lost one game, there was some
hope of producing the chain.

The problem of finding this list is equivalent to finding a path in the
tournament graph for last year’s football season that initiates at MSU and ends
at ESU. Such a graph is far from complete and is likely to be represented using
edge lists. To make the coach’s problem interesting, let’s imagine that only the
winner of any game remembers the result of the game. The coach’s problem
has now taken on the flavor of a maze. To reach ESU, he must communicate
with the various teams along the path. One way that the coach could have
discovered his list in time is by sending the following messages to the coaches
of the two teams that MSU defeated during the season:

Note 9.3.5 When this example was first written, we commented that ties
should be ignored. Most recent NCAA rules call for a tiebreaker in college
football and so ties are no longer an issue. Email was also not common and we
described the process in terms of letters, not email messages. Another change
is that the coach could also have asked the MSU math department to use
Mathematica or Sage to find the path!

List 9.3.6 The Coach’s Letter

Dear Football Coach:
Please follow these directions exactly.

(1) If you are the coach at ESU, contact the coach at MSU now and
tell him who sent you this message.

(2) If you are not the coach at ESU and this is the first message of
this type that you have received, then:

• Remember from whom you received this message.
• Forward a copy of this message, signed by you, to each of the

coaches whose teams you defeated during the past year.
• Ignore this message if you have received one like it already.

Signed,
Coach of MSU

List 9.3.7 Observations

From the conditions of this message, it should be clear that if everyone
cooperates and if coaches participate within a day of receiving the
message:

(1) If a path of length n exists from MSU to ESU, then the coach will
know about it in n days.

CHAPTER 9. GRAPH THEORY 199

(2) By making a series of phone calls, the coach can construct a path
that he wants by first calling the coach who defeated ESU (the
person who sent ESU’s coach that message). This coach will know
who sent him a letter, and so on. Therefore, the vertex list of the
desired path is constructed in reverse order.

(3) If a total of M football games were played, no more than M
messages will be sent out.

(4) If a day passes without any message being sent out, no path from
MSU to ESU exists.

(5) This method could be extended to construct a list of all teams
that a given team can be connected to. Simply imagine a series of
letters like the one above sent by each football coach and targeted
at every other coach.

The general problem of finding a path between two vertices in a graph, if
one exists, can be solved exactly as we solved the problem above. The following
algorithm, commonly called a breadth-first search, uses a stack.

Stacks. A stack is a fundamental data structure in computer science. A
common analogy used to describe stacks is a stack of plates. If you put a plate
on the top of a stack and then want to use a plate, it’s natural to use that top
plate. So the last plate in is the first plate out. “Last in, first out” is the short
description of the rule for stacks. This is contrast with a queue which uses a
“First in, first out” rule.

Algorithm 9.3.8 Breadth-first Search. A broadcasting algorithm for
finding a path between vertex i and vertex j of a graph having n vertices. Each
item Vk of a list V = {V1, V2, . . . , Vn}, consists of a Boolean field Vk.found
and an integer field Vk.from. The sets D1, D2, . . ., called depth sets, have the
property that if k ∈ Dr, then the shortest path from vertex i to vertex k is of
length r. In Step 5, a stack is used to put the vertex list for the path from
the vertex i to vertex j in the proper order. That stack is the output of the
algorithm.

(1) Set the value Vk.found equal to False, k = 1, 2, . . . , n

(2) r = 0

(3) D0 = {i}

(4) while (¬Vj .found) and (Dr ̸= ∅)

• Dr+1 = ∅
• for each k in Dr:

for each edge (k,t):
If Vt.found == False:

Vt.found = True
Vt.from = k

Dr+1 = Dr+1 ∪ {t}
• r = r + 1

(5) if Vj .found:

• S = EmptyStack

CHAPTER 9. GRAPH THEORY 200

• k = j

• while Vk.from ̸= i:
Push k onto S

k = Vk.from
• Push k onto S

• Push i onto S

List 9.3.9 Notes on Breadth-first Search

• This algorithm will produce one path from vertex i to vertex j,
if one exists, and that path will be as short as possible. If more
than one path of this length exists, then the one that is produced
depends on the order in which the edges are examined and the
order in which the elements of Dr are examined in Step 4.

• The condition Dr ̸= ∅ is analogous to the condition that no mail
is sent in a given stage of the process, in which case MSU cannot
be connected to ESU.

• This algorithm can be easily revised to find paths to all vertices
that can be reached from vertex i. Step 5 would be put off until
a specific path to a vertex is needed since the information in V
contains an efficient list of all paths. The algorithm can also be
extended further to find paths between any two vertices.

Example 9.3.10 A simple example. Consider the graph below. The
existence of a path from vertex 2 to vertex 3 is not difficult to determine by
examination. After a few seconds, you should be able to find two paths of
length four. Algorithm 9.3.8 will produce one of them.

Figure 9.3.11 A simple example of breadth-first search

CHAPTER 9. GRAPH THEORY 201

Suppose that the edges from each vertex are sorted in ascending order
by terminal vertex. For example, the edges from vertex 3 would be in the
order (3, 1), (3, 4), (3, 5). In addition, assume that in the body of Step 4 of the
algorithm, the elements of Dr are used in ascending order. Then at the end of
Step 4, the value of V will be

k 1 2 3 4 5 6
Vk.found T T T T T T

Vk.from 2 4 6 1 1 4
Depthset 1 3 4 2 2 3

Therefore, the path (2, 1, 4, 6, 3) is produced by the algorithm. Note that if we
wanted a path from 2 to 5, the information in V produces the path (2, 1, 5)
since Vk.from = 1 and V1.from = 2. A shortest circuit that initiates at vertex
2 is also available by noting that V2.from = 4, V4.from = 1, and V1.from = 2;
thus the circuit (2, 1, 4, 2) is the output of the algorithm. □

9.3.4 Graph Measurements
If we were to perform a breadth first search from each vertex in a graph, we
could proceed to determine several key measurements relating to the general
connectivity of that graph. From each vertex v, the distance from v to any other
vertex w, d(v, w), is number of edges in the shortest path from v to w. This
number is also the index of the depth set to which w belongs in a breath-first
search starting at v.

d(v, w) = i ⇐⇒ w ∈ Dv(i)

where Dv is the family of depth sets starting at v.
If the vector of “from-values” is known from the breath-first search, then

the distance can be determined recursively as follows:

d(v, v) = 0

d(v, w) = 1 + d(v, w.from) if w ̸= v

Example 9.3.12 Computing Distances.

Figure 9.3.13 Graph Measurements Example
Consider Figure 9.3.13. If we perform a breadth first search of this graph

starting at vertex 2, for example, we get the following “from data” telling us

CHAPTER 9. GRAPH THEORY 202

from what vertex each vertex is reached.

vertex 1 2 3 4 5 6 7 8 9 10 11 12
vertex.from 7 2 10 6 9 7 2 4 2 7 9 2

For example, 4.from has a value of 6. We can compute d(2, 4):

d(2, 4) = 1 + d(2, 4.from) = 1 + d(2, 6)
= 2 + d(2, 6.from) = 2 + d(2, 7)
= 3 + d(2, 7.from) = 3 + d(2, 2)
= 3

□
Once we know distances between any two vertices, we can determine the

eccentricity of each vertex; and the graph’s diameter, radius and center. First,
we define these terms precisely.

Eccentricity of a Vertex
The maximum distance from a vertex to all other vertices, e(v) =
maxw d(v, w).

Diameter of a Graph
The maximum eccentricity of vertices in a graph, denoted d(G).

Radius of a Graph
The minimum eccentricity of vertices in a graph, denoted r(G).

Center of a Graph
The set of vertices with minimal eccentricity, C(G) = {v ∈ V |
e(v) = r(G)}

Example 9.3.14 Measurements from distance matrices. If we compute
all distances between vertices, we can summarize the results in a distance
matrix, where the entry in row i, column j is the distance from vertex i to
vertex j. For the graph in Example 9.3.12, that matrix is

0 2 2 2 3 1 1 3 3 1 2 2
2 0 3 3 2 2 1 4 1 2 2 1
2 3 0 2 5 3 2 3 4 1 4 3
2 3 2 0 3 1 2 1 3 1 2 3
3 2 5 3 0 2 3 4 1 4 1 3
1 2 3 1 2 0 1 2 2 2 1 2
1 1 2 2 3 1 0 3 2 1 2 1
3 4 3 1 4 2 3 0 4 2 3 4
3 1 4 3 1 2 2 4 0 3 1 2
1 2 1 1 4 2 1 2 3 0 3 2
2 2 4 2 1 1 2 3 1 3 0 3
2 1 3 3 3 2 1 4 2 2 3 0

If we scan the matrix, we can see that the maximum distance is the distance
between vertices 3 and 5, which is 5 and is the diameter of the graph. If
we focus on individual rows and identify the maximum values, which are the
eccentricities, their minimum is 3, which the graph’s radius. This eccentricity
value is attained by vertices in the set {1, 4, 6, 7}, which is the center of the
graph. □

CHAPTER 9. GRAPH THEORY 203

9.3.5 SageMath Note - Graph Searching
The following sequence of Sage cells illustrates how searching can be done in
graphs.

Generate a random undirected graph with 18 vertices. For each pair of
vertices, an edge is included between them with probability 0.2. Since there
are

(18
2
)

= 153 potential edges, we expect that there will be approximately
0.2 · 153 ≈ 31 edges. The random number generation is seeded first so that the
result will always be the same in spite of the random graph function. Changing
or removing that first line will let you experiment with different graphs.

set_random_seed (2002)
Gr=graphs.RandomGNP (18 ,0.2)
Gr.show()

Count the number of edges. In this case the number is a bit less than
expected.

len(Gr.edges(labels=False))

27

Find a shortest path from vertex 0 to vertex 8.

Gr.shortest_path (0, 8)

[0, 7, 3, 8]

Generate a list of vertices that would be reached in a breadth-first search.
The expression Gr.breadth_first_search(0) creates an iterator that is conve-
nient for programming. Wrapping list() around the expression shows the
order in which the vertices are visited with the depth set indicated in the second
coordinates.

list(Gr.breadth_first_search (0, report_distance='True'))

[(0, 0) ,(7, 1) ,(14, 1) ,(15, 1) ,(16, 2) ,(2, 2) ,(3, 2) ,(13,
2) ,(17, 2),

(4, 2) ,(5, 2) ,(10, 2) ,(6, 2) ,(11, 2) ,(8, 3) ,(1, 3) ,(9,
3) ,(12, 3)]

9.3.6 Exercises
1. Apply Algorithm 9.3.8 to find a path from 5 to 1 in Figure 9.3.11. What

would be the final value of V ? Assume that the terminal vertices in edge
lists and elements of the depth sets are put into ascending order, as we
assumed in Example 9.3.10.

2. Apply Algorithm 9.3.8 to find a path from d to c in the road graph in
Example 9.1.7 using the edge list in that example. Assume that the
elements of the depth sets are put into ascending order.

3. In a simple undirected graph with no self-loops, what is the maximum
number of edges you can have, keeping the graph unconnected? What is
the minimum number of edges that will assure that the graph is connected?

4. Use a broadcasting algorithm to determine the shortest path from vertex a
to vertex i in the graphs shown in the Figure 9.3.15 below. List the depth
sets and the stack that is created.

CHAPTER 9. GRAPH THEORY 204

Figure 9.3.15 Shortest paths from a to i?
5. For each of the following graphs, determine the eccentricities of each vertex,

and the diameter, radius, and center of the graph.

CHAPTER 9. GRAPH THEORY 205

6.
(a) The terms diameter, radius and center are familiar ones in the context

of circles. Compare their usage in circles and graphs. How are they
similar and how are they different?

(b) “Eccentricity” might be less familiar. How is is used in geometry,
and does it have a compatible use in graph theory?

7. Prove (by induction on k) that if the relation r on vertices of a graph is
defined by vrw if there is an edge connecting v to w, then rk, k ≥ 1, is
defined by vrkw if there is a path of length k from v to w.

8. For each of the following distance matrices of graphs, identify the diameter,
radius and center. Assume the graphs vertices are the numbers 1 through
n for an n× n matrix.

(a)

0 2 1 2 2 3 3 2 1 1
2 0 1 2 3 3 3 2 3 2
1 1 0 1 2 2 2 1 2 1
2 2 1 0 3 3 3 2 3 2
2 3 2 3 0 2 1 1 2 1
3 3 2 3 2 0 1 1 3 2
3 3 2 3 1 1 0 1 3 2
2 2 1 2 1 1 1 0 2 1
1 3 2 3 2 3 3 2 0 1
1 2 1 2 1 2 2 1 1 0

(b)

0 2 2 2 3 3 3 1 2 3 1 1
2 0 2 2 1 1 1 3 2 1 1 3
2 2 0 1 3 2 1 2 2 3 1 1
2 2 1 0 3 1 2 1 2 3 2 1
3 1 3 3 0 2 2 4 3 2 2 4
3 1 2 1 2 0 2 2 3 2 2 2
3 1 1 2 2 2 0 3 3 2 2 2
1 3 2 1 4 2 3 0 3 4 2 2
2 2 2 2 3 3 3 3 0 1 3 1
3 1 3 3 2 2 2 4 1 0 2 2
1 1 1 2 2 2 2 2 3 2 0 2
1 3 1 1 4 2 2 2 1 2 2 0

CHAPTER 9. GRAPH THEORY 206

9.4 Traversals: Eulerian and Hamiltonian Graphs
The subject of graph traversals has a long history. In fact, the solution by
Leonhard Euler (Switzerland, 1707-83) of the Koenigsberg Bridge Problem is
considered by many to represent the birth of graph theory.

9.4.1 Eulerian Graphs

Figure 9.4.1 A map of Koenigsberg,
circa 1735

Figure 9.4.2 A multigraph for the
bridges of Koenigsberg

A map of the Prussian city of Koenigsberg (circa 1735) in Figure 1 shows
that there were seven bridges connecting the four land masses that made up
the city. The legend of this problem states that the citizens of Koenigsberg
searched in vain for a walking tour that passed over each bridge exactly once.
No one could design such a tour and the search was abruptly abandoned with
the publication of Euler’s Theorem.

Theorem 9.4.3 Euler’s Theorem: Koenigsberg Case. No walking tour
of Koenigsberg can be designed so that each bridge is used exactly once.
Proof. The map of Koenigsberg can be represented as an undirected multigraph,
as in Figure 9.4.2. The four land masses are the vertices and each edge represents
a bridge.

The desired tour is then a path that uses each edge once and only once. Since
the path can start and end at two different vertices, there are two remaining
vertices that must be intermediate vertices in the path. If x is an intermediate
vertex, then every time that you visit x, you must use two of its incident edges,
one to enter and one to exit. Therefore, there must be an even number of edges
connecting x to the other vertices. Since every vertex in the Koenigsberg graph
has an odd number of edges, no tour of the type that is desired is possible. ■

As is typical of most mathematicians, Euler wasn’t satisfied with solving only
the Koenigsberg problem. His original theorem, which is paraphrased below,
concerned the existence of paths and circuits like those sought in Koenigsberg.
These paths and circuits have become associated with Euler’s name.

Definition 9.4.4 Eulerian Paths, Circuits, Graphs. An Eulerian path
through a graph is a path whose edge list contains each edge of the graph
exactly once. If the path is a circuit, then it is called an Eulerian circuit. An
Eulerian graph is a graph that possesses an Eulerian circuit. ♢

CHAPTER 9. GRAPH THEORY 207

Notice that if a graph has an Eulerian path that is not a circuit it is generally
not considered an Eulerian graph, although some authors will call it such. So
in any reference you read, be sure to check that definition that is used!

Example 9.4.5 An Eulerian Graph. Without tracing any paths, we can
be sure that the graph below has an Eulerian circuit because all vertices have
an even degree. This follows from the following theorem.

Figure 9.4.6 An Eulerian graph
□

Theorem 9.4.7 Euler’s Theorem: General Case. An undirected graph
has an Eulerian path if and only if it is connected and has either zero or two
vertices with an odd degree. If no vertex has an odd degree, then the graph is
Eulerian.
Proof. It can be proven by induction that the number of vertices in an undirected
graph that have an odd degree must be even. We will leave the proof of this fact
to the reader as an exercise. The necessity of having either zero or two vertices
of odd degree is clear from the proof of the Koenigsberg case of this theorem.
Therefore, we will concentrate on proving that this condition is sufficient to
ensure that a graph has an Eulerian path. Let k be the number of vertices with
odd degree.

Phase 1. If k = 0, start at any vertex, v0, and travel along any path, not
using any edge twice. Since each vertex has an even degree, this path can always
be continued past each vertex that you reach except v0. The result is a circuit
that includes v0. If k = 2, let v0 be either one of the vertices of odd degree.
Trace any path starting at v0 using up edges until you can go no further, as
in the k = 0 case. This time, the path that you obtain must end at the other
vertex of odd degree that we will call v1. At the end of Phase 1, we have an
initial path that may or may not be Eulerian. If it is not Eulerian, Phase 2 can
be repeated until all of the edges have been used. Since the number of unused
edges is decreased in any use of Phase 2, an Eulerian path must be obtained in
a finite number of steps.

Phase 2. As we enter this phase, we have constructed a path that uses
a proper subset of the edges in our graph. We will refer to this path as the
current path. Let V be the vertices of our graph, E the edges, and Eu the edges
that have been used in the current path. Consider the graph G′ = (V, E − Eu).
Note that every vertex in G′ has an even degree. Select any edge, e, from G′.
Let va and vb be the vertices that e connects. Trace a new path starting at va

CHAPTER 9. GRAPH THEORY 208

whose first edge is e. We can be sure that at least one vertex of the new path is
also in the current path since (V, E) is connected. Starting at va, there exists
a path in (V, E) to any vertex in the current path. At some point along this
path, which we can consider the start of the new path, we will have intersected
the current path. Since the degree of each vertex in G′ is even, any path that
we start at va can be continued until it is a circuit. Now, we simply augment
the current path with this circuit. As we travel along the current path, the first
time that we intersect the new path, we travel along it (see Figure 9.4.8). Once
we complete the circuit that is the new path, we resume the traversal of the
current path.

Figure 9.4.8 Path Augmentation Plan
If the result of this phase is an Eulerian path, then we are finished; otherwise,

repeat this phase. ■

Example 9.4.9 Complete Eulerian Graphs. The complete undirected
graphs K2n+1, n = 1, 2, 3,, are Eulerian. If n ≥ 1, then K2n is not
Eulerian. □

9.4.2 Hamiltonian Graphs
To search for a path that uses every vertex of a graph exactly once seems to be
a natural next problem after you have considered Eulerian graphs.The Irish
mathematician Sir William Rowan Hamilton (1805-65) is given credit for first
defining such paths. He is also credited with discovering the quaternions, for
which he was honored by the Irish government with a postage stamp in 2005.

CHAPTER 9. GRAPH THEORY 209

Figure 9.4.10 Irish stamp honoring Sir William Rowan Hamilton

Definition 9.4.11 Hamiltonian Path, Circuit, and Graphs. A Hamilto-
nian path through a graph is a path whose vertex list contains each vertex of
the graph exactly once, except if the path is a circuit, in which case the initial
vertex appears a second time as the terminal vertex. If the path is a circuit,
then it is called a Hamiltonian circuit. A Hamiltonian graph is a graph that
possesses a Hamiltonian circuit. ♢

Example 9.4.12 The Original Hamiltonian Graph. Figure 9.4.14 shows
a graph that is Hamiltonian. In fact, it is the graph that Hamilton used as an
example to pose the question of existence of Hamiltonian paths in 1859. In
its original form, the puzzle that was posed to readers was called “Around the
World.” The vertices were labeled with names of major cities of the world and
the object was to complete a tour of these cities. The graph is also referred to
as the dodecahedron graph, where vertices correspond with the corners of a
dodecahedron and the edges are the edges of the solid that connect the corners.

Figure 9.4.13 A Dodecahedron

Figure 9.4.14 The Dodecahedron
Graph

□

Problem 9.4.15 Unfortunately, a simple condition doesn’t exist that charac-
terizes a Hamiltonian graph. An obvious necessary condition is that the graph
be connected; however, there is a connected undirected graph with four vertices
that is not Hamiltonian. Can you draw such a graph? □

Note 9.4.16 What Is Possible and What Is Impossible? The search for
a Hamiltonian path in a graph is typical of many simple-sounding problems
in graph theory that have proven to be very difficult to solve. Although there
are simple algorithms for conducting the search, they are impractical for large

CHAPTER 9. GRAPH THEORY 210

problems because they take such a long time to complete as graph size increases.
Currently, every algorithm to search for a Hamiltonian path in a graph takes
a time that grows at a rate that is greater than any polynomial as a function
of the number of vertices. Rates of this type are called “super-polynomial.”
That is, if T (n) is the time it takes to search a graph of n vertices, and p(n)
is any polynomial, then T (n) > p(n) for all but possibly a finite number of
positive values for n.

It is an unproven but widely held belief that no faster algorithm exists to
search for Hamiltonian paths in general graphs. To sum up, the problem of
determining whether a graph is Hamiltonian is theoretically possible; however,
for large graphs we consider it a practical impossibility. Many of the problems
we will discuss in the next section, particularly the Traveling Salesman Problem,
are thought to be impossible in the same sense.
Definition 9.4.17 The n-cube. Let n ≥ 1, and let Bn be the set of strings
of 0’s and 1’s with length n. The n-cube is the undirected graph with a vertex
for each string in Bn and an edge connecting each pair of strings that differ in
exactly one position. The n-cube is normally denoted Qn. ♢

The n-cube is among the graphs that are defined within the graphs package
of SageMath and is created with the expression graphs.CubeGraph(n).

graphs.CubeGraph (4).show(layout="spring")

Example 9.4.18 Analog-to-digital Conversion and the Gray Code. A
common problem encountered in engineering is that of analog-to-digital (a-d)
conversion, where the reading on a dial, for example, must be converted to a
numerical value. In order for this conversion to be done reliably and quickly,
one must solve an interesting problem in graph theory. Before this problem
is posed, we will make the connection between a-d conversion and the graph
problem using a simple example. Suppose a dial can be turned in any direction,
and that the positions will be converted to one of the numbers zero through
seven as depicted in Figure 9.4.19. The angles from 0 to 360 are divided into
eight equal parts, and each part is assigned a number starting with 0 and
increasing clockwise. If the dial points in any of these sectors the conversion is
to the number of that sector. If the dial is on the boundary, then we will be
satisfied with the conversion to either of the numbers in the bordering sectors.
This conversion can be thought of as giving an approximate angle of the dial,
for if the dial is in sector k, then the angle that the dial makes with east is
approximately 45k◦.

Figure 9.4.19 Analog-Digital Dial

CHAPTER 9. GRAPH THEORY 211

Now that the desired conversion has been identified, we will describe a
“solution” that has one major error in it, and then identify how this problem
can be rectified. All digital computers represent numbers in binary form,
as a sequence of 0’s and 1’s called bits, short for binary digits. The binary
representations of numbers 0 through 7 are:

0 = 000two = 0 · 4 + 0 · 2 + 0 · 1
1 = 001two = 0 · 4 + 0 · 2 + 1 · 1
2 = 010two = 0 · 4 + 1 · 2 + 0 · 1
3 = 011two = 0 · 4 + 1 · 2 + 1 · 1
4 = 100two = 1 · 4 + 0 · 2 + 0 · 1
5 = 101two = 1 · 4 + 0 · 2 + 1 · 1
6 = 110two = 1 · 4 + 1 · 2 + 0 · 1
7 = 111two = 1 · 4 + 1 · 2 + 1 · 1

The way that we could send those bits to a computer is by coating parts of
the back of the dial with a metallic substance, as in Figure 9.4.20. For each of
the three concentric circles on the dial there is a small magnet. If a magnet
lies under a part of the dial that has been coated with metal, then it will turn
a switch ON, whereas the switch stays OFF when no metal is detected above
a magnet. Notice how every ON/OFF combination of the three switches is
possible given the way the back of the dial is coated.

If the dial is placed so that the magnets are in the middle of a sector, we
expect this method to work well. There is a problem on certain boundaries,
however. If the dial is turned so that the magnets are between sectors three
and four, for example, then it is unclear what the result will be. This is due
to the fact that each magnet will have only a fraction of the required metal
above it to turn its switch ON. Due to expected irregularities in the coating
of the dial, we can be safe in saying that for each switch either ON or OFF
could be the result, and so if the dial is between sectors three and four, any
number could be indicated. This problem does not occur between every sector.
For example, between sectors 0 and 1, there is only one switch that cannot be
predicted. No matter what the outcome is for the units switch in this case,
the indicated sector must be either 0 or 1. This consistent with the original
objective that a positioning of the dial on a boundary of two sectors should
produce the number of either sector.

CHAPTER 9. GRAPH THEORY 212

Figure 9.4.20 Coating scheme for the Analog-Digital Dial
Is there a way to coat the sectors on the back of the dial so that each of

the eight patterns corresponding to the numbers 0 to 7 appears once, and so
that between any two adjacent sectors there is only one switch that will have
a questionable setting? What we are describing here is a Hamiltonian circuit
of the 3-cube (Figure 9.4.21). If one can draw a path along the edges in the
3-cube that starts at any vertex, passes through every other vertex once, and
returns to the start, then that sequence of bit patterns can be used to coat the
back of the dial so that between every sector there is only one questionable
switch. Such a path is not difficult to find, as we will see below.

Figure 9.4.21 The 3-cube
Many A-D conversion problems require many more sectors and switches

than this example, and the same kinds of problems can occur. The solution
would be to find a path within a much larger yet similar graph. For example,
there might be 1,024 sectors with 10 switches, resulting in a graph with 1,024
vertices. Fortunately, our solution will apply to the n-cube for any positive
value of n.

A Hamiltonian circuit of the n-cube can be described recursively. The circuit
itself, called the Gray Code, is not the only Hamiltonian circuit of the n-cube,
but it is the easiest to describe. The standard way to write the Gray Code is
as a column of strings, where the last string is followed by the first string to
complete the circuit.

Basis for the Gray Code (n = 1): The Gray Code for the 1-cube is G1 =

CHAPTER 9. GRAPH THEORY 213

(
0
1

)
. Note that the edge between 0 and 1 is used twice in this circuit. That

doesn’t violate any rules for Hamiltonian circuits, but can only happen if a
graph has two vertices.

Recursive definition of the Gray Code: Given the Gray Code for the n-cube,
n ≥ 1, then Gn+1 is obtained by (1) listing Gn with each string prefixed with 0,
and then (2) reversing the list of strings in Gn with each string prefixed with 1.
Symbolically, the recursion can be expressed as follows, where Gr

n is the reverse
of list Gn.

Gn+1 =
(

0Gn

1Gr
n

)
The Gray Codes for the 2-cube and 3-cube are

G2 =

00
01
11
10

 and G3 =

000
001
011
010
110
111
101
100

One question might come to mind at this point. If the coatings of the dial

no longer in the sequence from 0 to 7, how would you interpret the patterns
that are on the back of the dial as numbers from 0 to 7? In Chapter 14 we will
see that if the Gray Code is used, this “decoding” is quite easy. □

Example 9.4.22 Applications of the Gray Code. One application of the
Gray code was discussed in the Introduction to this book. Another application
is in statistics. In a statistical analysis, there is often a variable that depends
on several factors, but exactly which factors are significant may not be obvious.
For each subset of factors, there would be certain quantities to be calculated.
One such quantity is the multiple correlation coefficient for a subset. If the
correlation coefficient for a given subset, A, is known, then the value for any
subset that is obtained by either deleting or adding an element to A can be
obtained quickly. To calculate the correlation coefficient for each set, we simply
travel along Gn, where n is the number of factors being studied. The first
vertex will always be the string of 0’s, which represents the empty set. For each
vertex that you visit, the set that it corresponds to contains the kth factor if
the kth character is a 1. □

The 3-cube and its generalization, the n-cube, play a role in the design
of a multiprocessor called a hypercube. A multiprocessor is a computer that
consists of several independent processors that can operate simultaneously and
are connected to one another by a network of connections. In a hypercube with
M = 2n processors, the processors are numbered 0 to M − 1. Two processors
are connected if their binary representations differ in exactly one bit. The
hypercube has proven to be the best possible network for certain problems
requiring the use of a “supercomputer.”

CHAPTER 9. GRAPH THEORY 214

9.4.3 Exercises
1. Locate a map of New York City and draw a graph that represents its land

masses, bridges and tunnels. Is there an Eulerian path through New York?
You can do the same with any other city that has at least two land masses.

2. Which of the drawings in Figure 9.4.23 can be drawn without removing
your pencil from the paper and without drawing any line twice?

Figure 9.4.23
3. Write out the Gray Code for the 4-cube.
4. Find a Hamiltonian circuit for the dodecahedron graph in Figure 9.4.14.
5. The Euler Construction Company has been contracted to construct an

extra bridge in Koenigsberg so that an Eulerian path through the town
exists. Can this be done, and if so, where should the bridge be built?

6. Consider the graphs in Figure 9.4.24. Determine which of the graphs have
an Eulerian path, and find an Eulerian path for the graphs that have one.

CHAPTER 9. GRAPH THEORY 215

Figure 9.4.24 Graphs for exercise 6
7. Formulate Euler’s theorem for directed graphs.
8. Prove that the number of vertices in an undirected graph with odd degree

must be even.
Hint. Prove by induction on the number of edges.

9.
(a) Under what conditions will a round-robin tournament graph be

Eulerian?

(b) Prove that every round-robin tournament graph has a Hamiltonian
path.

10. For what values of n is the n-cube Eulerian?
11. A particular set of dominoes has 21 tiles: (1, 1), (1, 2), . . . (1, 6), (2, 2), (2, 3), . . . , (6, 6).

Is it possible to lay all 21 tiles in a line so that each adjacent pair of tile
ends matches (that is, each 1 abuts a 1, and so on)?

12. Let G be the graph below.

CHAPTER 9. GRAPH THEORY 216

Figure 9.4.25

(a) Explain why it’s not possible to find an Eulerian circuit in G.

(b) Remove two edges from G so the resulting graph H has an Eulerian
circuit. Then list the vertices of an Eulerian circuit in H in the order
in which they are visited by the circuit.

9.5 Graph Optimization
The common thread that connects all of the problems in this section is the
desire to optimize (maximize or minimize) a quantity that is associated with a
graph. We will concentrate most of our attention on two of these problems, the
Traveling Salesman Problem and the Maximum Flow Problem. At the close of
this section, we will discuss some other common optimization problems.

9.5.1 Weighted Graphs
Definition 9.5.1 Weighted Graph. A weighted graph, (V, E, w), is a graph
(V, E) together with a weight function w : E → R. If e ∈ E, w(e) is the weight
on edge e. ♢

As you will see in our examples, w(e) is often a cost associated with the
edge e; therefore, most weights will be positive.

Example 9.5.2 A Distance Graph. Let V be the set of six capital
cities in New England: Boston, Augusta, Hartford, Providence, Concord,
and Montpelier. Let E be {{a, b} ∈ V × V | a ≠ b}; that is, (V, E) is a
complete unordered graph. An example of a weight function on this graph is
w (c1, c2) = the distance, in miles, from c1 to c2.

Many road maps define distance functions as in the following table.

Table 9.5.3 Distances between capital cities in New England

-- Augusta Boston Concord Hartford Montpelier Providence
Augusta, ME -- 165 148 266 190 208
Boston, MA 165 -- 75 103 192 43
Concord, NH 148 75 -- 142 117 109
Hartford, CT 266 103 142 -- 204 70

Montpelier, VT 190 192 117 204 -- 223
Providence, RI 208 43 109 70 223 --

□

CHAPTER 9. GRAPH THEORY 217

9.5.2 The Traveling Salesman Problem
The Traveling Salesman Problem is, given a weighted graph, to find a circuit
(e1, e2, . . . , en) that visits every vertex at least once and minimizes the sum of
the weights,

∑n
i=1 w (ei). Any such circuit is called an optimal path.

Some statements of the Traveling Salesman Problem require that the circuit
be Hamiltonian. In many applications, the graph in question will be complete
and this restriction presents no problem. If the weight on each edge is constant,
for example, w(e) = 1, then an optimal path would be any Hamiltonian circuit.

Example 9.5.4 The problem of a Boston salesman. The Traveling
Salesman Problem gets its name from the situation of a salesman who wants
to minimize the number of miles that he travels in visiting his customers.
For example, if a salesman from Boston must visit the other capital cities of
New England, then the problem is to find a circuit in the weighted graph of
Example 9.5.2. Note that distance and cost are clearly related in this case. In
addition, tolls and traffic congestion might also be taken into account. □

The search for an efficient algorithm that solves the Traveling Salesman
has occupied researchers for years. If the graph in question is complete, there
are (n− 1)! different circuits. As n gets large, it is impossible to check every
possible circuit. The most efficient algorithms for solving the Traveling Salesman
Problem take an amount of time that is proportional to n2n. Since this quantity
grows so quickly, we can’t expect to have the time to solve the Traveling
Salesman Problem for large values of n. Most of the useful algorithms that have
been developed have to be heuristic; that is, they find a circuit that should be
close to the optimal one. One such algorithm is the “closest neighbor” algorithm,
one of the earliest attempts at solving the Traveling Salesman Problem. The
general idea behind this algorithm is, starting at any vertex, to visit the closest
neighbor to the starting point. At each vertex, the next vertex that is visited
is the closest one that has not been reached. This shortsighted approach
typifies heuristic algorithms called greedy algorithms, which attempt to solve a
minimization (maximization) problem by minimizing (maximizing) the quantity
associated with only the first step.

Algorithm 9.5.5 The Closest Neighbor Algorithm. Let G = (V, E, w)
be a complete weighted graph with |V | = n. The closest neighbor circuit through
G starting at v1 is (v1, v2, . . . , vn), defined by the steps:

(1) V1 = V − {v1}.

(2) For k = 2 to n− 1

(a) vk = the closest vertex in Vk−1 to vk−1

w (vk−1, vk) = min (w (vk−1, v) | v ∈ Vk−1)
In case of a tie for closest, vk may be chosen arbitrarily.

(b) Vk = Vk−1 − {vk}

(3) vn = the only element of Vn

The cost of the closest neighbor circuit is
∑n−1

k=1 w (vk, vk+1) + w (vn, v1)

Example 9.5.6 A small example. The closest neighbor circuit starting
at 1 in Figure 9.5.7 is (1, 3, 2, 4, 1), with a cost of 29. The optimal path is
(1, 2, 3, 4, 1), with a cost of 27.

CHAPTER 9. GRAPH THEORY 218

Figure 9.5.7 A small example
□

Although the closest neighbor circuit is often not optimal, we may be
satisfied if it is close to optimal. If Copt and Ccn are the costs of optimal and
closest neighbor circuits in a graph, then it is always the case that Copt ≤ Ccn

or Ccn

Copt
≥ 1. We can assess how good the closest neighbor algorithm is by

determining how small the quantity Ccn

Copt
gets. If it is always near 1, then the

algorithm is good. However, if there are graphs for which it is large, then the
algorithm may be discarded. Note that in Example 9.5.6, Ccn

Copt
= 29

27 ≈ 1.074. A
7 percent increase in cost may or may not be considered significant, depending
on the situation.
Example 9.5.8 The One-way Street. A salesman must make stops at
vertices A, B, and C, which are all on the same one-way street. The graph in
Figure 9.5.9 is weighted by the function w(i, j) equal to the time it takes to
drive from vertex i to vertex j.

CHAPTER 9. GRAPH THEORY 219

Figure 9.5.9 Traveling a one-way street
Note that if j is down the one-way street from i, then w(i, j) < w(j, i). The

values of Copt, and Ccn are 20 and 32, respectively. Verify that Ccn is 32 by
using the closest neighbor algorithm. The value of Ccn

Copt
= 1.6 is significant in

this case since our salesman would spend 60 percent more time on the road if
he used the closest neighbor algorithm. □

A more general result relating to the closest neighbor algorithm presumes
that the graph in question is complete and that the weight function satisfies
the conditions

• w(x, y) = w(y, x) for all x, y in the vertex set, and

• w(x, y) + w(y, z) ≥ w(x, z) for all x, y, z in the vertex set.

The first condition is called the symmetry condition and the second is the
triangle inequality.

Theorem 9.5.10 If (V, E, w) is a complete weighted graph that satisfies the
symmetry and triangle inequality conditions, then

Ccn

Copt
≤ ⌈log2(2n)⌉

2

Observation 9.5.11 If |V | = 8, then this theorem says that Ccn can be no
larger than twice the size of Copt; however, it doesn’t say that the closest
neighbor circuit will necessarily be that far from an optimal circuit. The
quantity ⌈log2(2n)⌉

2 is called an upper bound for the ratio Ccn

Copt
. It tells us only

that things can’t be any worse than the upper bound. Certainly, there are
many graphs with eight vertices such that the optimal and closest neighbor
circuits are the same. What is left unstated in this theorem is whether there
are graphs for which the quantities are equal. If there are such graphs, we say
that the upper bound is sharp.

The value of Ccn

Copt
in Example Example 9.5.8 is 1.6, which is greater than

⌈log2(2·4)⌉
2 = 1.5; however, the weight function in this example does not satisfy

the conditions of the theorem.
Example 9.5.12 The Unit Square Problem. Suppose a robot is pro-
grammed to weld joints on square metal plates. Each plate must be welded
at prescribed points on the square. To minimize the time it takes to complete
the job, the total distance that a robot’s arm moves should be minimized. Let
d(P, Q) be the distance between P and Q. Assume that before each plate can

CHAPTER 9. GRAPH THEORY 220

be welded, the arm must be positioned at a certain point P0 . Given a list of n
points, we want to put them in order so that

d (P0, P1) + d (P1, P2) + · · ·+ d (Pn−1, Pn) + d (Pn, P0)

is as small as possible. □
The type of problem that is outlined in the example above is of such

importance that it is one of the most studied version of the Traveling Salesman
Problem. What follows is the usual statement of the problem. Let [0, 1] =
{x ∈ R | 0 ≤ x ≤ 1}, and let S = [0, 1]2, the unit square. Given n pairs of real
numbers (x1, y1) , (x2, y2) , . . . , (xn, yn) in S that represent the n vertices of a
Kn, find a circuit of the graph that minimizes the sum of the distances traveled
in traversing the circuit.

Since the problem calls for a circuit, it doesn’t matter which vertex we start
at; assume that we will start at (x1, y1). Once the problem is solved, we can
always change our starting position. A function can most efficiently describe a
circuit in this problem. Every bijection f : {1, ..., n} → {1, ..., n} with f(1) = 1
describes a circuit

(x1, y1) ,
(
xf(2), yf(2)

)
, . . . ,

(
xf(n), yf(n)

)
There are (n − 1)! such bijections. Since a circuit and its reversal have the
same associated cost, there are (n−1)!

2 cases to consider. An examination of all
possible cases is not feasible for large values of n.

One popular heuristic algorithm is the strip algorithm:

Heuristic 9.5.13 The Strip Algorithm. Given n points in the unit square:
Phase 1:

(1) Divide the square into
⌈√

n/2
⌉

vertical strips, as in Figure 9.5.14. Let
d be the width of each strip. If a point lies on a boundary between two
strips, consider it part of the left-hand strip.

(2) Starting from the left, find the first strip that contains one of the points.
Locate the starting point by selecting the first point that is encountered in
that strip as you travel from bottom to top. We will assume that the first
point is (x1, y1)

(3) Alternate traveling up and down the strips that contain vertices until all
of the vertices have been reached.

(4) Return to the starting point.

Phase 2:

(1) Shift all strips d/2 units to the right (creating a small strip on the left).

(2) Repeat Steps 1.2 through 1.4 of Phase 1 with the new strips.

When the two phases are complete, choose the shorter of the two circuits
obtained.

CHAPTER 9. GRAPH THEORY 221

Figure 9.5.14 The Strip Algorithm
Step Item 3 may need a bit more explanation. How do you travel up or

down a strip? In most cases, the vertices in a strip will be vertically distributed
so that the order in which they are visited is obvious. In some cases, however,
the order might not be clear, as in the third strip in Phase I of Figure 9.5.14.
Within a strip, the order in which you visit the points (if you are going up the
strip) is determined thusly: (xi, yi) precedes (xj , yj) if yi < yj or if yi = yj and
xi < xj . In traveling down a strip, replace yi < yj with yi > yj .

The selection of
⌈√

n/2
⌉

strips was made in a 1959 paper by Beardwood,
Halton, and Hammersley. It balances the problems that arise if the number of
strips is too small or too large. If the square is divided into too few strips, some
strips may be packed with vertices so that visiting them would require excessive
horizontal motion. If too many strips are used, excessive vertical motion tends
to be the result. An update on what is known about this algorithm is contained
in [40].

Since the construction of a circuit in the square consists of sorting the given
points, it should come as no surprise that the strip algorithm requires a time
that is roughly a multiple of n log n time units when n points are to be visited.

The worst case that has been encountered with this algorithm is one in
which the circuit obtained has a total distance of approximately

√
2n (see

Sopowit et al.).

9.5.3 Networks and the Maximum Flow Problem
Definition 9.5.15 Network. A network is a simple weighted directed graph
that contains two distinguished vertices called the source and the sink with the
properties that the indegree of the source and outdegree of the sink are both
zero, and source is connected to sink. The weight function on a network is the
capacity function, which has positive weights. ♢

An example of a real situation that can be represented by a network is a
city’s water system. A reservoir would be the source, while a distribution point
in the city to all of the users would be the sink. The system of pumps and pipes
that carries the water from source to sink makes up the remaining network.
We can assume that the water that passes through a pipe in one minute is
controlled by a pump and the maximum rate is determined by the size of the
pipe and the strength of the pump. This maximum rate of flow through a
pipe is called its capacity and is the information that the weight function of a
network contains.

CHAPTER 9. GRAPH THEORY 222

Example 9.5.16 A City Water System. Consider the system that is
illustrated in Figure 9.5.17. The numbers that appear next to each pipe indicate
the capacity of that pipe in thousands of gallons per minute. This map can be
drawn in the form of a network, as in Figure 9.5.18.

Figure 9.5.17 City Water System

Figure 9.5.18 Flow Diagram for a City’s Water Network
Although the material passing through this network is water, networks can

also represent the flow of other materials, such as automobiles, electricity, bits,
telephone calls, or patients in a health system. □

Problem 9.5.19 The Maximum Flow Problem. The Maximum Flow
Problem is derived from the objective of moving the maximum amount of water
or other material from the source to the sink. To measure this amount, we
define a flow as a function f : E → R such that (1) the flow of material through
any edge is nonnegative and no larger than its capacity: 0 ≤ f(e) ≤ w(e), for
all e ∈ E; and (2) for each vertex other than the source and sink, the total
amount of material that is directed into a vertex is equal to the total amount
that is directed out:∑

(x,v)∈E f(x, v) =
∑

(v,y)∈E f(v, y)
Flow into v = Flow out of v

(9.5.1)

The summation on the left of (9.5.1) represents the sum of the flows through

CHAPTER 9. GRAPH THEORY 223

each edge in E that has v as a terminal vertex. The right-hand side indicates
that you should add all of the flows through edges that initiate at v. □

Theorem 9.5.20 Flow out of Source equals Flow in Sink. If f is a flow,
then

∑
(source,v)∈E f(source, v) =

∑
(v,sink)∈E f(v, sink)

Proof. Subtract the right-hand side of (9.5.1) from the left-hand side. The
result is:

Flow into v − Flow out of v = 0

Now sum up these differences for each vertex in V ′ = V − {source, sink}. The
result is

∑
v∈V ′

 ∑
(x,v)∈E

f(x, v)−
∑

(v,y)∈E

f(v, y)

 = 0 (9.5.2)

Now observe that if an edge connects two vertices in V ′, its flow appears
as both a positive and a negative term in (9.5.2). This means that the only
positive terms that are not cancelled out are the flows into the sink. In addition,
the only negative terms that remain are the flows out of the source. Therefore,∑

(v,sink)∈E

f(v, sink)−
∑

(source,v)∈E

f(source, v) = 0

■

Definition 9.5.21 The Value of a Flow. The two values flow into the
sink and flow out of the source were proved to be equal in Theorem 9.5.20
and this common value is called the value of the flow. It is denoted by V (f).
The value of a flow represents the amount of material that passes through the
network with that flow. ♢

Since the Maximum Flow Problem consists of maximizing the amount of
material that passes through a given network, it is equivalent to finding a flow
with the largest possible value. Any such flow is called a maximal flow.

For the network in Figure 9.5.18, one flow is f1, defined by f1 (e1) = 25,
f1 (e2) = 20, f1 (e3) = 0, f1 (e4) = 25, and f1 (e5) = 20. The value of f1,
V (f1), is 45. Since the total flow into the sink can be no larger than 50
(w (e4) + w (e5) = 30 + 20), we can tell that f1 is not very far from the solution.
Can you improve on f1 at all? The sum of the capacities into the sink can’t
always be obtained by a flow. The same is true for the sum of the capacities
out of the source. In this case, the sum of the capacities out of the source is 60,
which obviously can’t be reached in this network.

A solution of the Maximum Flow Problem for this network is the maximal
flow f2, where f2 (e1) = 25, f2 (e2) = 25, f2 (e3) = 5, f2 (e4) = 30, and
f2 (e5) = 20, with V (f2) = 50. This solution is not unique. In fact, there is an
infinite number of maximal flows for this problem.

There have been several algorithms developed to solve the Maximal Flow
Problem. One of these is the Ford and Fulkerson Algorithm (FFA). The FFA
consists of repeatedly finding paths in a network called flow augmenting paths
until no improvement can be made in the flow that has been obtained.

Definition 9.5.22 Flow Augmenting Path. Given a flow f in a network
(V, E), a flow augmenting path with respect to f is a simple path from the
source to the sink using edges both in their forward and their reverse directions
such that for each edge e in the path, w(e)− f(e) > 0 if e is used in its forward
direction and f(e) > 0 if e is used in the reverse direction. ♢

CHAPTER 9. GRAPH THEORY 224

Example 9.5.23 Augmenting City Water Flow. For f1 in Figure 9.5.18,
a flow augmenting path would be(e2, e3, e4) since w (e2)−f1 (e2) = 15, w (e3)−
f1 (e3) = 5, and w (e4)− f1 (e4) = 5.

These positive differences represent unused capacities, and the smallest value
represents the amount of flow that can be added to each edge in the path. Note
that by adding 5 to each edge in our path, we obtain f2, which is maximal. If
an edge with a positive flow is used in its reverse direction, it is contributing a
movement of material that is counterproductive to the objective of maximizing
flow. This is why the algorithm directs us to decrease the flow through that
edge. □

Algorithm 9.5.24 The Ford and Fulkerson Algorithm.
(1) Define the flow function f0 by f0(e) = 0 for each edge e ∈ E.

(2) i = 0.

(3) Repeat:

(a) If possible, find a flow augmenting path with respect to fi.
(b) If a flow augmenting path exists, then:

(i) Determine

d = min{{w(e)− fi(e) | e is used in the forward direction},
{fi(e) | e is used in the reverse direction}}

(ii) Define fi+1 by

fi+1(e) = fi(e) if e is not part of the flow augmenting path
fi+1(e) = fi(e) + d if e is used in the forward direction
fi+1(e) = fi(e)− d if e is used in the reverse direction

(iii) i = i + 1

until no flow augmenting path exists.

(4) Terminate with a maximal flow fi

List 9.5.25 Notes on the Ford and Fulkerson Algorithm

(1) It should be clear that every flow augmenting path leads to a flow
of increased value and that none of the capacities of the network
can be violated.

(2) The depth-first search should be used to find flow augmenting
paths since it is far more efficient than the breadth-first search in
this situation. The depth-first search differs from the breadth-first
algorithm in that you sequentially visit vertices until you reach a
“dead end” and then backtrack.

(3) There have been networks discovered for which the FFA does not
terminate in a finite number of steps. These examples all have
irrational capacities. It has been proven that if all capacities are
positive integers, the FFA terminates in a finite number of steps.
See Ford and Fulkerson, Even, or Berge for details.

CHAPTER 9. GRAPH THEORY 225

(4) When you use the FFA to solve the Maximum Flow Problem by
hand it is convenient to label each edge of the network with the
fraction fi(e)

w(e) .

Algorithm 9.5.26 Depth-First Search for a Flow Augmenting Path.
This is a depth-first search for the Sink Initiating at the Source. Let E′ be the
set of directed edges that can be used in producing a flow augmenting path. Add
to the network a vertex called start and the edge (start, source).

(1) S =vertex set of the network.

(2) p =source Move p along the edge (start, source)

(3) while p is not equal to start or sink:

(a) if an edge in E′ exists that takes you from p to another vertex in S:

then set p to be that next vertex and delete the edge from E′

else reassign p to be the vertex that p was reached from (i.e., backtrack).

(4) if p = start:
then no flow augmenting path exists.

else p = sink and you have found a flow augmenting path.
Example 9.5.27 A flow augmenting path going against the flow.
Consider the network in Figure 9.5.28, where the current flow, f , is indicated
by a labeling of the edges.

Figure 9.5.28 Current Flow
The path (Source, v2, v1, v3, Sink) is a flow augmenting path that allows

us to increase the flow by one unit. Note that (v1, v3) is used in the reverse
direction, which is allowed because f (v1, v3) > 0. The value of the new flow
that we obtain is 8. This flow must be maximal since the capacities out of the
source add up to 8. This maximal flow is defined by Figure 9.5.29.

CHAPTER 9. GRAPH THEORY 226

Figure 9.5.29 Updated Flow
□

9.5.4 Other Graph Optimization Problems
(1) The Minimum Spanning Tree Problem: Given a weighted graph, (V, E, w),

find a subset E′ of E with the properties that (V, E′) is connected and
the sum of the weights of edges in E′ is as small as possible. We will
discuss this problem in Chapter 10.

(2) The Minimum Matching Problem: Given an undirected weighted graph,
(K, E, w), with an even number of vertices, pair up the vertices so that
each pair is connected by an edge and the sum of these edges is as small
as possible. A unit square version of this problem has been studied
extensively. See [40] for details on what is known about this version of
the problem.

(3) The Graph Center Problem: Given a connected, undirected, weighted
graph, find a vertex (called a center) in the graph with the property that
the distance from the center to every other vertex is as small as possible.
“As small as possible” is normally interpreted as minimizing the maximum
distance from the center to a vertex.

9.5.5 Exercises
1. Find the closest neighbor circuit through the six capitals of New England

starting at Boston. If you start at a different city, will you get a different
circuit?

2. Is the estimate in Theorem 9.5.10 sharp for n = 3? For n = 4?
3. Given the following sets of points in the unit square, find the shortest

circuit that visits all the points and find the circuit that is obtained with
the strip algorithm.

(a) {(0.1k, 0.1k) : k = 0, 1, 2, ..., 10}

(b) {(0.1, 0.3), (0.3, 0.8), (0.5, 0.3), (0.7, 0.9), (0.9, 0.1)}

(c) {(0.0, 0.5), (0.5, 0.0), (0.5, 1.0), (1.0, 0.5)}

(d) {(0, 0), (0.2, 0.6), (0.4, 0.1), (0.6, 0.8), (0.7, 0.5)}

CHAPTER 9. GRAPH THEORY 227

4. For n = 4, 5, and 6, locate n points in the unit square for which the strip
algorithm works poorly.

5. Consider the network whose maximum capacities are shown on the following
graph.

Figure 9.5.30

(a) A function f is partially defined on the edges of this network by:
f(Source, c) = 2, f(Source, b) = 2, f(Source, a) = 2, and f(a, d) = 1.
Define f on the rest of the other edges so that f is a flow. What is
the value of f ?

(b) Find a flow augmenting path with respect to f for this network.
What is the value of the augmented flow?

(c) Is the augmented flow a maximum flow? Explain.
6. Given the following network with capacity function c and flow function f ,

find a maximal flow function. The labels on the edges of the network are
of the form f(e)/c(e), where c(e) is the capacity of edge e and f(e) is the
used capacity for flow f .

Figure 9.5.31
7. Find maximal flows for the following networks.

CHAPTER 9. GRAPH THEORY 228

Figure 9.5.32

Figure 9.5.33

Figure 9.5.34
8.

(a) Find two maximal flows for the network in Figure 9.5.28 other than
the one found in the text.

(b) Describe the set of all maximal flows for the same network.

(c) Prove that if a network has two maximal flows, then it has an infinite
number of maximal flows.

9. Discuss reasons that the closest neighbor algorithm is not used in the unit
square version of the Traveling Salesman Problem.
Hint. Count the number of comparisons of distances that must be done.

10. Explore the possibility of solving the Traveling Salesman Problem in the
“unit box”: [0, 1]3.

11. Devise a “closest neighbor” algorithm for matching points in the unit
square.

9.6 Planarity and Colorings
The topics in this section are related to how graphs are drawn.

Planarity: Can a given graph be drawn in a plane so that no edges intersect?
Certainly, it is natural to avoid intersections, but up to now we haven’t gone
out of our way to do so.

Colorings: Suppose that each vertex in an undirected graph is to be colored
so that no two vertices that are connected by an edge have the same color.
How many colors are needed? This question is motivated by the problem of
drawing a map so that no two bordering countries are colored the same. A
similar question can be asked for coloring edges.

CHAPTER 9. GRAPH THEORY 229

9.6.1 Planar Graphs
Definition 9.6.1 Planar Graph/Plane Graph. A graph is planar if it can
be drawn in a plane so that no edges cross. If a graph is drawn so that no edges
intersect, it is a plane graph, and such a drawing is a planar embedding of the
graph. ♢

Example 9.6.2 A Planar Graph. The graph in Figure 9.6.3(a) is planar but
not a plane graph. The same graph is drawn as a plane graph in Figure 9.6.3(b).

Figure 9.6.3 A Planar Graph
□

(a) In discussing planarity, we need only consider simple undirected graphs
with no self-loops. All other graphs can be treated as such since all of
the edges that relate any two vertices can be considered as one “package”
that clearly can be drawn in a plane.

(b) Can you think of a graph that is not planar? How would you prove that
it isn’t planar? Proving the nonexistence of something is usually more
difficult than proving its existence. This case is no exception. Intuitively,
we would expect that sparse graphs would be planar and dense graphs
would be nonplanar. Theorem 9.6.10 will verify that dense graphs are
indeed nonplanar.

(c) The topic of planarity is a result of trying to restrict a graph to two
dimensions. Is there an analogous topic for three dimensions? What
graphs can be drawn in one dimension?

Definition 9.6.4 Path Graph. A path graph of length n, denoted Pn, is
an undirected graph with n + 1 vertices v0, v1, . . . , vn having n edges {vi, vi+1},
i = 0, 1, . . . , n− 1. ♢

Observation 9.6.5 Graphs in other dimensions. If a graph has only
a finite number of vertices, it can always be drawn in three dimensions with
no edge crossings. Is this also true for all graphs with an infinite number of
vertices? The only “one-dimensional” graphs are graphs consisting of a single
vertex, and path graphs, as shown in Figure 9.6.6.

CHAPTER 9. GRAPH THEORY 230

Figure 9.6.6 One dimensional graphs
A discussion of planarity is not complete without mentioning the famous Three
Utilities Puzzle. The object of the puzzle is to supply three houses, A, B, and
C, with the three utilities, gas, electric, and water. The constraint that makes
this puzzle impossible to solve is that no utility lines may intersect. There is
no planar embedding of the graph in Figure 9.6.7, which is commonly denoted
K3,3. This graph is one of two fundamental nonplanar graphs. The Kuratowski
Reduction Theorem states that if a graph is nonplanar then it “contains” either
a K3,3 or a K5. Containment is in the sense that if you start with a nonplanar
graph you can always perform a sequence of edge deletions and contractions
(shrinking an edge so that the two vertices connecting it coincide) to produce
one of the two graphs.

Figure 9.6.7 The Three Utilities Puzzle
A planar graph divides the plane into one or more regions. Two points on

the plane lie in the same region if you can draw a curve connecting the two
points that does not pass through an edge. One of these regions will be of
infinite area. Each point on the plane is either a vertex, a point on an edge, or
a point in a region. A remarkable fact about the geography of planar graphs is
the following theorem that is attributed to Euler.

Activity 9.6.1
(a) Experiment: Jot down a graph right now and count the number of vertices,

regions, and edges that you have. If v + r− e is not 2, then your graph is
either nonplanar or not connected.

Theorem 9.6.8 Euler’s Formula. If G = (V, E) is a connected planar graph
with r regions, v vertices, and e edges, then

v + r − e = 2 (9.6.1)
Proof. We prove Euler’s Formula by Induction on e, for e ≥ 0.

Basis: If e = 0, then G must be a graph with one vertex, v = 1; and there

CHAPTER 9. GRAPH THEORY 231

is one infinite region, r = 1. Therefore, v + r− e = 1 + 1− 0 = 2, and the basis
is true.

Induction: Suppose that G has k edges, k ≥ 1, and that all connected planar
graphs with less than k edges satisfy (9.6.1). Select any edge that is part of
the boundary of the infinite region and call it e1. Let G′ be the graph obtained
from G by deleting e1. Figure 9.6.9 illustrates the two different possibilities we
need to consider: either G′ is connected or it has two connected components,
G1 and G2.

Figure 9.6.9 Two cases in the proof of Euler’s Formula
If G′ is connected, the induction hypothesis can be applied to it. If G′ has

v′ vertices, r′ regions and e′ edges, then v′ + r′ − e′ = 2 and in terms of the
corresponding numbers for G,

v′ = v No vertices were removed to form G′

r′ = r − 1 One region of G was merged with the infinite region when e1 was removed
e′ = k − 1 We assumed that G had k edges.

For the case where G′ is connected,

v + r − e = v + r − k

= v′ + (r′ + 1)− (e′ + 1)
= v′ + r′ − e′

= 2

If G′ is not connected, it must consist of two connected components, G1 and
G2, since we started with a connected graph, G. We can apply the induction
hypothesis to each of the two components to complete the proof. We leave it to
the students to do this, with the reminder that in counting regions, G1 and G2
will share the same infinite region. ■

Theorem 9.6.10 A Bound on Edges of a Planar Graph. If G = (V, E)
is a connected planar graph with v vertices, v ≥ 3, and e edges, then

e ≤ 3v − 6 (9.6.2)
Proof. (Outline of a Proof)

(a) Let r be the number of regions in G. For each region, count the number
of edges that comprise its border. The sum of these counts must be at
least 3r. Recall that we are working with simple graphs here, so a region
made by two edges connecting the same two vertices is not possible.

(b) Based on (a), infer that the number of edges in G must be at least 3r
2 .

(c) e ≥ 3r

2 ⇒ r ≤ 2e

3

CHAPTER 9. GRAPH THEORY 232

(d) Substitute 2e
3 for r in Euler’s Formula to obtain an inequality that is

equivalent to (9.6.2)

■

Remark 9.6.11 One implication of (9.6.2) is that the number of edges in a
connected planar graph will never be larger than three times its number of
vertices (as long as it has at least three vertices). Since the maximum number
of edges in a graph with v vertices is a quadratic function of v, as v increases,
planar graphs are more and more sparse.

The following theorem will be useful as we turn to graph coloring.

Theorem 9.6.12 A Vertex of Degree Five. If G is a connected planar
graph, then it has a vertex with degree 5 or less.
Proof. (by contradiction): We can assume that G has at least seven vertices, for
otherwise the degree of any vertex is at most 5. Suppose that G is a connected
planar graph and each vertex has a degree of 6 or more. Then, since each edge
contributes to the degree of two vertices, e ≥ 6v

2 = 3v. However, Theorem 9.6.10
states that the e ≤ 3v − 6 < 3v, which is a contradiction. ■

9.6.2 Graph Coloring

Figure 9.6.13 A 3-coloring of Euler Island
The map of Euler Island in Figure 9.6.13 shows that there are seven towns

on the island. Suppose that a cartographer must produce a colored map in
which no two towns that share a boundary have the same color. To keep costs
down, she wants to minimize the number of different colors that appear on the
map. How many colors are sufficient? For Euler Island, the answer is three.
Although it might not be obvious, this is a graph problem. We can represent
the map with a graph, where the vertices are countries and an edge between
two vertices indicates that the two corresponding countries share a boundary
of positive length. This problem motivates a more general problem.

Definition 9.6.14 Graph Coloring. Given an undirected graph G = (V, E),
find a “coloring function” f from V into a set of colors H such that (vi, vj) ∈
E ⇒ f (vi) ̸= f (vj) and H has the smallest possible cardinality. The cardinality
of H is called the chromatic number of G, χ(G). ♢

• A coloring function onto an n-element set is called an n-coloring.

• In terms of this general problem, the chromatic number of the graph of
Euler Island is three. To see that no more than three colors are needed,
we need only display a 3-coloring: f(1) = f(4) = f(6) = blue, f(2) = red,
and f(3) = f(5) = f(7) = white. This coloring is not unique. The next

CHAPTER 9. GRAPH THEORY 233

smallest set of colors would be of two colors, and you should be able to
convince yourself that no 2-coloring exists for this graph.

In the mid-nineteenth century, it became clear that the typical planar graph
had a chromatic number of no more than 4. At that point, mathematicians
attacked the Four-Color Conjecture, which is that if G is any planar graph,
then its chromatic number is no more than 4. Although the conjecture is quite
easy to state, it took over 100 years, until 1976, to prove the conjecture in the
affirmative.
Theorem 9.6.15 The Four-Color Theorem. If G is a planar graph, then
χ(G) ≤ 4.

A proof of the Four-Color Theorem is beyond the scope of this text, but we
can prove a theorem that is only 25 percent inferior.

Theorem 9.6.16 The Five-Color Theorem. If G is a planar graph, then
χ(G) ≤ 5.
Proof. The number 5 is not a sharp upper bound for χ(G) because of the
Four-Color Theorem.

This is a proof by Induction on the Number of Vertices in the Graph.
Basis: Clearly, a graph with one vertex has a chromatic number of 1.
Induction: Assume that all planar graphs with n−1 vertices have a chromatic

number of 5 or less. Let G be a planar graph. By Theorem 9.6.12, there exists
a vertex v with deg v ≤ 5. Let G−v be the planar graph obtained by deleting v
and all edges that connect v to other vertices in G. By the induction hypothesis,
G− v has a 5-coloring. Assume that the colors used are red, white, blue, green,
and yellow.

If deg v < 5, then we can produce a 5-coloring of G by selecting a color that
is not used in coloring the vertices that are connected to v with an edge in G.

If deg v = 5, then we can use the same approach if the five vertices that are
adjacent to v are not all colored differently. We are now left with the possibility
that v1, v2, v3, v4, and v5 are all connected to v by an edge and they are all
colored differently. Assume that they are colored red, white blue, yellow, and
green, respectively, as in Figure 9.6.17.

Figure 9.6.17
Starting at v1 in G− v, suppose we try to construct a path v3 that passes

CHAPTER 9. GRAPH THEORY 234

through only red and blue vertices. This can either be accomplished or it can’t
be accomplished. If it can’t be done, consider all paths that start at v1, and go
through only red and blue vertices. If we exchange the colors of the vertices in
these paths, including v1 we still have a 5-coloring of G− v. Since v1 is now
blue, we can color the central vertex, v, red.

Finally, suppose that v1 is connected to v3 using only red and blue vertices.
Then a path from v1 to v3 by using red and blue vertices followed by the edges
(v3, v) and (v, v1) completes a circuit that either encloses v2 or encloses v4 and
v5. Therefore, no path from v2 to v4 exists using only white and yellow vertices.
We can then repeat the same process as in the previous paragraph with v2 and
v4, which will allow us to color v white. ■

Definition 9.6.18 Bipartite Graph. A bipartite graph is a graph that has
a 2-coloring. Equivalently, a graph is bipartite if its vertices can be partitioned
into two nonempty subsets so that no edge connects vertices from the same
subset. ♢

Example 9.6.19 A Few Examples.
(a) The graph of the Three Utilities Puzzle is bipartite. The vertices are

partitioned into the utilities and the homes. Of course a 2-coloring of the
graph is to color the utilities red and the homes blue.

(b) For n ≥ 1, the n-cube is bipartite. A coloring would be to color all strings
with an even number of 1’s red and the strings with an odd number of
1’s blue. By the definition of the n-cube, two strings that have the same
color couldn’t be connected since they would need to differ in at least two
positions.

(c) Let V be a set of 64 vertices, one for each square on a chess board.
We can index the elements of V by vij = the square on the row i,
column j. Connect vertices in V according to whether or not you can
move a knight from one square to another. Using our indexing of V ,

(vij , vkl) ∈ E if and only if |i− k|+ |j − l| = 3
and |i− k| · |j − l| = 2 (V, E) is a bipartite

graph. The usual coloring of a chessboard is valid 2-coloring.

□
How can you recognize whether a graph is bipartite? Unlike planarity, there

is a nice equivalent condition for a graph to be bipartite.

Theorem 9.6.20 No Odd Circuits in a Bipartite Graph. An undirected
graph is bipartite if and only if it has no circuit of odd length.
Proof. (⇒) Let G = (V, E) be a bipartite graph that is partitioned into two
sets, R(ed) and B(lue) that define a 2-coloring. Consider any circuit in V . If we
specify a direction in the circuit and define f on the vertices of the circuit by

f(u) = the next vertex in the circuit after v

Note that f is a bijection. Hence the number of red vertices in the circuit equals
the number of blue vertices, and so the length of the circuit must be even.

(⇐=) Assume that G has no circuit of odd length. For each component of
G, select any vertex w and color it red. Then for every other vertex v in the
component, find the path of shortest distance from w to v. If the length of
the path is odd, color v blue, and if it is even, color v red. We claim that this
method defines a 2-coloring of G. Suppose that it does not define a 2-coloring.
Then let va and vb be two vertices with identical colors that are connected with
an edge. By the way that we colored G, neither va nor vb could equal w. We

CHAPTER 9. GRAPH THEORY 235

can now construct a circuit with an odd length in G. First, we start at w and
follow the shortest path to va . Then follow the edge (va, vb), and finally, follow
the reverse of a shortest path from w to vb. Since va and vb have the same
color, the first and third segments of this circuit have lengths that are both odd
or even, and the sum of their lengths must be even. The addition of the single
edge (va, vb) shows us that this circuit has an odd length. This contradicts our
premise. ■

9.6.3 Exercises
1. Apply Theorem 9.6.12 to prove that once n gets to a certain size, a Kn is

nonplanar. What is the largest complete planar graph?
2. Can you apply Theorem 9.6.12 to prove that the Three Utilities Puzzle

can’t be solved?
3. What are the chromatic numbers of the following graphs?

Figure 9.6.21 What are the chromatic numbers?
4. A connected planar graph has 2001 vertices and divides the plane into

1024 regions. How many edges does it have?
5. What is χ (Kn), n ≥ 1?
6. Suppose that all of the vertices of connected planar graph have degree

3 and that there are 20 vertices. How many edges and regions does this
graph have?

7. Complete the proof of Euler’s Formula.
8. Use the outline of a proof of Theorem 9.6.10 to write a complete proof.

Be sure to point out where the premise v ≥ 3 is essential.

CHAPTER 9. GRAPH THEORY 236

9. Let G = (V, E) with |V | ≥ 11, and let U be the set of all undirected edges
between distinct vertices in V . Prove that either G or G′ = (V, Ec) is
nonplanar.

10. Design an algorithm to determine whether a graph is bipartite.
11. Prove that a bipartite graph with an odd number of vertices greater than

or equal to 3 has no Hamiltonian circuit.
12. Prove that any graph with a finite number of vertices can be drawn in

three dimensions so that no edges intersect.
13. Suppose you had to color the edges of an undirected graph so that for each

vertex, the edges that it is connected to have different colors. How can
this problem be transformed into a vertex coloring problem?

14.
(a) Suppose the edges of a K6 are colored either red or blue. Prove that

there will be either a “red K3” (a subset of the vertex set with three
vertices connected by red edges) or a “blue K3” or both.

(b) Suppose six people are selected at random. Prove that either there
exists a subset of three of them with the property that any two
people in the subset can communicate in a common language, or
there exist three people, no two of whom can communicate in a
common language.

15. Let d be a positive integer, and let a1, a2, . . . ad be positive integers greater
than or equal to two. The mesh graph M(a1, a2, . . . , ad) has vertices of
the form x = (x1, x2, . . . , xd) where 1 ≤ xi ≤ ai. Two vertices x and y are
adjacent if and only if

∑d
i=1 |xi − yi| = 1. In other words, two adjacent

vertices must differ in only one coordinate and by a difference of 1.
(a) What is the chromatic number of M(a1, a2, . . . , ad)?

(b) For what pairs (a1, a2) does M(a1, a2) have a Hamiltonian circuit?

(c) For what triples (a1, a2, a3) does M(a1, a2, a3) have a Hamiltonian
circuit?

9.6.4 Further Reading
[1] Wilson, R., Four Colors Suffice - How the Map Problem Was SolvedPrinceton,

NJ: Princeton U. Press, 2013.

Chapter 10

Trees

In this chapter we will study the class of graphs called trees. Trees are frequently
used in both mathematics and the sciences. Our solution of Example 2.1.1
is one simple instance. Since they are often used to illustrate or prove other
concepts, a poor understanding of trees can be a serious handicap. For this
reason, our ultimate goals are to: (1) define the various common types of trees,
(2) identify some basic properties of trees, and (3) discuss some of the common
applications of trees.

10.1 What Is a Tree?

10.1.1 Definition
What distinguishes trees from other types of connected graphs is the absence
of certain paths called cycles. Recall that a path is a sequence of consecutive
edges in a graph, and a circuit is a path that begins and ends at the same
vertex.
Definition 10.1.1 Cycle. A cycle is a circuit whose edge list contains no
duplicates. It is customary to use Cn to denote a cycle with n edges. ♢

The simplest example of a cycle in an undirected graph is a pair of vertices
with two edges connecting them. Since trees are cycle-free, we can rule out all
multigraphs having at least one pair of vertices connected with two or more
edges from consideration as trees.

Trees can either be undirected or directed graphs. We will concentrate on
the undirected variety in this chapter.

Definition 10.1.2 Tree. An undirected graph is a tree if it is connected and
contains no cycles. ♢

Example 10.1.3 Some trees and non-trees.

237

CHAPTER 10. TREES 238

Figure 10.1.4 Some trees and some non-trees

(a) Graphs i, ii and iii in Figure 10.1.4 are all trees, while graphs iv, v, and
vi are not trees.

(b) A K2 is a tree. However, if n ≥ 3, a Kn is not a tree.

(c) In a loose sense, a botanical tree is a mathematical tree. There are usually
no cycles in the branch structure of a botanical tree.

(d) The structures of some chemical compounds are modeled by a tree. For
example, butane Figure 10.1.5 consists of four carbon atoms and ten
hydrogen atoms, where an edge between two atoms represents a bond
between them. A bond is a force that keeps two atoms together. The same
set of atoms can be linked together in a different tree structure to give
us the compound isobutane Figure 10.1.6. There are some compounds
whose graphs are not trees. One example is benzene Figure 10.1.7.

Figure 10.1.5 Butane
Figure 10.1.6 Isobutane Figure 10.1.7 Benzene

□
One type of graph that is not a tree, but is closely related, is a forest.

Definition 10.1.8 Forest. A forest is an undirected graph whose components
are all trees. ♢

Example 10.1.9 A forest. The top half of Figure 10.1.4 can be viewed as a
forest of three trees. Graph (vi) in this figure is also a forest. □

CHAPTER 10. TREES 239

10.1.2 Conditions for a Graph to be a Tree
We will now examine several conditions that are equivalent to the one that
defines a tree. The following theorem will be used as a tool in proving that the
conditions are equivalent.

Lemma 10.1.10 Let G = (V, E) be an undirected graph with no self-loops, and
let va, vb ∈ V . If two different simple paths exist between va and vb, then there
exists a cycle in G.
Proof. Let p1 = (e1, e2, . . . , em) and p2 = (f1, f2, . . . , fn) be two different simple
paths from va to vb. The first step we will take is to delete from p1 and p2 the
initial edges that are identical. That is, if e1 = f1, e2 = f2, . . ., ej = fj , and
ej+1 ≠ fj+1 delete the first j edges of both paths. Once this is done, both paths
start at the same vertex, call it vc, and both still end at vb. Now we construct a
cycle by starting at vc and following what is left of p1 until we first meet what
is left of p2. If this first meeting occurs at vertex vd, then the remainder of the
cycle is completed by following the portion of the reverse of p2 that starts at vd

and ends at vc. ■

Theorem 10.1.11 Equivalent Conditions for a Graph to be a Tree.
Let G = (V, E) be an undirected graph with no self-loops and |V | = n. The
following are all equivalent:

(1) G is a tree.

(2) For each pair of distinct vertices in V , there exists a unique simple path
between them.

(3) G is connected, and if e ∈ E, then (V, E − {e}) is disconnected.

(4) G contains no cycles, but by adding one edge, you create a cycle.

(5) G is connected and |E| = n− 1.
Proof. Proof Strategy. Most of this theorem can be proven by proving the
following chain of implications: (1)⇒ (2), (2)⇒ (3), (3)⇒ (4), and (4)⇒ (1).
Once these implications have been demonstrated, the transitive closure of ⇒
on 1, 2, 3, 4 establishes the equivalence of the first four conditions. The proof
that Statement 5 is equivalent to the first four can be done by induction, which
we will leave to the reader.

(1)⇒ (2) (Indirect). Assume that G is a tree and that there exists a pair of
vertices between which there is either no path or there are at least two distinct
paths. Both of these possibilities contradict the premise that G is a tree. If no
path exists, G is disconnected, and if two paths exist, a cycle can be obtained
by Theorem 10.1.11.

(2)⇒ (3). We now use Statement 2 as a premise. Since each pair of vertices
in V are connected by exactly one path, G is connected. Now if we select any
edge e in E, it connects two vertices, v1 and v2. By (2), there is no simple path
connecting v1 to v2 other than e. Therefore, no path at all can exist between
v1 and v2 in (V, E − {e}). Hence (V, E − {e}) is disconnected.

(3) ⇒ (4). Now we will assume that Statement 3 is true. We must show
that G has no cycles and that adding an edge to G creates a cycle. We will use
an indirect proof for this part. Since (4) is a conjunction, by DeMorgan’s Law
its negation is a disjunction and we must consider two cases. First, suppose
that G has a cycle. Then the deletion of any edge in the cycle keeps the graph
connected, which contradicts (3). The second case is that the addition of an
edge to G does not create a cycle. Then there are two distinct paths between
the vertices that the new edge connects. By Lemma 10.1.10, a cycle can then

CHAPTER 10. TREES 240

be created, which is a contradiction.
(4) ⇒ (1) Assume that G contains no cycles and that the addition of an

edge creates a cycle. All that we need to prove to verify that G is a tree is that
G is connected. If it is not connected, then select any two vertices that are not
connected. If we add an edge to connect them, the fact that a cycle is created
implies that a second path between the two vertices can be found which is in
the original graph, which is a contradiction. ■

The usual definition of a directed tree is based on whether the associated
undirected graph, which is created by “erasing” its directional arrows, is a tree.
In Section 10.3 we will introduce the rooted tree, which is a special type of
directed tree.

10.1.3 Exercises
1. Given the following vertex sets, draw all possible undirected trees that

connect them.
(a) Va = {right, left}

(b) Vb = {+,−, 0}

(c) Vc = {north, south, east, west}.
2. Are all trees planar? If they are, can you explain why? If they are not,

you should be able to find a nonplanar tree.
3. Prove that if G is a simple undirected graph with no self-loops, then G is

a tree if and only if G is connected and |E| = |V | − 1.
Hint. Use induction on |E|.

4.
(a) Prove that if G = (V, E) is a tree and e ∈ E, then (V, E − {e}) is a

forest of two trees.

(b) Prove that if (V1, E1) and (V2, E2) are disjoint trees and e is an edge
that connects a vertex in V1 to a vertex in V2, then (V1 ∪ V2, E1 ∪ E2 ∪ {e})
is a tree.

5.
(a) Prove that any tree with at least two vertices has at least two vertices

of degree 1.

(b) Prove that if a tree has n vertices, n ≥ 4, and is not a path graph,
Pn, then it has at least three vertices of degree 1.

10.2 Spanning Trees

10.2.1 Motivation
The topic of spanning trees is motivated by a graph-optimization problem.

A graph of Atlantis University (Figure 10.2.1) shows that there are four
campuses in the system. A new secure communications system is being installed
and the objective is to allow for communication between any two campuses;
to achieve this objective, the university must buy direct lines between certain
pairs of campuses. Let G be the graph with a vertex for each campus and
an edge for each direct line. Total communication is equivalent to G being a
connected graph. This is due to the fact that two campuses can communicate

CHAPTER 10. TREES 241

over any number of lines. To minimize costs, the university wants to buy a
minimum number of lines.

Figure 10.2.1 Atlantis University Graph
The solutions to this problem are all trees. Any graph that satisfies the

requirements of the university must be connected, and if a cycle does exist, any
line in the cycle can be deleted, reducing the cost. Each of the sixteen trees
that can be drawn to connect the vertices North, South, East, and West (see
Exercise 10.1.3.1) solves the problem as it is stated. Note that in each case,
three direct lines must be purchased. There are two considerations that can
help reduce the number of solutions that would be considered.

• Objective 1: Given that the cost of each line depends on certain factors,
such as the distance between the campuses, select a tree whose cost is as
low as possible.

• Objective 2: Suppose that communication over multiple lines is noisier
as the number of lines increases. Select a tree with the property that
the maximum number of lines that any pair of campuses must use to
communicate with is as small as possible.

Typically, these objectives are not compatible; that is, you cannot always
simultaneously achieve these objectives. In the case of the Atlantis university
system, the solution with respect to Objective 1 is indicated with solid lines
in Figure 10.2.1. There are four solutions to the problem with respect to
Objective 2: any tree in which one campus is directly connected to the other
three. One solution with respect to Objective 2 is indicated with dotted lines
in Figure 10.2.1. After satisfying the conditions of Objective 2, it would seem
reasonable to select the cheapest of the four trees.

10.2.2 Definition
Definition 10.2.2 Spanning Tree. Let G = (V, E) be a connected undirected
graph. A spanning tree for G is a spanning subgraph 9.1.17 of G that is a tree.

♢

CHAPTER 10. TREES 242

Note 10.2.3
(a) If (V, E′) is a spanning tree, |E′| = |V | − 1.

(b) The significance of a spanning tree is that it is a minimal spanning set.
A smaller set would not span the graph, while a larger set would have a
cycle, which has an edge that is superfluous.

For the remainder of this section, we will discuss two of the many topics that
relate to spanning trees. The first is the problem of finding Minimal Spanning
Trees, which addresses Objective 1 above. The second is the problem of finding
Minimum Diameter Spanning Trees, which addresses Objective 2.

Definition 10.2.4 Minimal Spanning Tree. Given a weighted connected
undirected graph G = (V, E, w), a minimal spanning tree is a spanning tree
(V, E′) for which

∑
e∈E′ w(e) is as small as possible. ♢

10.2.3 Prim’s Algorithm
Unlike many of the graph-optimization problems that we’ve examined, a solution
to this problem can be obtained efficiently. It is a situation in which a greedy
algorithm works.

Definition 10.2.5 Bridge. Let G = (V, E) be an undirected graph and let
{L, R} be a partition of V . A bridge between L and R is an edge in E that
connects a vertex in L to a vertex in R. ♢

Theorem 10.2.6 Let G = (V, E, w) be a weighted connected undirected graph.
Let V be partitioned into two sets L and R. If e∗ is a bridge of least weight
between L and R, then there exists a minimal spanning tree for G that includes
e∗.
Proof. Suppose that no minimal spanning tree including e∗ exists. Let T =
(V, E′) be a minimal spanning tree. If we add e∗ to T , a cycle is created, and this
cycle must contain another bridge, e, between L and R. Since w (e∗) ≤ w(e),
we can delete e and the new tree, which includes e∗ must also be a minimal
spanning tree. ■

Example 10.2.7 Some Bridges. The bridges between the vertex sets
{a, b, c} and {d, e} in Figure 10.2.8 are the edges {b, d} and {c, e}. According
to the theorem above, a minimal spanning tree that includes {b, d} exists. By
examination, you should be able to see that this is true. Is it true that only the
bridges of minimal weight can be part of a minimal spanning tree?

CHAPTER 10. TREES 243

Figure 10.2.8 Bridges between two sets
□

Theorem 10.2.6 essentially tells us that a minimal spanning tree can be
constructed recursively by continually adding minimally weighted bridges to a
set of edges.

Algorithm 10.2.9 Prim’s Algorithm. Let G = (V, E, w) be a connected,
weighted, undirected graph, and let v0 be an arbitrary vertex in V . The following
steps lead to a minimal spanning tree for G. L and R will be sets of vertices
and E′ is a set of edges.

(1) (Initialize) L = V − {v0}; R = {v0}; E′ = ∅.

(2) (Build the tree) While L ̸= ∅:

(1) Find e∗ = {vL, vR}, a bridge of minimum weight between L and R.
(2) R = R ∪ {vL}; L = L− {vL} ; E′ = E′ ∪ {e∗}

(3) Terminate with a minimal spanning tree (V, E′).
Note 10.2.10

(a) If more than one minimal spanning tree exists, then the one that is
obtained depends on v0 and the means by which e∗ is selected in Step 2.

(b) Warning: If two minimally weighted bridges exist between L and R, do
not try to speed up the algorithm by adding both of them to E’.

(c) That Algorithm 10.2.9 yields a minimal spanning tree can be proven by
induction with the use of Theorem 10.2.6.

(d) If it is not known whether G is connected, Algorithm 10.2.9 can be
revised to handle this possibility. The key change (in Step 2.1) would
be to determine whether any bridge at all exists between L and R. The
condition of the while loop in Step 2 must also be changed somewhat.

Example 10.2.11 A Small Example. Consider the graph in Figure 10.2.12.
If we apply Prim’s Algorithm starting at a, we obtain the following edge list

CHAPTER 10. TREES 244

in the order given: {a, f}, {f, e}, {e, c}, {c, d}, {f, b}, {b, g}. The total of the
weights of these edges is 20. The method that we have used (in Step 2.1) to
select a bridge when more than one minimally weighted bridge exists is to order
all bridges alphabetically by the vertex in L and then, if further ties exist, by
the vertex in R. The first vertex in that order is selected in Step 2.1 of the
algorithm.

Figure 10.2.12 A small weighted graph
□

Definition 10.2.13 Minimum Diameter Spanning Tree. Given a con-
nected undirected graph G = (V, E), find a spanning tree T = (V, E′) of G such
that the longest path in T is as short as possible. ♢

Example 10.2.14 The Case for Complete Graphs. The Minimum
Diameter Spanning Tree Problem is trivial to solve in a Kn. Select any vertex
v0 and construct the spanning tree whose edge set is the set of edges that
connect v0 to the other vertices in the Kn . Figure 10.2.15 illustrates a solution
for n = 5.

Figure 10.2.15 Minimum diameter spanning tree for K5

□
For incomplete graphs, a two-stage algorithm is needed. In short, the first

step is to locate a “center” of the graph. The maximum distance from a center to

CHAPTER 10. TREES 245

any other vertex is as small as possible. Once a center is located, a breadth-first
search of the graph is used to construct the spanning tree.

10.2.4 Exercises
1. Suppose that after Atlantis University’s phone system is in place, a fifth

campus is established and that a transmission line can be bought to
connect the new campus to any old campus. Is this larger system the
most economical one possible with respect to Objective 1? Can you always
satisfy Objective 2?

2. Construct a minimal spanning tree for the capital cities in New England
(see Table 9.5.3).

3. Show that the answer to the question posed in Example 10.2.7 is “no.”
4. Find a minimal spanning tree for the following graphs.

Figure 10.2.16

Figure 10.2.17

CHAPTER 10. TREES 246

Figure 10.2.18
5. Find a minimum diameter spanning tree for the following graphs.

Figure 10.2.19

Figure 10.2.20
6. In each of the following parts justify your answer with either a proof or a

counterexample.
(a) Suppose a weighted undirected graph had distinct edge weights. Is it

possible that no minimal spanning tree includes the edge of minimal
weight?

(b) Suppose a weighted undirected graph had distinct edge weights. Is
it possible that every minimal spanning tree includes the edge of
maximal weight? If true, under what conditions would it happen?

CHAPTER 10. TREES 247

10.3 Rooted Trees
In the next two sections, we will discuss rooted trees. Our primary foci will be
on general rooted trees and on a special case, ordered binary trees.

10.3.1 Definition and Terminology

Figure 10.3.1 A Rooted Tree

List 10.3.2 Informal Definition and Terminology

What differentiates rooted trees from undirected trees is that a rooted
tree contains a distinguished vertex, called the root. Consider the tree
in Figure 10.3.1. Vertex A has been designated the root of the tree. If
we choose any other vertex in the tree, such as M , we know that there
is a unique path from A to M . The vertices on this path, (A, D, K, M),
are described in genealogical terms:

• M is a child of K (so is L)

• K is M ’s parent.

• A, D, and K are M ’s ancestors.

• D, K, and M are descendants of A.

These genealogical relationships are often easier to visualize if the tree
is rewritten so that children are positioned below their parents, as in
Figure 10.3.3.

With this format, it is easy to see that each vertex in the tree can
be thought of as the root of a tree that contains, in addition to itself,
all of its descendants. For example, D is the root of a tree that contains
D, K, L, and M . Furthermore, K is the root of a tree that contains
K, L, and M . Finally, L and M are roots of trees that contain only
themselves. From this observation, we can give a formal definition of a
rooted tree.

CHAPTER 10. TREES 248

Figure 10.3.3 A Rooted Tree, redrawn
One can formally define the genealogical terms above. We define child here

since it’s used in our formal definition of a rooted tree and leave the rest of the
definitions as an exercise.
Definition 10.3.4 Child of a Root. Given a rooted tree with root v, a child
of v is a vertex that is connected to v by an edge of the tree. We refer to the
root as the parent of each of its children. ♢

Definition 10.3.5 Rooted Tree.
(a) A single vertex v with no children is a rooted tree with root v.

(b) Recursion: Let T1, T2, . . . , Tr, r ≥ 1, be disjoint rooted trees with roots v1,
v2, . . ., vr, respectively, and let v0 be a vertex that does not belong to any
of these trees. Then a rooted tree, rooted at v0, is obtained by making
v0 the parent of the vertices v1, v2, . . ., and vr. We call T1, T2, . . . , Tr

subtrees of the larger tree.

♢
The level of a vertex of a rooted tree is the number of edges that separate

the vertex from the root. The level of the root is zero. The depth of a tree is the
maximum level of the vertices in the tree. The depth of a tree in Figure 10.3.3
is three, which is the level of the vertices L and M . The vertices E, F , G, H,
I, J , and K have level two. B, C, and D are at level one and A has level zero.

Example 10.3.6 A Decision Tree. Figure 2.1.2 is a rooted tree with Start
as the root. It is an example of what is called a decision tree. □

Example 10.3.7 Tree Structure of Data. One of the keys to working with
large amounts of information is to organize it in a consistent, logical way. A
data structure is a scheme for organizing data. A simple example of a data
structure might be the information a college admissions department might keep
on their applicants. Items might look something like this:

ApplicantItem = (FirstName, MiddleInitial, LastName, StreetAddress,

City, State, Zip, HomePhone, CellPhone, EmailAddress,

HighSchool, Major, ApplicationPaid, MathSAT, V erbalSAT,

Recommendation1, Recommendation2, Recommendation3)

This structure is called a “flat file”.
A spreadsheet can be used to arrange data in this way. Although a “flat

file” structure is often adequate, there are advantages to clustering some the
information. For example the applicant information might be broken into four

CHAPTER 10. TREES 249

parts: name, contact information, high school, and application data:

ApplicantItem = ((FirstName, MiddleInitial, LastName),
((StreetAddress, City, State, Zip),
(HomePhone, CellPhone), EmailAddress),
HighSchool,

(Major, ApplicationPaid, (MathSAT, V erbalSAT),
(Recommendation1, Recommendation2, Recommendation3))

The first item in each ApplicantItem is a list (FirstName, MiddleInitial, LastName),
with each item in that list being a single field of the original flat file. The third
item is simply the single high school item from the flat file. The application
data is a list and one of its items, is itself a list with the recommendation data
for each recommendation the applicant has.

The organization of this data can be visualized with a rooted tree such as
the one in Figure 10.3.8.

Figure 10.3.8 Applicant Data in a Rooted Tree
In general, you can represent a data item, T , as a rooted tree with T as the

root and a subtree for each field. Those fields that are more than just one item
are roots of further subtrees, while individual items have no further children in
the tree. □

10.3.2 Kruskal’s Algorithm
An alternate algorithm for constructing a minimal spanning tree uses a forest
of rooted trees. First we will describe the algorithm in its simplest terms.
Afterward, we will describe how rooted trees are used to implement the al-
gorithm. Finally, we will demonstrate the SageMath implementation of the
algorithm. In all versions of this algorithm, assume that G = (V, E, w) is a
weighted undirected graph with |V | = m and |E| = n.

Algorithm 10.3.9 Kruskal’s Algorithm - Informal Version.
(1) Sort the edges of G in ascending order according to weight. That is,

i ≤ j ⇔ w (ej) ≤ w (ej) .

(2) Go down the list from Step 1 and add edges to a set (initially empty) of

CHAPTER 10. TREES 250

edges so that the set does not form a cycle. When an edge that would
create a cycle is encountered, ignore it. Continue examining edges until
either m− 1 edges have been selected or you have come to the end of the
edge list. If m − 1 edges are selected, these edges make up a minimal
spanning tree for G. If fewer than m − 1 edges are selected, G is not
connected.

Step 1 can be accomplished using one of any number of standard sorting
routines. Using the most efficient sorting routine, the time required to perform
this step is proportional to n log n. The second step of the algorithm, also of
n log n time complexity, is the one that uses a forest of rooted trees to test for
whether an edge should be added to the spanning set.

Algorithm 10.3.10 Kruskal’s Algorithm.
(1) Sort the edges of G in ascending order according to weight. That is,

i ≤ j ⇔ w (ei) ≤ w (ej) .

(2) (1) Initialize each vertex in V to be the root of its own rooted tree.
(2) Go down the list of edges until either a spanning tree is completed or

the edge list has been exhausted. For each edge e = {v1, v2}, we can
determine whether e can be added to the spanning set without forming
a cycle by determining whether the root of v1

′s tree is equal to the
root of v2

′s tree. If the two roots are equal, then ignore e. If the roots
are different, then we can add e to the spanning set. In addition, we
merge the trees that v1 and v2 belong to. This is accomplished by
either making v1

′s root the parent of v2
′s root or vice versa.

Note 10.3.11
(a) Since we start the Kruskal’s algorithm with m trees and each addition of

an edge decreases the number of trees by one, we end the algorithm with
one rooted tree, provided a spanning tree exists.

(b) The rooted tree that we develop in the algorithm is not the spanning tree
itself.

10.3.3 SageMath Note - Implementation of Kruskal’s Al-
gorithm

Kruskal’s algorithm has been implemented in Sage. We illustrate how the
spanning tree for a weighted graph in can be generated. First, we create such a
graph

We will create a graph using a list of triples of the form (vertex, vertex, label).
The weighted method tells Sage to consider the labels as weights.

edges =[(1, 2, 4), (2, 8, 4), (3, 8, 4), (4, 7, 5), (6, 8,
5), (1, 3, 6), (1, 7, 6), (4, 5, 6), (5, 10, 9), (2, 10,
7), (4, 6, 7), (2, 4, 8), (1,8, 9), (1, 9, 9), (5, 6,
9), (1, 10, 10), (2, 9, 10), (4, 9, 10), (5, 9, 10), (6,
9, 10)]

G=Graph(edges)
G.weighted(True)
G.graphplot(edge_labels=True ,save_pos=True).show()

CHAPTER 10. TREES 251

Figure 10.3.12 Weighed graph, SageMath output
Next, we load the kruskal function and use it to generate the list of edges

in a spanning tree of G.

from sage.graphs.spanning_tree import kruskal
E = kruskal(G, check=True);E

[(1, 2, 4), (1, 7, 6), (1, 9, 9), (2, 8, 4), (2, 10, 7),
(3, 8, 4), (4, 5, 6), (4, 7, 5), (6, 8, 5)]

To see the resulting tree with the same embedding as G, we generate a
graph from the spanning tree edges. Next, we set the positions of the vertices
to be the same as in the graph. Finally, we plot the tree.

T=Graph(E)
T.set_pos(G.get_pos ())
T.graphplot(edge_labels=True).show()

CHAPTER 10. TREES 252

Figure 10.3.13 Spanning tree, SageMath output

10.3.4 Exercises
1. Suppose that an undirected tree has diameter d and that you would like

to select a vertex of the tree as a root so that the resulting rooted tree has
the smallest depth possible. How would such a root be selected and what
would be the depth of the tree (in terms of d)?

2. Use Kruskal’s algorithm to find a minimal spanning tree for the following
graphs. In addition to the spanning tree, find the final rooted tree in the
algorithm. When you merge two trees in the algorithm, make the root
with the lower number the root of the new tree.

Figure 10.3.14

CHAPTER 10. TREES 253

Figure 10.3.15
3. Suppose that information on buildings is arranged in records with five

fields: the name of the building, its location, its owner, its height, and
its floor space. The location and owner fields are records that include all
of the information that you would expect, such as street, city, and state,
together with the owner’s name (first, middle, last) in the owner field.
Draw a rooted tree to describe this type of record

4. Step through Kruskal’s Algorithm by hand to verify that the example of a
minimal spanning tree using Sage in Subsection 10.3.3 is correct.

10.4 Binary Trees

10.4.1 Definition of a Binary Tree
An ordered rooted tree is a rooted tree whose subtrees are put into a definite
order and are, themselves, ordered rooted trees. An empty tree and a single
vertex with no descendants (no subtrees) are ordered rooted trees.

Example 10.4.1 Distinct Ordered Rooted Trees. The trees in Fig-
ure 10.4.2 are identical rooted trees, with root 1, but as ordered trees, they are
different.

CHAPTER 10. TREES 254

Figure 10.4.2 Two different ordered rooted trees
□

If a tree rooted at v has p subtrees, we would refer to them as the first,
second,..., pth subtrees. There is a subtle difference between certain ordered
trees and binary trees, which we define next.

Definition 10.4.3 Binary Tree.
(1) A tree consisting of no vertices (the empty tree) is a binary tree

(2) A vertex together with two subtrees that are both binary trees is a binary
tree. The subtrees are called the left and right subtrees of the binary tree.

♢
The difference between binary trees and ordered trees is that every vertex

of a binary tree has exactly two subtrees (one or both of which may be empty),
while a vertex of an ordered tree may have any number of subtrees. But there
is another significant difference between the two types of structures. The two
trees in Figure 10.4.4 would be considered identical as ordered trees. However,
they are different binary trees. Tree (a) has an empty right subtree and Tree
(b) has an empty left subtree.

Figure 10.4.4 Two different binary trees

List 10.4.5 Terminology and General Facts about Binary Trees

(a) A vertex of a binary tree with two empty subtrees is called a leaf .
All other vertices are called internal vertices.

(b) The number of leaves in a binary tree can vary from one up to
roughly half the number of vertices in the tree (see Exercise 4 of

CHAPTER 10. TREES 255

this section).

(c) The maximum number of vertices at level k of a binary tree is 2k ,
k ≥ 0 (see Exercise 6 of this section).

(d) A full binary tree is a tree for which each vertex has either zero
or two empty subtrees. In other words, each vertex has either two
or zero children. See Exercise 10.4.6.7 of this section for a general
fact about full binary trees.

10.4.2 Traversals of Binary Trees
The traversal of a binary tree consists of visiting each vertex of the tree in
some prescribed order. Unlike graph traversals, the consecutive vertices that
are visited are not always connected with an edge. The most common binary
tree traversals are differentiated by the order in which the root and its subtrees
are visited. The three traversals are best described recursively and are:

Preorder
Traversal:

(1) Visit the root of the tree.

(2) Preorder traverse the left subtree.

(3) Preorder traverse the right subtree.

Inorder
Traversal:

(1) Inorder traverse the left subtree.

(2) Visit the root of the tree.

(3) Inorder traverse the right subtree.

Postorder
Traversal:

(1) Postorder traverse the left subtree.

(2) Postorder traverse the right subtree.

(3) Visit the root of the tree.

Any traversal of an empty tree consists of doing nothing.

Example 10.4.6 Traversal Examples. For the tree in Figure 10.4.7, the
orders in which the vertices are visited are:

• A-B-D-E-C-F-G, for the preorder traversal.

• D-B-E-A-F-C-G, for the inorder traversal.

• D-E-B-F-G-C-A, for the postorder traversal.

CHAPTER 10. TREES 256

Figure 10.4.7 A Complete Binary Tree to Level 2
□

Binary Tree Sort. Given a collection of integers (or other objects than can
be ordered), one technique for sorting is a binary tree sort. If the integers are
a1, a2, . . ., an, n ≥ 1, we first execute the following algorithm that creates a
binary tree:

Algorithm 10.4.8 Binary Sort Tree Creation.
(1) Insert a1 into the root of the tree.

(2) For k := 2 to n // insert ak into the tree

(a) r = a1

(b) inserted = false
(c) while not(inserted):

if ak < r:
if r has a left child:

r = left child of r

else:
make ak the left child of r

inserted = true
else:

if r has a right child:
r = right child of r

else:
make ak the right child of r

inserted = true
If the integers to be sorted are 25, 17, 9, 20, 33, 13, and 30, then the tree

that is created is the one in Figure 10.4.9. The inorder traversal of this tree is
9, 13, 17, 20, 25, 30, 33, the integers in ascending order. In general, the inorder
traversal of the tree that is constructed in the algorithm above will produce a
sorted list. The preorder and postorder traversals of the tree have no meaning
here.

CHAPTER 10. TREES 257

Figure 10.4.9 A Binary Sorting Tree

10.4.3 Expression Trees
A convenient way to visualize an algebraic expression is by its expression tree.
Consider the expression

X = a ∗ b− c/d + e.

Since it is customary to put a precedence on multiplication/divisions, X is
evaluated as ((a ∗ b) − (c/d)) + e. Consecutive multiplication/divisions or
addition/subtractions are evaluated from left to right. We can analyze X
further by noting that it is the sum of two simpler expressions (a ∗ b)− (c/d)
and e. The first of these expressions can be broken down further into the
difference of the expressions a ∗ b and c/d. When we decompose any expression
into (left expression)operation(right expression), the expression tree of that
expression is the binary tree whose root contains the operation and whose left
and right subtrees are the trees of the left and right expressions, respectively.
Additionally, a simple variable or a number has an expression tree that is a
single vertex containing the variable or number. The evolution of the expression
tree for expression X appears in Figure 10.4.10.

CHAPTER 10. TREES 258

Figure 10.4.10 Building an Expression Tree

Example 10.4.11 Some Expression Trees.
(a) If we intend to apply the addition and subtraction operations in X first,

we would parenthesize the expression to a ∗ (b− c)/(d + e). Its expression
tree appears in Figure 10.4.12(a).

(b) The expression trees for a2 − b2 and for (a + b) ∗ (a − b) appear in
Figure 10.4.12(b) and Figure 10.4.12(c).

CHAPTER 10. TREES 259

Figure 10.4.12 Expression Tree Examples
□

The three traversals of an operation tree are all significant. A binary
operation applied to a pair of numbers can be written in three ways. One is
the familiar infix form, such as a + b for the sum of a and b. Another form
is prefix, in which the same sum is written +ab. The final form is postfix, in
which the sum is written ab+. Algebraic expressions involving the four standard
arithmetic operations (+,−, ∗, and/) in prefix and postfix form are defined as
follows:

List 10.4.13 Prefix and postfix forms of an algebraic expression

Prefix (a) A variable or number is a prefix expression

(b) Any operation followed by a pair of prefix
expressions is a prefix expression.

Postfix (a) A variable or number is a postfix expression

(b) Any pair of postfix expressions followed by
an operation is a postfix expression.

The connection between traversals of an expression tree and these forms is
simple:

(a) The preorder traversal of an expression tree will result in the prefix form
of the expression.

CHAPTER 10. TREES 260

(b) The postorder traversal of an expression tree will result in the postfix
form of the expression.

(c) The inorder traversal of an operation tree will not, in general, yield the
proper infix form of the expression. If an expression requires parentheses
in infix form, an inorder traversal of its expression tree has the effect of
removing the parentheses.

Example 10.4.14 Traversing an Expression Tree. The preorder traversal
of the tree in Figure 10.4.10 is + − ∗ab/cde, which is the prefix version of
expression X. The postorder traversal is ab ∗ cd/ − e+. Note that since the
original form of X needed no parentheses, the inorder traversal, a ∗ b− c/d + e,
is the correct infix version. □

10.4.4 Counting Binary Trees
We close this section with a formula for the number of different binary trees with
n vertices. The formula is derived using generating functions. Although the
complete details are beyond the scope of this text, we will supply an overview
of the derivation in order to illustrate how generating functions are used in
advanced combinatorics.

Let B(n) be the number of different binary trees of size n (n vertices), n ≥ 0.
By our definition of a binary tree, B(0) = 1. Now consider any positive integer
n + 1, n ≥ 0. A binary tree of size n + 1 has two subtrees, the sizes of which
add up to n. The possibilities can be broken down into n + 1 cases:

Case 0: Left subtree has size 0; right subtree has size n.
Case 1: Left subtree has size 1; right subtree has size n− 1.

...
Case k: Left subtree has size k; right subtree has size n− k.

...
Case n: Left subtree has size n; right subtree has size 0.

In the general Case k, we can count the number of possibilities by multiplying
the number of ways that the left subtree can be filled, B(k), by the number
of ways that the right subtree can be filled. B(n− k). Since the sum of these
products equals B(n + 1), we obtain the recurrence relation for n ≥ 0:

B(n + 1) = B(0)B(n) + B(1)B(n− 1) + · · ·+ B(n)B(0)

=
n∑

k=0
B(k)B(n− k)

Now take the generating function of both sides of this recurrence relation:
∞∑

n=0
B(n + 1)zn =

∞∑
n=0

(
n∑

k=0
B(k)B(n− k)

)
zn (10.4.1)

or

G(B ↑; z) = G(B ∗B; z) = G(B; z)2 (10.4.2)

Recall that G(B ↑; z) = G(B;z)−B(0)
z = G(B;z)−1

z If we abbreviate G(B; z)
to G, we get

G− 1
z

= G2 ⇒ zG2 −G + 1 = 0

CHAPTER 10. TREES 261

Using the quadratic equation we find two solutions:

G1 = 1 +
√

1− 4z

2z
and (10.4.3)

G2 = 1−
√

1− 4z

2z
(10.4.4)

The gap in our derivation occurs here since we don’t presume a knowledge
of calculus. If we expand G1 as an extended power series, we find

G1 = 1 +
√

1− 4z

2z
= 1

z
− 1− z − 2z2 − 5z3 − 14z4 − 42z5 + · · · (10.4.5)

The coefficients after the first one are all negative and there is a singularity
at 0 because of the 1

z term. However if we do the same with G2 we get

G2 = 1−
√

1− 4z

2z
= 1 + z + 2z2 + 5z3 + 14z4 + 42z5 + · · · (10.4.6)

Further analysis leads to a closed form expression for B(n), which is

B(n) = 1
n + 1

(
2n

n

)
This sequence of numbers is often called the Catalan numbers. For more
information on the Catalan numbers, see the entry A000108 in The On-Line
Encyclopedia of Integer Sequences1.

10.4.5 SageMath Note - Power Series
It may be of interest to note how the extended power series expansions of G1
and G2 are determined using Sage. In Sage, one has the capability of being very
specific about how algebraic expressions should be interpreted by specifying
the underlying ring. This can make working with various algebraic expressions
a bit more confusing to the beginner. Here is how to get a Laurent expansion
for G1 above.

R.<z>= PowerSeriesRing(ZZ,'z')
G1=(1+ sqrt (1-4*z))/(2*z)
G1

z^-1 - 1 - z - 2*z^2 - 5*z^3 - 14*z^4 - 42*z^5 - 132*z^6
- 429*z^7 - 1430*z^8 - 4862*z^9 - 16796*z^10 - 58786*z^11
- 208012*z^12 - 742900*z^13 - 2674440*z^14 - 9694845*z^15
- 35357670*z^16 - 129644790*z^17 - 477638700*z^18 +

O(z^19)

The first Sage expression above declares a structure called a ring that
contains power series. We are not using that whole structure, just a specific
element, G1. So the important thing about this first input is that it establishes
z as being a variable associated with power series over the integers. When
the second expression defines the value of G1 in terms of z, it is automatically
converted to a power series.

The expansion of G2 uses identical code, and its coefficients are the values
of B(n).

1oeis.org

https://oeis.org
https://oeis.org

CHAPTER 10. TREES 262

R.<z>= PowerSeriesRing(ZZ,'z')
G2=(1-sqrt (1-4*z))/(2*z)
G2

1 + z + 2*z^2 + 5*z^3 + 14*z^4 + 42*z^5 + 132*z^6 + 429*z^7
+ 1430*z^8 + 4862*z^9 + 16796*z^10 + 58786*z^11 +

208012*z^12
+ 742900*z^13 + 2674440*z^14 + 9694845*z^15 +

35357670*z^16
+ 129644790*z^17 + 477638700*z^18 + O(z^19)

In Chapter 16 we will introduce rings and will be able to take further
advantage of Sage’s capabilities in this area.

10.4.6 Exercises
1. Draw the expression trees for the following expressions:

(a) a(b + c)

(b) ab + c

(c) ab + ac

(d) bb− 4ac

(e) ((a3x + a2) x + a1) x + a0

2. Draw the expression trees for

(a) x2 − 1
x− 1

(b) xy + xz + yz

3. Write out the preorder, inorder, and postorder traversals of the trees in
Exercise 1 above.

4. Verify the formula for B(n), 0 ≤ n ≤ 3 by drawing all binary trees with
three or fewer vertices.

5.
(a) Draw a binary tree with seven vertices and only one leaf. Your

answer won’t be unique. How many different possible answers are
there?

(b) Draw a binary tree with seven vertices and as many leaves as possible.
6. Prove that the maximum number of vertices at level k of a binary tree is

2k and that a tree with that many vertices at level k must have 2k+1 − 1
vertices.

7. Prove that if T is a full binary tree, then the number of leaves of T is one
more than the number of internal vertices (non-leaves).

8.

CHAPTER 10. TREES 263

There is a one to one correspondence
between ordered rooted trees and bi-
nary trees. If you start with an or-
dered rooted tree, T , you can build
a binary tree B with an empty right
subtree by placing the the root of T
at the root of B. Then for every ver-
tex v from T that has been placed in
B, place it’s leftmost child (if there is
one) as v’s left child in B. Make v’s
next sibling (if there is one) in T the
right child in B. Figure 10.4.15 An ordered rooted

tree with root r.

Figure 10.4.16 Blue (left) and Red
(right) links added to the ordered
rooted tree with root r.

Figure 10.4.17 Binary tree corre-
sponding to the ordered rooted tree.

(a) Why will B have no right children in this correspondence?

(b) Draw the binary tree that is produced by the ordered rooted tree in
Figure 10.4.18.

(c) The left subtree of the binary tree in Figure 10.4.19 is one of 5
different binary trees with three vertices. Draw each of them and
also the ordered rooted tree that each corresponds with.

(d) What does this correspondence tell us about how the numbers of
different binary trees and ordered rooted trees are related?

Figure 10.4.18 What binary tree
does this correspond with? Figure 10.4.19 What ordered rooted

tree does this correspond with?

Chapter 11

Algebraic Structures

Abelian Group

In Abelian groups, when computing,
With operands there’s no refuting:

The expression bc
Is the same as cb.

Not en route to your job, yet commuting.

Howard Spindel, The Omnificent English Dictionary In Limerick Form

The primary goal of this chapter is to make the reader aware of what an
algebraic system is and how algebraic systems can be studied at different levels
of abstraction. After describing the concrete, axiomatic, and universal levels, we
will introduce one of the most important algebraic systems at the axiomatic level,
the group. In this chapter, group theory will be a vehicle for introducing the
universal concepts of isomorphism, direct product, subsystem, and generating
set. These concepts can be applied to all algebraic systems. The simplicity
of group theory will help the reader obtain a good intuitive understanding of
these concepts. In Chapter 15, we will introduce some additional concepts and
applications of group theory. We will close the chapter with a discussion of how
some computer hardware and software systems use the concept of an algebraic
system.

11.1 Operations
One of the first mathematical skills that we all learn is how to add a pair of
positive integers. A young child soon recognizes that something is wrong if a
sum has two values, particularly if his or her sum is different from the teacher’s.
In addition, it is unlikely that a child would consider assigning a non-positive
value to the sum of two positive integers. In other words, at an early age we
probably know that the sum of two positive integers is unique and belongs to
the set of positive integers. This is what characterizes all binary operations on
a set.

264

CHAPTER 11. ALGEBRAIC STRUCTURES 265

11.1.1 What is an Operation?
Definition 11.1.1 Binary Operation. Let S be a nonempty set. A binary
operation on S is a rule that assigns to each ordered pair of elements of S a
unique element of S. In other words, a binary operation is a function from
S × S into S. ♢

Example 11.1.2 Some common binary operations. Union and intersec-
tion are both binary operations on the power set of any universe. Addition
and multiplication are binary operators on the natural numbers. Addition and
multiplication are binary operations on the set of 2 by 2 real matrices, M2×2(R).
Division is a binary operation on some sets of numbers, such as the positive
reals. But on the integers (1/2 /∈ Z) and even on the real numbers (1/0 is not
defined), division is not a binary operation. □

Note 11.1.3
(a) We stress that the image of each ordered pair must be in S. This require-

ment disqualifies subtraction on the natural numbers from consideration
as a binary operation, since 1− 2 is not a natural number. Subtraction is
a binary operation on the integers.

(b) On Notation. Despite the fact that a binary operation is a function,
symbols, not letters, are used to name them. The most commonly used
symbol for a binary operation is an asterisk, ∗. We will also use a diamond,
⋄, when a second symbol is needed.

If ∗ is a binary operation on S and a, b ∈ S, there are three common ways
of denoting the image of the pair (a, b). They are:

∗ab a ∗ b ab∗
Prefix Form Infix Form Postfix Form

We are all familiar with infix form. For example, 2 + 3 is how everyone is taught
to write the sum of 2 and 3. But notice how 2 + 3 was just described in the
previous sentence! The word sum preceded 2 and 3. Orally, prefix form is quite
natural to us. The prefix and postfix forms are superior to infix form in some
respects. In Chapter 10, we saw that algebraic expressions with more than
one operation didn’t need parentheses if they were in prefix or postfix form.
However, due to our familiarity with infix form, we will use it throughout most
of the remainder of this book.

Some operations, such as negation of numbers and complementation of sets,
are not binary, but unary operators.

Definition 11.1.4 Unary Operation. Let S be a nonempty set. A unary
operator on S is a rule that assigns to each element of S a unique element of S.
In other words, a unary operator is a function from S into S. ♢

11.1.2 Properties of Operations
Whenever an operation on a set is encountered, there are several properties that
should immediately come to mind. To effectively make use of an operation, you
should know which of these properties it has. By now, you should be familiar
with most of these properties. We will list the most common ones here to
refresh your memory and define them for the first time in a general setting.

First we list properties of a single binary operation.

Definition 11.1.5 Commutative Property. Let ∗ be a binary operation
on a set S. We say that ∗ is commutative if and only if a ∗ b = b ∗ a for all

CHAPTER 11. ALGEBRAIC STRUCTURES 266

a, b ∈ S. ♢

Definition 11.1.6 Associative Property. Let ∗ be a binary operation on a
set S. We say that ∗ is associative if and only if (a ∗ b) ∗ c = a ∗ (b ∗ c) for all
a, b, c ∈ S. ♢

Definition 11.1.7 Identity Property. Let ∗ be a binary operation on a set
S. We say that ∗ has an identity if and only if there exists an element, e, in
S such that a ∗ e = e ∗ a = a for all a ∈ S. ♢

The next property presumes that ∗ has the identity property.

Definition 11.1.8 Inverse Property. Let ∗ be a binary operation on a set
S. We say that ∗ has the inverse property if and only if for each a ∈ S, there
exists b ∈ S such that a ∗ b = b ∗ a = e. We call b an inverse of a. ♢

Definition 11.1.9 Idempotent Property. Let ∗ be a binary operation on a
set S. We say that ∗ is idempotent if and only if a ∗ a = a for all a ∈ S. ♢

Now we list properties that apply to two binary operations.

Definition 11.1.10 Left Distributive Property. Let ∗ and ⋄ be binary
operations on a set S. We say that ⋄ is left distributive over ∗ if and only if
a ⋄ (b ∗ c) = (a ⋄ b) ∗ (a ⋄ c) for all a, b, c ∈ S. ♢

Definition 11.1.11 Right Distributive Property. Let ∗ and ⋄ be binary
operations on a set S. We say that ⋄ is right distributive over ∗ if and only if
(b ∗ c) ⋄ a = (b ⋄ a) ∗ (c ⋄ a) for all a, b, c ∈ S. ♢

Definition 11.1.12 Distributive Property. Let ∗ and ⋄ be binary operations
on a set S. We say that ⋄ is distributive over ∗ if and only if ⋄ is both left and
right distributive over ∗. ♢

There is one significant property of unary operations.

Definition 11.1.13 Involution Property. Let − be a unary operation on
S. We say that − has the involution property if −(−a) = a for all a ∈ S. ♢

Finally, a property of sets, as they relate to operations.

Definition 11.1.14 Closure Property. Let T be a subset of S and let ∗ be
a binary operation on S. We say that T is closed under ∗ if a, b ∈ T implies
that a ∗ b ∈ T . ♢

In other words, T is closed under ∗ if by operating on elements of T with ∗,
you can’t get new elements that are outside of T .

Example 11.1.15 Some examples of closure and non-closure.
(a) The odd integers are closed under multiplication, but not under addition.

(b) Let p be a proposition over U and let A be the set of propositions over
U that imply p. That is; q ∈ A if q ⇒ p. Then A is closed under both
conjunction and disjunction.

(c) The set of positive integers that are multiples of 5 is closed under both
addition and multiplication.

□
It is important to realize that the properties listed above depend on both the

set and the operation(s). Statements such as “Multiplication is commutative.”
or “The positive integers are closed.” are meaningless on their own. Naturally,
if we have established a context in which the missing set or operation is clearly
implied, then they would have meaning.

CHAPTER 11. ALGEBRAIC STRUCTURES 267

11.1.3 Operation Tables
If the set on which a binary operation is defined is small, a table is often a
good way of describing the operation. For example, we might want to define ⊕

on {0, 1, 2} by a⊕ b =
{

a + b if a + b < 3
a + b− 3 if a + b ≥ 3 The table for ⊕ is

⊕ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

The top row and left column of an operation table are the column and row
headings, respectively. To determine a⊕ b, find the entry in the row labeled a
and the column labeled b. The following operation table serves to define ∗ on
{i, j, k}.

∗ i j k

i i i i

j j j j

k k k k

Note that j∗k = j, yet k∗j = k. Thus, ∗ is not commutative. Commutativity
is easy to identify in a table: the table must be symmetric with respect to the
diagonal going from the top left to lower right.

11.1.4 Exercises
1. Determine the properties that the following operations have on the positive

integers.
(a) addition

(b) multiplication

(c) M defined by aMb = larger of a and b

(d) m defined by amb = smaller of a and b

(e) @ defined by a@b = ab

2. Determine the properties that the following operations have on given sets.
(a) Intersection on the set of subsets of {1, 2, 3, 4}.

(b) ω defined on the positive integers by aωb = b.

(c) ∗ defined on the integers by a ∗ b = a + b− 2

(d) ⋄ defined by a ⋄ b = ab
2 .

(e) Concatenation on the set of all strings of zeros and ones.
3. Let ∗ be an operation on a set S and A, B ⊆ S. Prove that if A and B are

both closed under ∗, then A ∩ B is also closed under ∗, but A ∪ B need
not be.

4. How can you pick out the identity of an operation from its table?
5. Define a ∗ b by |a− b|, the absolute value of a− b. Which properties does

∗ have on the set of natural numbers, N?
6. Which pairs of operations in Exercise 1 are distributive over one another?

CHAPTER 11. ALGEBRAIC STRUCTURES 268

11.2 Algebraic Systems
An algebraic system is a mathematical system consisting of a set called the
domain and one or more operations on the domain. If V is the domain and
∗1, ∗2, . . . , ∗n are the operations, [V ; ∗1, ∗2, . . . , ∗n] denotes the mathematical
system. If the context is clear, this notation is abbreviated to V .

11.2.1 Monoids at Two Levels
Consider the following two examples of algebraic systems.

(a) Let B∗ be the set of all finite strings of 0’s and 1’s including the null (or
empty) string, λ. An algebraic system is obtained by adding the operation
of concatenation. The concatenation of two strings is simply the linking
of the two strings together in the order indicated. The concatenation of
strings a with b is denoted a + b. For example, 01101 + 101 = 01101101
and λ + 100 = 100. Note that concatenation is an associative operation
and that λ is the identity for concatenation.
A note on notation: There isn’t a standard symbol for concatenation. We
have chosen + to be consistent with the notation used in Python and
Sage for the concatenation.

(b) Let M be any nonempty set and let ∗ be any operation on M that
is associative and has an identity in M . Any such system is called a
monoid. We introduce monoids briefly here, but will discuss them further
in Chapter 14

Our second example might seem strange, but we include it to illustrate
a point. The algebraic system [B∗; +] is a special case of [M ; ∗]. Most of us
are much more comfortable with B∗ than with M . No doubt, the reason is
that the elements in B∗ are more concrete. We know what they look like and
exactly how they are combined. The description of M is so vague that we don’t
even know what the elements are, much less how they are combined. Why
would anyone want to study M? The reason is related to this question: What
theorems are of interest in an algebraic system? Answering this question is one
of our main objectives in this chapter. Certain properties of algebraic systems
are called algebraic properties, and any theorem that says something about the
algebraic properties of a system would be of interest. The ability to identify
what is algebraic and what isn’t is one of the skills that you should learn from
this chapter.

Now, back to the question of why we study M . Our answer is to illustrate
the usefulness of M with a theorem about M .
Theorem 11.2.1 A Monoid Theorem. If a, b are elements of M and
a ∗ b = b ∗ a, then (a ∗ b) ∗ (a ∗ b) = (a ∗ a) ∗ (b ∗ b).
Proof.

(a ∗ b) ∗ (a ∗ b) = a ∗ (b ∗ (a ∗ b)) Why?
= a ∗ ((b ∗ a) ∗ b) Why?
= a ∗ ((a ∗ b) ∗ b) Why?
= a ∗ (a ∗ (b ∗ b)) Why?
= (a ∗ a) ∗ (b ∗ b) Why?

■

CHAPTER 11. ALGEBRAIC STRUCTURES 269

The power of this theorem is that it can be applied to any algebraic system
that M describes. Since B∗ is one such system, we can apply Theorem 11.2.1 to
any two strings that commute. For example, 01 and 0101. Although a special
case of this theorem could have been proven for B∗, it would not have been any
easier to prove, and it would not have given us any insight into other special
cases of M .
Example 11.2.2 More Concrete Monoids. Consider the set of 2 × 2
real matrices, M2×2(R), with the operation of matrix multiplication. In this
context, Theorem 11.2.1 can be interpreted as saying that if AB = BA, then

(AB)2 = A2B2. One pair of matrices that this theorem applies to is
(

2 1
1 2

)
and

(
3 −4
−4 3

)
.

For another pair of concrete monoids, we start with a universal set U =
{1, 2, 3, 4, 5} - although we could be a little less specific an imaging U to be any
nonempty set. The power set of U with intersection, and the power set of U
with union are both monoids. What the identities of these monoids? Are they
really the same monoid? We will answer this last question in Section 11.7. □

11.2.2 Levels of Abstraction
One of the fundamental tools in mathematics is abstraction. There are three
levels of abstraction that we will identify for algebraic systems: concrete,
axiomatic, and universal.

11.2.2.1 The Concrete Level

Almost all of the mathematics that you have done in the past was at the
concrete level. As a rule, if you can give examples of a few typical elements of
the domain and describe how the operations act on them, you are describing
a concrete algebraic system. Two examples of concrete systems are B∗ and
M2×2(R). A few others are:

(a) The integers with addition. Of course, addition isn’t the only standard
operation that we could include. Technically, if we were to add multipli-
cation, we would have a different system.

(b) The subsets of the natural numbers, with union, intersection, and com-
plementation.

(c) The complex numbers with addition and multiplication.

11.2.2.2 The Axiomatic Level

The next level of abstraction is the axiomatic level. At this level, the elements
of the domain are not specified, but certain axioms are stated about the number
of operations and their properties. The system that we called M is an axiomatic
system. Some combinations of axioms are so common that a name is given
to any algebraic system to which they apply. Any system with the properties
of M is called a monoid. The study of M would be called monoid theory.
The assumptions that we made about M , associativity and the existence of
an identity, are called the monoid axioms. One of your few brushes with
the axiomatic level may have been in your elementary algebra course. Many
algebra texts identify the properties of the real numbers with addition and
multiplication as the field axioms. As we will see in Chapter 16, “Rings and

CHAPTER 11. ALGEBRAIC STRUCTURES 270

Fields,” the real numbers share these axioms with other concrete systems, all
of which are called fields.

11.2.2.3 The Universal Level

The final level of abstraction is the universal level. There are certain concepts,
called universal algebra concepts, that can be applied to the study of all
algebraic systems. Although a purely universal approach to algebra would be
much too abstract for our purposes, defining concepts at this level should make
it easier to organize the various algebraic theories in your own mind. In this
chapter, we will consider the concepts of isomorphism, subsystem, and direct
product.

11.2.3 Groups
To illustrate the axiomatic level and the universal concepts, we will consider
yet another kind of axiomatic system, the group. In Chapter 5 we noted that
the simplest equation in matrix algebra that we are often called upon to solve
is AX = B, where A and B are known square matrices and X is an unknown
matrix. To solve this equation, we need the associative, identity, and inverse
laws. We call the systems that have these properties groups.

Definition 11.2.3 Group. A group consists of a nonempty set G and a
binary operation ∗ on G satisfying the properties

(a) ∗ is associative on G: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

(b) There exists an identity element, e ∈ G, such that a ∗ e = e ∗ a = a for all
a ∈ G.

(c) For all a ∈ G, there exists an inverse; that is, there exists b ∈ G such that
a ∗ b = b ∗ a = e.

♢
A group is usually denoted by its set’s name, G, or occasionally by [G; ∗]

to emphasize the operation. At the concrete level, most sets have a standard
operation associated with them that will form a group. As we will see below,
the integers with addition is a group. Therefore, in group theory Z always
stands for [Z; +].

Note 11.2.4 Generic Symbols. At the axiomatic and universal levels, there
are often symbols that have a special meaning attached to them. In group
theory, the letter e is used to denote the identity element of whatever group is
being discussed. A little later, we will prove that the inverse of a group element,
a, is unique and its inverse is usually denoted a−1 and is read “a inverse.” When
a concrete group is discussed, these symbols are dropped in favor of concrete
symbols. These concrete symbols may or may not be similar to the generic
symbols. For example, the identity element of the group of integers is 0, and
the inverse of n is denoted by −n, the additive inverse of n.

The asterisk could also be considered a generic symbol since it is used to
denote operations on the axiomatic level.
Example 11.2.5 Some concrete groups.

(a) The integers with addition is a group. We know that addition is associative.
Zero is the identity for addition: 0 + n = n + 0 = n for all integers n.
The additive inverse of any integer is obtained by negating it. Thus the
inverse of n is −n.

CHAPTER 11. ALGEBRAIC STRUCTURES 271

(b) The integers with multiplication is not a group. Although multiplication
is associative and 1 is the identity for multiplication, not all integers have
a multiplicative inverse in Z. For example, the multiplicative inverse of
10 is 1

10 , but 1
10 is not an integer.

(c) The power set of any set U with the operation of symmetric difference,
⊕, is a group. If A and B are sets, then A⊕B = (A ∪B)− (A ∩B). We
will leave it to the reader to prove that ⊕ is associative over P(U). The
identity of the group is the empty set: A⊕ ∅ = A. Every set is its own
inverse since A ⊕ A = ∅. Note that P(U) is not a group with union or
intersection.

□

Definition 11.2.6 Abelian Group. A group is abelian if its operation is
commutative. ♢

Abel. Most of the groups that we will discuss in this book will be abelian. The
term abelian is used to honor the Norwegian mathematician N. Abel (1802-29),
who helped develop group theory.

Figure 11.2.7 Norwegian Stamp honoring Abel

11.2.4 Exercises
1. Discuss the analogy between the terms generic and concrete for algebraic

systems and the terms generic and trade for prescription drugs.
2. Discuss the connection between groups and monoids. Is every monoid a

group? Is every group a monoid?
3. Which of the following are groups?

(a) B∗ with concatenation (see Subsection 11.2.1).

(b) M2×3(R) with matrix addition.

(c) M2×3(R) with matrix multiplication.

(d) The positive real numbers, R+, with multiplication.

(e) The nonzero real numbers, R∗, with multiplication.

(f) {1,−1} with multiplication.

(g) The positive integers with the operation M defined by aMb =
the larger of a and b.

4. Prove that, ⊕, defined by A ⊕ B = (A ∪ B) − (A ∩ B) is an associative
operation on P(U).

CHAPTER 11. ALGEBRAIC STRUCTURES 272

5. The following problem supplies an example of a non-abelian group. A rook
matrix is a matrix that has only 0’s and 1’s as entries such that each row
has exactly one 1 and each column has exactly one 1. The term rook matrix
is derived from the fact that each rook matrix represents the placement of n
rooks on an n×n chessboard such that none of the rooks can attack one an-
other. A rook in chess can move only vertically or horizontally, but not diag-
onally. Let Rn be the set of n×n rook matrices. There are six 3×3 rook ma-

trices:

I =

 1 0 0
0 1 0
0 0 1

 R1 =

 0 1 0
0 0 1
1 0 0

 R2 =

 0 0 1
1 0 0
0 1 0

F1 =

 1 0 0
0 0 1
0 1 0

 F2 =

 0 0 1
0 1 0
1 0 0

 F3 =

 0 1 0
1 0 0
0 0 1

(a) List the 2× 2 rook matrices. They form a group, R2, under matrix

multiplication. Write out the multiplication table. Is the group
abelian?

(b) Write out the multiplication table for R3 . This is another group. Is
it abelian?

(c) How many 4 × 4 rook matrices are there? How many n × n rook
matrices are there?

6. For each of the following sets, identify the standard operation that results
in a group. What is the identity of each group?

(a) The set of all 2× 2 matrices with real entries and nonzero determi-
nants.

(b) The set of 2× 3 matrices with rational entries.
7. Let V = {e, a, b, c}. Let ∗ be defined (partially) by x ∗ x = e for all x ∈ V .

Write a complete table for ∗ so that [V ; ∗] is a group.
8. Consider the following set of six algebraic expressions, each defining a

function on the set of real numbers excluding the numbers 0 and 1.

H =
{

x, 1− x,
1

1− x
,

1
x

,
x− 1

x
,

x

x− 1

}
= {y1, y2, y3, y4, y5, y6}

We can operate on any two of these expressions using function composition.
For example,

(y3 ◦ y4)(x) = y3(y4(x)) = y3(1
x

) = 1
1− 1

x

= x

x− 1 = y6(x)

Therefore, y3◦y4 = y6. Complete the following operation table for function
composition on H.

CHAPTER 11. ALGEBRAIC STRUCTURES 273

Figure 11.2.8 Partially completed operation table for H
Is [H, ◦] a monoid? Is it a group?

11.3 Some General Properties of Groups
In this section, we will present some of the most basic theorems of group theory.
Keep in mind that each of these theorems tells us something about every group.
We will illustrate this point with concrete examples at the close of the section.

11.3.1 First Theorems
Theorem 11.3.1 Identities are Unique. The identity of a group is unique.

One difficulty that students often encounter is how to get started in proving
a theorem like this. The difficulty is certainly not in the theorem’s complexity.
It’s too terse! Before actually starting the proof, we rephrase the theorem so
that the implication it states is clear.

Theorem 11.3.2 Identities are Unique - Rephrased. If G = [G; ∗] is a
group and e is an identity of G, then no other element of G is an identity of G.
Proof. (Indirect): Suppose that f ∈ G, f ̸= e, and f is an identity of G. We
will show that f = e, which is a contradiction, completing the proof.

f = f ∗ e Since e is an identity
= e Since f is an identity

■
Next we justify the phrase “... the inverse of an element of a group.”

Theorem 11.3.3 Inverses are Unique. The inverse of any element of a
group is unique.

The same problem is encountered here as in the previous theorem. We will
leave it to the reader to rephrase this theorem. The proof is also left to the
reader to write out in detail. Here is a hint: If b and c are both inverses of a,
then you can prove that b = c. If you have difficulty with this proof, note that
we have already proven it in a concrete setting in Chapter 5.

As mentioned above, the significance of Theorem 11.3.3 is that we can refer
to the inverse of an element without ambiguity. The notation for the inverse of
a is usually a−1 (note the exception below).

Example 11.3.4 Some Inverses.
(a) In any group, e−1 is the inverse of the identity e, which always is e.

CHAPTER 11. ALGEBRAIC STRUCTURES 274

(b)
(
a−1)−1 is the inverse of a−1 , which is always equal to a (see Theo-

rem 11.3.5 below).

(c) (x ∗ y ∗ z)−1 is the inverse of x ∗ y ∗ z.

(d) In a concrete group with an operation that is based on addition, the
inverse of a is usually written −a. For example, the inverse of k− 3 in the
group [Z; +] is written −(k − 3) = 3− k. In the group of 2× 2 matrices

over the real numbers under matrix addition, the inverse of
(

4 1
1 −3

)
is written −

(
4 1
1 −3

)
, which equals

(
−4 −1
−1 3

)
.

□

Theorem 11.3.5 Inverse of Inverse Theorem. If a is an element of group
G, then

(
a−1)−1 = a.

Again, we rephrase the theorem to make it clear how to proceed.

Theorem 11.3.6 Inverse of Inverse Theorem (Rephrased). If a has
inverse b and b has inverse c, then a = c.
Proof.

a = a ∗ e e is the identity of G

= a ∗ (b ∗ c) because c is the inverse of b

= (a ∗ b) ∗ c why?
= e ∗ c why?
= c by the identity property

■
The next theorem gives us a formula for the inverse of a ∗ b. This formula

should be familiar. In Chapter 5 we saw that if A and B are invertible matrices,
then (AB)−1 = B−1A−1.

Theorem 11.3.7 Inverse of a Product. If a and b are elements of group
G, then (a ∗ b)−1 = b−1 ∗ a−1.
Proof. Let x = b−1 ∗ a−1. We will prove that x inverts a ∗ b. Since we know
that the inverse is unique, we will have proved the theorem.

(a ∗ b) ∗ x = (a ∗ b) ∗
(
b−1 ∗ a−1)

= a ∗
(
b ∗
(
b−1 ∗ a−1))

= a ∗
((

b ∗ b−1) ∗ a−1)
= a ∗

(
e ∗ a−1)

= a ∗ a−1

= e

Similarly, x ∗ (a ∗ b) = e; therefore, (a ∗ b)−1 = x = b−1 ∗ a−1 ■

Theorem 11.3.8 Cancellation Laws. If a, b, and c are elements of group
G, then

left cancellation: (a ∗ b = a ∗ c)⇒ b = c

right cancellation: (b ∗ a = c ∗ a)⇒ b = c

Proof. We will prove the left cancellation law. The right law can be proved in
exactly the same way. Starting with a ∗ b = a ∗ c, we can operate on both a ∗ b

CHAPTER 11. ALGEBRAIC STRUCTURES 275

and a ∗ c on the left with a−1:

a−1 ∗ (a ∗ b) = a−1 ∗ (a ∗ c)

Applying the associative property to both sides we get

(a−1 ∗ a) ∗ b = (a−1 ∗ a) ∗ c⇒ e ∗ b = e ∗ c

⇒ b = c

■

Theorem 11.3.9 Linear Equations in a Group. If G is a group and
a, b ∈ G, the equation a ∗ x = b has a unique solution, x = a−1 ∗ b. In addition,
the equation x ∗ a = b has a unique solution, x = b ∗ a−1.
Proof. We prove the theorem only for a ∗ x = b, since the second statement is
proven identically.

a ∗ x = b = e ∗ b

= (a ∗ a−1) ∗ b

= a ∗ (a−1 ∗ b)

By the cancellation law, we can conclude that x = a−1 ∗ b.
If c and d are two solutions of the equation a ∗ x = b, then a ∗ c = b = a ∗ d

and, by the cancellation law, c = d. This verifies that a−1 ∗b is the only solution
of a ∗ x = b. ■

Note 11.3.10 Our proof of Theorem 11.3.9 was analogous to solving the
concrete equation 4x = 9 in the following way:

4x = 9 =
(

4 · 1
4

)
9 = 4

(
1
49
)

Therefore, by cancelling 4,
x = 1

4 · 9 = 9
4

11.3.2 Exponents
If a is an element of a group G, then we establish the notation that

a ∗ a = a2 a ∗ a ∗ a = a3 etc.

In addition, we allow negative exponents and define, for example,

a−2 =
(
a2)−1

Although this should be clear, proving exponentiation properties requires a
more precise recursive definition.

Definition 11.3.11 Exponentiation in Groups. For n ≥ 0, define an

recursively by a0 = e and if n > 0, an = an−1 ∗ a. Also, if n > 1, a−n = (an)−1.
♢

Example 11.3.12 Some concrete exponentiations.
(a) In the group of positive real numbers with multiplication,

53 = 52 · 5 =
(
51 · 5

)
· 5 =

((
50 · 5

)
· 5
)
· 5 = ((1 · 5) · 5) · 5 = 5 · 5 · 5 = 125

CHAPTER 11. ALGEBRAIC STRUCTURES 276

and
5−3 = (125)−1 = 1

125

(b) In a group with addition, we use a different form of notation, reflecting
the fact that in addition repeated terms are multiples, not powers. For
example, in [Z; +], a + a is written as 2a, a + a + a is written as 3a, etc.
The inverse of a multiple of a such as −(a + a + a + a + a) = −(5a) is
written as (−5)a.

□
Although we define, for example, a5 = a4 ∗ a, we need to be able to extract

the single factor on the left. The following lemma justifies doing precisely that.

Lemma 11.3.13 Let G be a group. If b ∈ G and n ≥ 0, then bn+1 = b ∗ bn,
and hence b ∗ bn = bn ∗ b.
Proof. (By induction): If n = 0,

b1 = b0 ∗ b by the definition of exponentiation
= e ∗ b by the basis for exponentiation
= b ∗ e by the identity property
= b ∗ b0 by the basis for exponentiation

Now assume the formula of the lemma is true for some n ≥ 0.

b(n+1)+1 = b(n+1) ∗ b by the definition of exponentiation
= (b ∗ bn) ∗ b by the induction hypothesis
= b ∗ (bn ∗ b) associativity
= b ∗

(
bn+1) definition of exponentiation

■
Based on the definitions for exponentiation above, there are several proper-

ties that can be proven. They are all identical to the exponentiation properties
from elementary algebra.

Theorem 11.3.14 Properties of Exponentiation. If a is an element of a
group G, and m and n are integers,

(1) a−n =
(
a−1)n and hence (an)−1 =

(
a−1)n

(2) an+m = an ∗ am

(3) (an)m = anm

Proof. We will leave the proofs of these properties to the reader. All three parts
can be done by induction. For example the proof of the second part would start
by defining the proposition p(m) , m ≥ 0, to be an+m = an ∗ am for all n. The
basis is p(0) : an+0 = an ∗ a0. ■

Our final theorem is the only one that contains a hypothesis about the
group in question. The theorem only applies to finite groups.

Theorem 11.3.15 If G is a finite group, |G| = n, and a is an element of G,
then there exists a positive integer m such that am = e and m ≤ n.
Proof. Consider the list a, a2, . . . , an+1 . Since there are n + 1 elements of G in
this list, there must be some duplication. Suppose that ap = aq, with p < q.

CHAPTER 11. ALGEBRAIC STRUCTURES 277

Let m = q − p. Then

am = aq−p

= aq ∗ a−p

= aq ∗ (ap)−1

= aq ∗ (aq)−1

= e

Furthermore, since 1 ≤ p < q ≤ n + 1, m = q − p ≤ n. ■
Consider the concrete group [Z; +]. All of the theorems that we have stated

in this section except for the last one say something about Z. Among the facts
that we conclude from the theorems about Z are:

• Since the inverse of 5 is −5, the inverse of −5 is 5.

• The inverse of −6 + 71 is −(71) +−(−6) = −71 + 6.

• The solution of 12 + x = 22 is x = −12 + 22.

• −4(6) + 2(6) = (−4 + 2)(6) = −2(6) = −(2)(6).

• 7(4(3)) = (7 · 4)(3) = 28(3) (twenty-eight 3s).

11.3.3 Exercises
1. Let [G; ∗] be a group and a be an element of G. Define f : G → G by

f(x) = a ∗ x.
(a) Prove that f is a bijection.

(b) On the basis of part a, describe a set of bijections on the set of
integers.

2. Rephrase Theorem 11.3.3 and write out a clear proof.
3. Prove by induction on n that if a1, a2, . . . , an are elements of a group G,

n ≥ 2, then (a1 ∗ a2 ∗ · · · ∗ an)−1 = a−1
n ∗ · · · ∗ a−1

2 ∗ a−1
1 . Interpret this

result in terms of [Z; +] and [R∗; ·].
4. True or false? If a, b, c are elements of a group G, and a ∗ b = c ∗ a, then

b = c. Explain your answer.
5. Prove Theorem 11.3.14.
6. Each of the following facts can be derived by identifying a certain group

and then applying one of the theorems of this section to it. For each fact,
list the group and the theorem that are used.

(a)
(1

3
)

5 is the only solution of 3x = 5.

(b) −(−(−18)) = −18.

(c) If A, B, C are 3×3 matrices over the real numbers, with A+B = A+C,
then B = C.

(d) There is only one subset K of the natural numbers for which K⊕A =
A for every subset A of the natural numbers.

CHAPTER 11. ALGEBRAIC STRUCTURES 278

11.4 Greatest Common Divisors and the Integers
Modulo n

In this section introduce the greatest common divisor operation, and introduce
an important family of concrete groups, the integers modulo n.

11.4.1 Greatest Common Divisors
We start with a theorem about integer division that is intuitively clear. We
leave the proof as an exercise.

Theorem 11.4.1 The Division Property for Integers. If m, n ∈ Z, n > 0,
then there exist two unique integers, q (the quotient) and r (the remainder),
such that m = nq + r and 0 ≤ r < n.
Note 11.4.2 The division property says that if m is divided by n, you will
obtain a quotient and a remainder, where the remainder is less than n. This is
a fact that most elementary school students learn when they are introduced to
long division. In doing the division problem 1986÷ 97, you obtain a quotient
of 20 and a remainder of 46. This result could either be written 1986

97 = 20 + 46
97

or 1986 = 97 · 20 + 46. The latter form is how the division property is normally
expressed in higher mathematics.

List 11.4.3

We now remind the reader of some interchangeable terminology that is
used when r = 0, i. e., a = bq. All of the following say the same thing,
just from slightly different points of view.

divides b divides a

multiple a is a multiple of b

factor b is a factor of a

divisor b is a divisor of a

We use the notation b | a if b divides a.

For example 2 | 18 and 9 | 18 , but 4 ∤ 18.
Caution: Don’t confuse the “divides” symbol with the “divided by” symbol.

The former is vertical while the latter is slanted. Notice however that the
statement 2 | 18 is related to the fact that 18/2 is a whole number.

Definition 11.4.4 Greatest Common Divisor. Given two integers, a and
b, not both zero, the greatest common divisor of a and b is the positive integer
g = gcd(a, b) such that g | a, g | b, and

c | a and c | b⇒ c | g

♢
A little simpler way to think of gcd(a, b) is as the largest positive integer

that is a divisor of both a and b. However, our definition is easier to apply in
proving properties of greatest common divisors.

For small numbers, a simple way to determine the greatest common divisor
is to use factorization. For example if we want the greatest common divisor of
660 and 350, you can factor the two integers: 660 = 22 ·3·5·11 and 350 = 2·52 ·7.
Single factors of 2 and 5 are the only ones that appear in both factorizations,
so the greatest common divisor is 2 · 5 = 10.

CHAPTER 11. ALGEBRAIC STRUCTURES 279

Some pairs of integers have no common divisors other than 1. Such pairs
are called relatively prime pairs.
Definition 11.4.5 Relatively Prime. A pair of integers, a and b, are
relatively prime if gcd(a, b) = 1 ♢

For example, 128 = 27 and 135 = 33 · 5 are relatively prime. Notice that
neither 128 nor 135 are primes. In general, a and b need not be prime in order
to be relatively prime. However, if you start with a prime, like 23, for example,
it will be relatively prime to everything but its multiples. This theorem, which
we prove later, generalizes this observation.

Theorem 11.4.6 If p is a prime and a is any integer such that p ∤ a then
gcd(a, p) = 1

11.4.2 The Euclidean Algorithm
As early as Euclid’s time it was known that factorization wasn’t the best way
to compute greatest common divisors.

The Euclidean Algorithm is based on the following properties of the greatest
common divisor.

gcd(a, 0) = a for a ̸= 0 (11.4.1)
gcd(a, b) = gcd(b, r) if b ̸= 0 and a = bq + r (11.4.2)

To compute gcd(a, b), we divide b into a and get a remainder r such that
0 ≤ r < |b|. By the property above, gcd(a, b) = gcd(b, r). We repeat the process
until we get zero for a remainder. The last nonzero number that is the second
entry in our pairs is the greatest common divisor. This is inevitable because
the second number in each pair is smaller than the previous one. Table 11.4.7
shows an example of how this calculation can be systematically performed.

Table 11.4.7 A Table to Compute gcd(99, 53)

q a b

- 99 53
1 53 46
1 46 7
6 7 4
1 4 3
1 3 1
3 1 0

Here is a Sage computation to verify that gcd(99, 53) = 1. At each line,
the value of a is divided by the value of b. The quotient is placed on the next
line along with the new value of a, which is the previous b; and the remainder,
which is the new value of b. Recall that in Sage, a%b is the remainder when
dividing b into a.

a=99
b=53
while b>0:

print('computing␣gcd␣of␣'+str(a)+'␣and␣'+str(b))
[a,b]=[b,a%b]

print('result␣is␣'+str(a))

CHAPTER 11. ALGEBRAIC STRUCTURES 280

computing gcd of 99 and 53
computing gcd of 53 and 46
computing gcd of 46 and 7
computing gcd of 7 and 4
computing gcd of 4 and 3
computing gcd of 3 and 1
result is 1

Investigation 11.4.1 If you were allowed to pick two integers less than 100,
which would you pick in order to force Euclid to work hardest? Here’s a hint:
The size of the quotient at each step determines how quickly the numbers
decrease.
Solution. If quotient in division is 1, then we get the slowest possible comple-
tion. If a = b + r, then working backwards, each remainder would be the sum
of the two previous remainders. This described a sequence like the Fibonacci
sequence and indeed, the greatest common divisor of two consecutive Fibonacci
numbers will take the most steps to reach a final value of 1.

For fixed values of a and b, consider integers of the form ax + by where x
and y can be any two integers. For example if a = 36 and b = 27, some of
these results are tabulated below with x values along the left column and the y
values on top.

Figure 11.4.8 Linear combinations of 36 and 27
Do you notice any patterns? What is the smallest positive value that you

see in this table? How is it connected to 36 and 27?
Theorem 11.4.9 Bézout’s lemma. If a and b are positive integers, the
smallest positive value of ax + by is the greatest common divisor of a and b,
gcd(a, b).
Proof. If g = gcd(a, b), since g | a and g | b, we know that g | (ax + by) for any
integers x and y, so ax + by can’t be less than g. To show that g is exactly the
least positive value, we show that g can be attained by extending the Euclidean
Algorithm. Performing the extended algorithm involves building a table of
numbers. The way in which it is built maintains an invariant, and by The
Invariant Relation Theorem, we can be sure that the desired values of x and y
are produced. ■

To illustrate the algorithm, Table 11.4.10 displays how to compute gcd(152, 53).
In the r column, you will find 152 and 53, and then the successive remainders
from division. So each number in r after the first two is the remainder after
dividing the number immediately above it into the next number up. To the left

CHAPTER 11. ALGEBRAIC STRUCTURES 281

of each remainder is the quotient from the division. In this case the third row
of the table tells us that 152 = 53 · 2 + 46. The last nonzero value in r is the
greatest common divisor.

Table 11.4.10 The extended Euclidean algorithm to compute gcd(152, 53)

q r s t

−− 152 1 0
−− 53 0 1
2 46 1 −2
1 7 −1 3
6 4 7 −20
1 3 −8 23
1 1 15 −43
3 0 −53 152

The “s” and “t” columns are new. The values of s and t in each row are
maintained so that 152s + 53t is equal to the number in the r column. Notice
that
Table 11.4.11 Invariant in computing gcd(152, 53)

152 = 152 · 1 + 53 · 0
53 = 152 · 0 + 53 · 1

46 = 152 · 1 + 53 · (−2)
...

1 = 152 · 15 + 53 · (−43)
0 = 152 · (−53) + 53 · 152

The next-to-last equation is what we’re looking for in the end! The main
problem is to identify how to determine these values after the first two rows.
The first two rows in these columns will always be the same. Let’s look at the
general case of computing gcd(a, b). If the s and t values in rows i− 1 and i− 2
are correct, we have

(A)
{

asi−2 + bti−2 = ri−2
asi−1 + bti−1 = ri−1

In addition, we know that

ri−2 = ri−1qi + ri ⇒ ri = ri−2 − ri−1qi

If you substitute the expressions for ri−1 and ri−2 from (A) into this last
equation and then collect the a and b terms separately you get

ri = a (si−2 − qisi−1) + b (ti−2 − qiti−1)

or
si = si−2 − qisi−1 and ti = ti−2 − qiti−1

Look closely at the equations for ri, si, and ti. Their forms are all the same.
With a little bit of practice you should be able to compute s and t values
quickly.

11.4.3 Modular Arithmetic
We remind you of the relation on the integers that we call Congruence Modulo
n. If two integers, a and b, differ by a multiple of n, we say that they are

CHAPTER 11. ALGEBRAIC STRUCTURES 282

congruent modulo n, denoted a ≡ b (mod n). For example, 13 ≡ 38 (mod 5)
because 13− 38 = −25, which is a multiple of 5.

Definition 11.4.12 Modular Addition. If n is a positive integer, we define
addition modulo n (+n) as follows. If a, b ∈ Z,

a +n b = the remainder after a + b is divided by n

♢

Definition 11.4.13 Modular Multiplication. If n is a positive integer, we
define multiplication modulo n (×n) as follows. If a, b ∈ Z,

a×n b = the remainder after a · b is divided by n

♢

Note 11.4.14
(a) The result of doing arithmetic modulo n is always an integer between

0 and n − 1, by the Division Property. This observation implies that
{0, 1, . . . , n− 1} is closed under modulo n arithmetic.

(b) It is always true that a +n b ≡ (a + b) (mod n) and a ×n b ≡ (a · b)
(mod n). For example, 4 +7 5 = 2 ≡ 9 (mod 7) and 4 ×7 5 = 6 ≡ 20
(mod 7).

(c) We will use the notation Zn to denote the set {0, 1, 2, ..., n − 1}. One
interpretation of this set is that each element is a representative of its
equivalence class with respect to congruence modula n. For example,
if n = 7, the number 1 in Z7 really represents all numbers in [1] =
1 + 7k : k ∈ Z. In doing modular arithmetic, we can temporarily replace
elements of Zn with other elements in their equivalence class modulo n.

Example 11.4.15 Some Examples.
(a) We are all somewhat familiar with Z12 since the hours of the day are

counted using this group, except for the fact that 12 is used in place of 0.
Military time uses the mod 24 system and does begin at 0. If someone
started a four-hour trip at hour 21, the time at which she would arrive is
21 +24 4 = 1. If a satellite orbits the earth every four hours and starts its
first orbit at hour 5, it would end its first orbit at time 5 +24 4 = 9. Its
tenth orbit would end at 5 +24 10×24 4 = 21 hours on the clock

(b) Virtually all computers represent unsigned integers in binary form with a
fixed number of digits. A very small computer might reserve seven bits
to store the value of an integer. There are only 27 different values that
can be stored in seven bits. Since the smallest value is 0, represented as
0000000, the maximum value will be 27− 1 = 127, represented as 1111111.
When a command is given to add two integer values, and the two values
have a sum of 128 or more, overflow occurs. For example, if we try to
add 56 and 95, the sum is an eight-digit binary integer 10010111. One
common procedure is to retain the seven lowest-ordered digits. The result
of adding 56 and 95 would be 0010111 two = 23 ≡ 56 + 95 (mod 128).
Integer arithmetic with this computer would actually be modulo 128
arithmetic.

□

CHAPTER 11. ALGEBRAIC STRUCTURES 283

11.4.4 Properties of Modular Arithmetic
Theorem 11.4.16 Additive Inverses in Zn. If a ∈ Zn, a ̸= 0, then the
additive inverse of a is n− a.
Proof. a+(n−a) = n ≡ 0(mod n), since n = n·1+0. Therefore, a+n(n−a) = 0.

■
Addition modulo n is always commutative and associative; 0 is the identity

for +n and every element of Zn has an additive inverse. These properties can
be summarized by noting that for each n ≥ 1, [Zn; +n] is a group.

Definition 11.4.17 The Additive Group of Integers Modulo n. The
Additive Group of Integers Modulo n is the group with domain {0, 1, 2, . . . , n−1}
and with the operation of mod n addition. It is denoted as Zn. ♢

Multiplication modulo n is always commutative and associative, and 1 is
the identity for ×n.

Notice that the algebraic properties of +n and ×n on Zn are identical to
the properties of addition and multiplication on Z.

Notice that a group cannot be formed from the whole set {0, 1, 2, . . . , n−
1} with mod n multiplication since zero never has a multiplicative inverse.
Depending on the value of n there may be other restrictions. The following
group will be explored in Exercise 9.

Definition 11.4.18 The Multiplicative Group of Integers Modulo
n. The Multiplicative Group of Integers Modulo n is the group with domain
{k ∈ Z|1 ≤ k ≤ n − 1 and gcd(n, k) = 1} and with the operation of mod n
multiplication. It is denoted as Un. ♢

Example 11.4.19 Some operation tables.
Here are examples of operation
tables for modular groups. No-
tice that although 8 is greater
than 5, the two groups U5 and
U8 both have order 4. In the
case of U5, since 5 is prime all of
the nonzero elements of Z5 are
included. Since 8 isn’t prime
we don’t include integers that
share a common factor with 8,
the even integers in this case.

Table 11.4.20 Operation Ta-
ble for the group Z5

+5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Table 11.4.21 Operation ta-
ble for the group U5

×5 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Table 11.4.22 Operation ta-
ble for the group U8

×8 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

□
Computing Modular Multiplicative Inverses. Unlike the nice neat formula

for additive inverses mod n, multiplicative inverses can most easily computed by
applying Bézout’s lemma. If a is an element of the group Un, then by definition
gcd(n, a) = 1, and so there exist integers s and t such that 1 = ns + at. They
can be computed with the Extended Euclidean Algorithm.

1 = ns + at⇒ at = 1 + (−s)n⇒ a×n t = 1

CHAPTER 11. ALGEBRAIC STRUCTURES 284

Since t might not be in Un you might need take the remainder after dividing it
by n. Normally, that involves simply adding n to t.

For example, in U2048, if we want the muliplicative inverse of 1001, we run
the Extended Euclidean Algorithm and find that

gcd(2048, 1001) = 1 = 457 · 2048 + (−935) · 1001

Thus, the multiplicative inverse of 1001 is 2048−935 = 1113. See the SageMath
Note below to see how to run the Extended Euclidean Algorithm.

11.4.5 SageMath Note - Modular Arithmetic
Sage inherits the basic integer division functions from Python that compute a
quotient and remainder in integer division. For example, here is how to divide
561 into 2017 and get the quotient and remainder.

a=2017
b=561
[q,r]=[a//b,a%b]
[q,r]

[3, 334]

In Sage, gcd is the greatest common divisor function. It can be used
in two ways. For the gcd of 2343 and 4319 we can evaluate the expression
gcd(2343, 4319). If we are working with a fixed modulus m that has a value
established in your Sage session, the expression m.gcd(k) to compute the
greatest common divisor of m and any integer value k. The extended Euclidean
algorithm can also be called upon with xgcd:

a=2017
b=561
print(gcd(a,b))
print(xgcd(a,b))

1
(1, -173, 622)

Sage has some extremely powerful tool for working with groups. The integers
modulo n are represented by the expression Integers(n) and the addition and
multiplications tables can be generated as follows.

R = Integers (6)
print(R.addition_table('elements '))
print(R.multiplication_table('elements '))

+ 0 1 2 3 4 5
+------------

0| 0 1 2 3 4 5
1| 1 2 3 4 5 0
2| 2 3 4 5 0 1
3| 3 4 5 0 1 2
4| 4 5 0 1 2 3
5| 5 0 1 2 3 4

* 0 1 2 3 4 5
+------------

CHAPTER 11. ALGEBRAIC STRUCTURES 285

0| 0 0 0 0 0 0
1| 0 1 2 3 4 5
2| 0 2 4 0 2 4
3| 0 3 0 3 0 3
4| 0 4 2 0 4 2
5| 0 5 4 3 2 1

Once we have assigned R a value of Integers(6), we can do calculations by
wrapping R() around the integers 0 through 5. Here is a list containing the
mod 6 sum and product, respectively, of 5 and 4:

[R(5)+R(4), R(5)*R(4)]

[3, 2]

Generating the multiplication table for the family of groups Un takes a bit
more code. Here we restrict the allowed inputs to be integers from 2 to 64.

def U_table(n):
if n.parent ()!=2. parent () or n < 2 or n > 64:

return "input␣error/out␣of␣range"
R=Integers(n)
els=[]
for k in filter(lambda k:gcd(n,k)==1, range(n)):

els=els+[str(k)]
return

R.multiplication_table(elements=els ,names="elements")

U_table (18)

* 1 5 7 11 13 17
+------------------

1| 1 5 7 11 13 17
5| 5 7 17 1 11 13
7| 7 17 13 5 1 11

11| 11 1 5 13 17 7
13| 13 11 1 17 7 5
17| 17 13 11 7 5 1

11.4.6 Exercises
1. Determine the greatest common divisors of the following pairs of integers

without using any computational assistance.
(a) 23 · 32 · 5 and 22 · 3 · 52 · 7

(b) 7! and 3 · 5 · 7 · 9 · 11 · 13

(c) 194 and 195

(d) 12112 and 0
2. Find all possible values of the following, assuming that m is a positive

integer.
(a) gcd(m + 1, m)

(b) gcd(m + 2, m)

(c) gcd(m + 4, m)

CHAPTER 11. ALGEBRAIC STRUCTURES 286

3. Calculate:
(a) 7 +8 3

(b) 7×8 3

(c) 4×8 4

(d) 10 +12 2

(e) 6×8 2 +8 6×8 5

(f) 6×8 (2 +8 5)

(g) 3×5 3×5 3×5 3 ≡ 34(mod5)

(h) 2×11 7

(i) 2×14 7
4. List the additive inverses of the following elements:

(a) 4, 6, 9 in Z10

(b) 16, 25, 40 in Z50

5. In the group Z11 , what are:
(a) 3(4)?

(b) 36(4)?

(c) How could you efficiently compute m(4), m ∈ Z?
6. Prove that {1, 2, 3, 4} is a group under the operation ×5.
7. A student is asked to solve the following equations under the requirement

that all arithmetic should be done in Z2. List all solutions.
(a) x2 + 1 = 0.

(b) x2 + x + 1 = 0.
8. Determine the solutions of the same equations as in Exercise 5 in Z5.
9.

(a) Write out the operation table for ×8 on {1, 3, 5, 7}, and convince
your self that this is a group.

(b) Let Un be the elements of Zn that have inverses with respect to ×n.
Convince yourself that Un is a group under ×n.

(c) Prove that the elements of Un are those elements a ∈ Zn such that
gcd(n, a) = 1. You may use Theorem 11.4.9 in this proof.

10. Prove the division property, Theorem 11.4.1.
Hint. Prove by induction on m that you can divide any positive integer
into m. That is, let p(m) be “For all n greater than zero, there exist unique
integers q and r such that” In the induction step, divide n into m−n.

11. Suppose f : Z17 → Z17 such f(i) = a×17 i +17 b where a and b are integer
constants. Furthermore, assume that f(1) = 11 and f(2) = 4. Find a
formula for f(i) and also find a formula for the inverse of f .

12. Write out the operation table for mod 10 multiplication on T = {0, 2, 4, 6, 8}.
Is [T ;×10] a monoid? Is it a group?

13. Given that 1 = 2021 · (−169) + 450 · 759, explain why 450 is an element of
the group U2021 and determine its inverse in that group.

14. Let n = 2021. Solve 450×n x = 321 for x in the group Un

15. Let p be an odd prime. Find all solutions to the equation x2 = x×n x = 1
in the group Up.

16. It was observed above that in doing modular arithmetic, one can replace
an element of Zn with any other element of its equivalence class modulo n.
For example, if one is computing 452×461 7, the alternative to multiplying

CHAPTER 11. ALGEBRAIC STRUCTURES 287

452 time 7 and then dividing by 461 to get the remainder in Z461, we can
replace 452 with −9 and get a product of −63 which is conguent of 398.
Use this “trick” to compute the following without the use of a calculator.

(a) 898×1001 998

(b) 7710 mod 81

(c) The solution to 196×197 x = 120

11.5 Subsystems

11.5.1 Definition
The subsystem is a fundamental concept of algebra at the universal level.

Definition 11.5.1 Subsystem. If [V ; ∗1, . . . , ∗n] is an algebraic system of a
certain kind and W is a subset of V , then W is a subsystem of V if [W ; ∗1, . . . , ∗n]
is an algebraic system of the same kind as V . The usual notation for “W is a
subsystem of V ” is W ≤ V . ♢

Since the definition of a subsystem is at the universal level, we can cite
examples of the concept of subsystems at both the axiomatic and concrete level.

Example 11.5.2 Examples of Subsystems.
(a) (Axiomatic) If [G; ∗] is a group, and H is a subset of G, then H is a

subgroup of G if [H; ∗] is a group.

(b) (Concrete) U = {−1, 1} is a subgroup of [R∗; ·]. Take the time now to
write out the multiplication table of U and convince yourself that [U ; ·] is
a group.

(c) (Concrete) The even integers, 2Z = {2k : k is an integer} is a subgroup
of [Z; +]. Convince yourself of this fact.

(d) (Concrete) The set of nonnegative integers is not a subgroup of [Z; +].
All of the group axioms are true for this subset except one: no positive
integer has a positive additive inverse. Therefore, the inverse property is
not true. Note that every group axiom must be true for a subset to be a
subgroup.

(e) (Axiomatic) If M is a monoid and P is a subset of M , then P is a
submonoid of M if P is a monoid.

(f) (Concrete) If B∗ is the set of strings of 0’s and 1’s of length zero or more
with the operation of concatenation, then two examples of submonoids
of B∗ are: (i) the set of strings of even length, and (ii) the set of strings
that contain no 0’s. The set of strings of length less than 50 is not a
submonoid because it isn’t closed under concatenation. Why isn’t the set
of strings of length 50 or more a submonoid of B∗?

□

11.5.2 Subgroups
For the remainder of this section, we will concentrate on the properties of
subgroups. The first order of business is to establish a systematic way of
determining whether a subset of a group is a subgroup.

CHAPTER 11. ALGEBRAIC STRUCTURES 288

Theorem 11.5.3 Subgroup Conditions. To determine whether H, a subset
of group [G; ∗], is a subgroup, it is sufficient to prove:

(a) H is closed under ∗; that is, a, b ∈ H ⇒ a ∗ b ∈ H;

(b) H contains the identity element for ∗; and

(c) H contains the inverse of each of its elements; that is, a ∈ H ⇒ a−1 ∈ H.
Proof. Our proof consists of verifying that if the three properties above are true,
then all the axioms of a group are true for [H; ∗]. By Condition (a), ∗ can be
considered an operation on H. The associative, identity, and inverse properties
are the axioms that are needed. The identity and inverse properties are true
by conditions (b) and (c), respectively, leaving only the associative property.
Since, [G; ∗] is a group, a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G. Certainly, if
this equation is true for all choices of three elements from G, it will be true for
all choices of three elements from H, since H is a subset of G. ■

For every group with at least two elements, there are at least two subgroups:
they are the whole group and {e}. Since these two are automatic, they are not
considered very interesting and are called the improper subgroups of the group;
{e} is sometimes referred to as the trivial subgroup. All other subgroups, if
there are any, are called proper subgroups.

We can apply Theorem 11.5.3 at both the concrete and axiomatic levels.

Example 11.5.4 Applying Conditions for a Subgroup.
(a) (Concrete) We can verify that 2Z ≤ Z, as stated in Example 11.5.2.

Whenever you want to discuss a subset, you must find some convenient
way of describing its elements. An element of 2Z can be described as 2
times an integer; that is, a ∈ 2Z is equivalent to (∃k)Z(a = 2k). Now
we can verify that the three conditions of Theorem 11.5.3 are true for
2Z. First, if a, b ∈ 2Z, then there exist j, k ∈ Z such that a = 2j and
b = 2k. A common error is to write something like a = 2j and b = 2j.
This would mean that a = b, which is not necessarily true. That is why
two different variables are needed to describe a and b. Returning to our
proof, we can add a and b: a + b = 2j + 2k = 2(j + k). Since j + k is
an integer, a + b is an element of 2Z. Second, the identity, 0, belongs
to 2Z (0 = 2(0)). Finally, if a ∈ 2Z and a = 2k,−a = −(2k) = 2(−k),
and −k ∈ Z, therefore, −a ∈ 2Z. By Theorem 11.5.3, 2Z ≤ Z. How
would this argument change if you were asked to prove that 3Z ≤ Z? or
nZ ≤ Z, n ≥ 2?

(b) (Concrete) We can prove that H = {0, 3, 6, 9} is a subgroup of Z12. First,
for each ordered pair (a, b) ∈ H ×H, a +12 b is in H. This can be checked
without too much trouble since |H ×H| = 16. Thus we can conclude that
H is closed under +12. Second, 0 ∈ H. Third, −0 = 0, −3 = 9, −6 = 6,
and −9 = 3. Therefore, the inverse of each element of H is in H.

(c) (Axiomatic) If H and K are both subgroups of a group G, then H∩K is a
subgroup of G. To justify this statement, we have no concrete information
to work with, only the facts that H ≤ G and K ≤ G. Our proof that
H ∩K ≤ G reflects this and is an exercise in applying the definitions of
intersection and subgroup, (i) If a and b are elements of H ∩K, then a
and b both belong to H, and since H ≤ G, a ∗ b must be an element of H.
Similarly, a ∗ b ∈ K; therefore, a ∗ b ∈ H ∩K. (ii) The identity of G must
belong to both H and K; hence it belongs to H ∩K. (iii) If a ∈ H ∩K,
then a ∈ H, and since H ≤ G, a−1 ∈ H. Similarly, a−1 ∈ K. Hence, by
the theorem, H ∩K ≤ G. Now that this fact has been established, we

CHAPTER 11. ALGEBRAIC STRUCTURES 289

can apply it to any pair of subgroups of any group. For example, since
2Z and 3Z are both subgroups of [Z; +], 2Z ∩ 3Z is also a subgroup of Z.
Note that if a ∈ 2Z ∩ 3Z, a must have a factor of 3; that is, there exists
k ∈ Z such that a = 3k. In addition, a must be even, therefore k must
be even. There exists j ∈ Z such that k = 2j, therefore a = 3(2j) = 6j.
This shows that 2Z ∩ 3Z ⊆ 6Z. The opposite containment can easily be
established; therefore, 2Z ∩ 3Z = 6Z.

□
Given a finite group, we can apply Theorem 11.3.15 to obtain a simpler

condition for a subset to be a subgroup.

Theorem 11.5.5 Condition for a Subgroup of Finite Group. Given
that [G; ∗] is a finite group and H is a nonempty subset of G, if H is closed
under ∗ , then H is a subgroup of G.
Proof. In this proof, we demonstrate that Conditions (b) and (c) of Theo-
rem 11.5.3 follow from the closure of H under ∗, which is condition (a) of the
theorem. First, select any element of H; call it β. The powers of β : β1, β2,
β3, . . . are all in H by the closure property. By Theorem 11.3.15, there exists
m, m ≤ |G|, such that βm = e; hence e ∈ H. To prove that (c) is true, we let a
be any element of H. If a = e, then a−1 is in H since e−1 = e. If a ̸= e, aq = e
for some q between 2 and |G| and

e = aq = aq−1 ∗ a

Therefore, a−1 = aq−1 , which belongs to H since q − 1 ≥ 1. ■

11.5.3 Sage Note - Applying the condition for a subgroup
of a finite group

To determine whether H1 = {0, 5, 10} and H2 = {0, 4, 8, 12} are subgroups of
Z15, we need only write out the addition tables (modulo 15) for these sets. This
is easy to do with a bit of Sage code that we include below and then for any
modulus and subset, we can generate the body of an addition table. The code
is set up for H1 but can be easily adjusted for H2.

def addition_table(n,H):
for a in H:

line =[]
for b in H:

line +=[(a+b)%n]
print(line)

addition_table (15,Set ([0 ,5 ,10]))

[0, 10, 5]
[10, 5, 0]
[5, 0, 10]

Note that H1 is a subgroup of Z15. Since the interior of the addition table
for H2 contains elements that are outside of H2, H2 is not a subgroup of Z15.

11.5.4 Cyclic Subgroups
One kind of subgroup that merits special mention due to its simplicity is the
cyclic subgroup.

CHAPTER 11. ALGEBRAIC STRUCTURES 290

Definition 11.5.6 Cyclic Subgroup. If G is a group and a ∈ G, the cyclic
subgroup generated by a, ⟨a⟩, is the set of all powers of a:

⟨a⟩ = {an : n ∈ Z} .

We refer to a as a generator of subgroup ⟨a⟩.
A subgroup H of a group G is cyclic if there exists a ∈ H such that H = ⟨a⟩.

♢

Definition 11.5.7 Cyclic Group. A group G is cyclic if there exists β ∈ G
such that ⟨β⟩ = G. ♢

Note 11.5.8 If the operation on G is additive, then ⟨a⟩ = {(n)a : n ∈ Z}.

Definition 11.5.9 Order of a Group Element. The order of an element a
of group G is the number of elements in the cyclic subgroup of G generated by
a. The order of a is denoted ord(a). ♢

Example 11.5.10
(a) In [R∗; ·], ⟨2⟩ = {2n : n ∈ Z} =

{
. . . , 1

16 , 1
8 , 1

4 , 1
2 , 1, 2, 4, 8, 16, . . .

}
.

(b) In Z15, ⟨6⟩ = {0, 3, 6, 9, 12}. Here is why: If G is finite, you need list only
the positive powers (or multiples) of a up to the first occurrence of the
identity to obtain all of ⟨a⟩. In Z15 , the multiples of 6 are 6, (2)6 = 12,
(3)6 = 3, (4)6 = 9, and (5)6 = 0. Note that {0, 3, 6, 9, 12} is also ⟨3⟩,⟨9⟩,
and ⟨12⟩. This shows that a cyclic subgroup can have different generators.

□
If you want to list the cyclic subgroups of a group, the following theorem

can save you some time.

Theorem 11.5.11 If a is an element of group G, then ⟨a⟩ = ⟨a−1⟩.
This is an easy way of seeing, for example, that ⟨9⟩ in Z15 equals ⟨6⟩, since

−6 = 9.

11.5.5 Exercises
1. Which of the following subsets of the real numbers is a subgroup of [R; +]?

(a) the rational numbers

(b) the positive real numbers

(c) {k/2 | k is an integer}

(d) {2k | k is an integer}

(e) {x | −100 ≤ x ≤ 100}
2. Describe in simpler terms the following subgroups of Z:

(a) 5Z ∩ 4Z

(b) 4Z ∩ 6Z (be careful)

(c) the only finite subgroup of Z
3. Find at least two proper subgroups of R3 , the set of 3× 3 rook matrices

(see Exercise 11.2.4.5).
4. Let H and K be subgroups of G with elements a, x, y ∈ G located in the

following Venn diagram. Where should you place the following elements
in Figure 11.5.12?

CHAPTER 11. ALGEBRAIC STRUCTURES 291

(a) e

(b) a−1

(c) x ∗ y

Figure 11.5.12 Figure for exercise 4
5.

(a) List the cyclic subgroups of Z6 and draw an ordering diagram for
the relation “is a subset of” on these subgroups.

(b) Do the same for Z12.

(c) Do the same for Z8.

(d) On the basis of your results in parts a, b, and c, what would you
expect if you did the same with Z24?

6. Subgroups generated by subsets of a group. The concept of a
cyclic subgroup is a special case of the concept that we will discuss here.
Let [G; ∗] be a group and S a nonempty subset of G. Define the set ⟨S⟩
recursively by:

• If a ∈ S, then a ∈ ⟨S⟩.

• If a, b ∈ ⟨S⟩, then a ∗ b ∈ ⟨S⟩, and

• If a ∈ ⟨S⟩, then a−1 ∈ ⟨S⟩.

(a) By its definition, ⟨S⟩ has all of the properties needed to be a subgroup
of G. The only thing that isn’t obvious is that the identity of G is
in ⟨S⟩. Prove that the identity of G is in ⟨S⟩.

(b) What is ⟨{9, 15}⟩ in[Z; +]?

(c) Prove that if H ≤ G and S ⊆ H, then ⟨S⟩ ≤ H. This proves that
⟨S⟩ is contained in every subgroup of G that contains S; that is,
⟨S⟩ = ∩

S⊆H,H≤G
H.

(d) Describe ⟨{0.5, 3}⟩ in [R+; ·] and in [R; +].

(e) If j, k ∈ Z, ⟨{j, k}⟩ is a cyclic subgroup of Z. In terms of j and k,
what is a generator of ⟨{j, k}⟩?

7. Prove that if H, K ≤ G, and H ∪K = G, then H = G or K = G.
Hint. Use an indirect argument.

8. Prove that the order of an element, a of a group is the least positive integer,
k, such that ak is the identity of the group.

CHAPTER 11. ALGEBRAIC STRUCTURES 292

11.6 Direct Products

11.6.1 Definition
Our second universal algebraic concept lets us look in the opposite direction
from subsystems. Direct products allow us to create larger systems. In the
following definition, we avoid complicating the notation by not specifying how
many operations the systems have.

Definition 11.6.1 Direct Product. If [Vi; ∗i, ⋄i, . . .], i = 1, 2, . . . , n are
algebraic systems of the same kind, then the direct product of these systems is
V = V1 × V2 × · · · × Vn , with operations defined below. The elements of V are
n-tuples of the form (a1, a2, . . . , an), where ak ∈ Vk, k = 1, . . . , n. The systems
V1, V2, . . . , Vn are called the factors of V . There are as many operations on V
as there are in the factors. Each of these operations is defined componentwise:

If (a1, a2, ..., an) , (b1, b2, ..., bn) ∈ V ,

(a1, a2, . . . , an) ∗ (b1, b2, . . . , bn) = (a1 ∗1 b1, a2 ∗2 b2, . . . , an ∗n bn)
(a1, a2, . . . , an) ⋄ (b1, b2, . . . , bn) = (a1 ⋄1 b1, a2 ⋄2 b2, . . . , an ⋄n bn)

etc.

♢

Example 11.6.2 A Direct Product of Monoids. Consider the monoids N
(the set of natural numbers with addition) and B∗ (the set of finite strings of
0’s and 1’s with concatenation). The direct product of N with B∗ is a monoid.
We illustrate its operation, which we will denote by ∗, with examples:

(4, 001) ∗ (3, 11) = (4 + 3, 001 + 11) = (7, 00111)
(0, 11010) ∗ (3, 01) = (3, 1101001)

(0, λ) ∗ (129, 00011) = (0 + 129, λ + 00011) = (129, 00011)
(2, 01) ∗ (8, 10) = (10, 0110), and

(8, 10) ∗ (2, 01) = (10, 1001)

Note that our new monoid is not commutative. What is the identity for ∗ ? □
The definiton of a Direct Product is quite general and may be confusing to

some. Here is the definiton of the direct product of two groups. The definition
extends easily to the direct product of three or more groups.

Definition 11.6.3 Direct Product of Two Groups. Let [G1; ∗1] and
[G2; ∗2] be two groups. Their direct product is the system [G1 × G2; ∗] with
domain equal to the Cartesian product of the domains of the two groups and
with the coordinatewise operation ∗ defined by

(a1, b1) ∗ (a2, b2) = (a1 ∗1 a2, b1 ∗2 b2)

for (a1, b1), (a2, b2) ∈ G1 ×G2. ♢

CHAPTER 11. ALGEBRAIC STRUCTURES 293

Figure 11.6.4 Concurrent calculation in a direct product

Note 11.6.5
(a) On notation. If two or more consecutive factors in a direct product are

identical, it is common to combine them using exponential notation. For
example, Z× Z× R can be written Z2 × R, and R× R× R× R can be
written R4. This is purely a notational convenience; no exponentiation is
really taking place.

(b) We call the operations in a direct product componentwise operations,
and they are indeed operations on V . If two n-tuples, a and b, are selected
from V , the first components of a and b, a1 and b1, are operated on with
∗1 to obtain a1 ∗1 b1, the first component of a ∗ b. Note that since ∗1
is an operation on V1, a1 ∗1 b1 is an element of V1. Similarly, all other
components of a ∗ b, as they are defined, belong to their proper sets.

(c) One significant fact about componentwise operations is that the compo-
nents of the result can all be computed at the same time (concurrently).
The time required to compute in a direct product can be reduced to a
length of time that is not much longer than the maximum amount of time
needed to compute in the factors.

(d) A direct product of algebraic systems is not always an algebraic system of
the same type as its factors. This is due to the fact that certain axioms
that are true for the factors may not be true for the set of n-tuples. This
situation does not occur with groups however. You will find that whenever
a new type of algebraic system is introduced, call it type T , one of the
first theorems that is usually proven, if possible, is that the direct product
of two or more systems of type T is a system of type T .

11.6.2 Direct Products of Groups
We will explore properties of direct products of groups and examine some
concrete examples

Theorem 11.6.6 The Direct Product of Groups is a Group. The direct
product of two or more groups is a group; that is, the algebraic properties of a
system obtained by taking the direct product of two or more groups includes the
group axioms.
Proof. We will only present the proof of this theorem for the direct product
of two groups. Some slight revisions can be made to produce a proof for any
number of factors.

Stating that the direct product of two groups is a group is a short way of
saying that if [G1; ∗1] and [G2; ∗2] are groups, then [G1 ×G2; ∗] is also a group,
where ∗ is the componentwise operation on G1 × G2. Associativity of ∗ : If

CHAPTER 11. ALGEBRAIC STRUCTURES 294

a, b, c ∈ G1 ×G2,

a ∗ (b ∗ c) = (a1, a2) ∗ ((b1, b2) ∗ (c1, c2))
= (a1, a2) ∗ (b1 ∗1 c1, b2 ∗2 c2)
= (a1 ∗1 (b1 ∗1 c1) , a2 ∗2 (b2 ∗2 c2))
= ((a1 ∗1 b1) ∗1 c1, (a2 ∗2 b2) ∗2 c2)
= (a1 ∗1 b1, a2 ∗2 b2) ∗ (c1, c2)
= ((a1, a2) ∗ (b1, b2)) ∗ (c1, c2)
= (a ∗ b) ∗ c

Notice how the associativity property hinges on the associativity in each factor.
An identity for ∗: As you might expect, if e1 and e2 are identities for G1 and
G2, respectively, then e = (e1, e2) is the identity for G1 ×G2. If a ∈ G1 ×G2,

a ∗ e = (a1, a2) ∗ (e1, e2)
= (a1 ∗1 e1, a2 ∗2 e2)
= (a1, a2) = a

Similarly, e ∗ a = a.
Inverses in G1×G2: The inverse of an element is determined componentwise

a−1 = (a1, a2) −1 =
(
a1

−1, a2
−1). To verify, we compute a ∗ a−1 :

a ∗ a−1 = (a1, a2) ∗
(
a1

−1, a2
−1)

=
(
a1 ∗1 a1

−1, a2 ∗2 a2
−1)

= (e1, e2) = e

Similarly, a−1 ∗ a = e. ■

Example 11.6.7 Some New Groups.
(a) If n ≥ 2, Z2

n , the direct product of n factors of Z2, is a group with
2n elements. We will take a closer look at Z2

3 = Z2 × Z2 × Z2. The
elements of this group are triples of zeros and ones. Since the operation
on Z2 is +2, we will use the symbol + for the operation on Z2

3 . Two
of the eight triples in the group are a = (1, 0, 1) and b = (0, 0, 1). Their
“sum” is a + b = (1 +2 0, 0 +2 0, 1 +2 1) = (1, 0, 0). One interesting fact
about this group is that each element is its own inverse. For example
a + a = (1, 0, 1) + (1, 0, 1) = (0, 0, 0); therefore −a = a. We use the
additive notation for the inverse of a because we are using a form of
addition. Note that {(0, 0, 0), (1, 0, 1)} is a subgroup of Z2

3. Write out
the “addition” table for this set and apply Theorem 11.5.5. The same can
be said for any set consisting of (0, 0, 0) and another element of Z2

3.

(b) The direct product of the positive real numbers with the integers modulo
4, R+ × Z4 is an infinite group since one of its factors is infinite. The
operations on the factors are multiplication and modular addition, so we
will select the neutral symbol ⋄ for the operation on R+×Z4. If a = (4, 3)
and b = (0.5, 2), then

a ⋄ b = (4, 3) ⋄ (0.5, 2) = (4 · 0.5, 3 +4 2) = (2, 1)
b2 = b ⋄ b = (0.5, 2) ⋄ (0.5, 2) = (0.25, 0)

a−1 =
(
4−1,−3

)
= (0.25, 1)

b−1 =
(
0.5−1,−2

)
= (2, 2)

It would be incorrect to say that Z4 is a subgroup of R+ × Z4 , but

CHAPTER 11. ALGEBRAIC STRUCTURES 295

there is a subgroup of the direct product that closely resembles Z4. It is
{(1, 0), (1, 1), (1, 2), (1, 3)}. Its table is

⋄ (1, 0) (1, 1) (1, 2) (1, 3)
(1, 0) (1, 0) (1, 1) (1, 2) (1, 3)
(1, 1) (1, 1) (1, 2) (1, 3) (1, 0)
(1, 2) (1, 2) (1, 3) (1, 0) (1, 1)
(1, 3) (1, 3) (1, 0) (1, 1) (1, 2)

Imagine erasing (1,) throughout the table and writing +4 in place of ⋄.
What would you get? We will explore this phenomenon in detail in the
next section.
The whole direct product could be visualized as four parallel half-lines
labeled 0, 1, 2, and 3 as in Figure 11.6.8. On the kth line, the point
that lies x units to the right of the zero mark would be (x, k). The set
{(2n, (n)1) | n ∈ Z}, which is depicted on the figure is a subgroup of
R+ × Z4. What cyclic subgroup is it?
The answer: ⟨(2, 1)⟩ or ⟨(1/2, 3)⟩. There are two different generators.

Figure 11.6.8 Visualization of the group R+ × Z4

□
A more conventional direct product is R2, the direct product of two factors

of [R; +]. The operation on R2 is componentwise addition; hence we will use
+ as the operation symbol for this group. You should be familiar with this
operation, since it is identical to addition of 2 × 1 matrices. The Cartesian
coordinate system can be used to visualize R2 geometrically. We plot the pair
(s, t) on the plane in the usual way: s units along the x axis and t units along
the y axis. There is a variety of different subgroups of R2 , a few of which are:

(a) {(x, 0) | x ∈ R}, all of the points on the x axis;

(b) {(x, y) | 2x− y = 0}, all of the points that are on the line 2x - y = 0;

(c) If a, b ∈ R, {(x, y) | ax + by = 0}. The first two subgroups are special
cases of this one, which represents any line that passes through the origin.

(d) {(x, y) | 2x− y = k, k ∈ Z}, a union of a set of lines that are parallel to
2x− y = 0.

(e) {(n, 3n) | n ∈ Z}, which is the only countable subgroup that we have
listed.

CHAPTER 11. ALGEBRAIC STRUCTURES 296

We will leave it to the reader to verify that these sets are subgroups. We
will only point out how the fourth example, call it H, is closed under “addition.”
If a = (p, q) and b = (s, t) and both belong to H, then 2p−q = j and 2s− t = k,
where both j and k are integers. a + b = (p, q) + (s, t) = (p + s, q + t) We can
determine whether a+b belongs to H by deciding whether or not 2(p+s)−(q+t)
is an integer:

2(p + s)− (q + t) = 2p + 2s− q − t

= (2p− q) + (2s− t)
= j + k

Since j and k are integers, so is j + k. This completes a proof that H is closed
under the operation of R2.

Several useful facts can be stated in regards to the direct product of two
or more groups. We will combine them into one theorem, which we will
present with no proof. Parts a and c were derived for n = 2 in the proof of
Theorem 11.6.6.
Theorem 11.6.9 Properties of Direct Products of Groups. If G =
G1 × G2 × · · · × Gn is a direct product of n groups and (a1, a2, . . . , an) ∈ G,
then:

(a) The identity of G is (e1, e2, ..., en), where ek is the identity of Gk.

(b) (a1, a2, ..., an) −1 =
(
a1

−1, a2
−1, ..., an

−1).
(c) (a1, a2, ..., an) m = (a1

m, a2
m, ..., an

m) for all m ∈ Z.

(d) G is abelian if and only if each of the factors G1, G2, . . . , Gn is abelian.

(e) lf H1, H2, . . . , Hn are subgroups of the corresponding factors, then H1 ×
H2 × · · · ×Hn is a subgroup of G.

Not all subgroups of a direct product can be created using part e of The-
orem 11.6.9. For example, {(n, n) | n ∈ Z} is a subgroup of Z2, but is not a
direct product of two subgroups of Z.

Example 11.6.10 Linked Lists using a Direct Product - XOR Linked
Lists. Using the identity (x + y) + x = y, in Z2, we can devise a scheme for
representing a symmetrically linked list using only one link field. A symmetri-
cally linked list is a list in which each node contains a pointer to its immediate
successor and its immediate predecessor (see Figure 11.6.11). If the pointers
are n-digit binary addresses, then each pointer can be taken as an element
of Z2

n. Lists of this type can be accomplished using cells with only one link.
In place of a left and a right pointer, the only “link” is the value of the sum
(left link) + (right link). All standard list operations (merge, insert, delete,
traverse, and so on) are possible with this structure, provided that you know
the value of the nil pointer and the address, f , of the first (i. e., leftmost)
cell. Since first f. left is nil, we can recover f. right by adding the value of nil:
f + nil = (nil + f.right) + nil = f.right, which is the address of the second
item. Now if we temporarily retain the address, s, of the second cell, we can
recover the address of the third item. The link field of the second item contains
the sum s. left + s. right = first + third. Therefore

(first + third) + first = s + s.left
= (s.left + s.right) + s.left
= s.right
= third

CHAPTER 11. ALGEBRAIC STRUCTURES 297

We no longer need the address of the first cell, only the second and third,
to recover the fourth address, and so forth.

Figure 11.6.11 Symmetric Linked Lists
The following more formal algorithm uses names that reflects the timing of

the visits.
Given a symmetric list, a traversal of the list is accomplished as follows,

where first is the address of the first cell. We presume that each item has some
information that is represented by item.info and a field called item.link that is
the sum of the left and right links.

Table 11.6.12

(1) yesterday =nil
(2) today =first
(3) while today ̸= nil:

(3.1)Write(today.info)
(3.2)tomorrow = today.link + yesterday
(3.3)yesterday = today
(3.4)today = tomorrow.

At any point in this algorithm it would be quite easy to insert a cell between
today and tomorrow. Can you describe how this would be accomplished?

This implementation of doubly linked lists is often referred to as an XOR
linked list. For more information see the Wikipedia page en.wikipedia.org/

wiki/XOR_linked_list. □

11.6.3 Exercises
1. Write out the group table of Z2 × Z3 and find the two proper subgroups

of this group.
2. List more examples of proper subgroups of R2 that are different from the

ones listed in this section.
3. Algebraic properties of the n-cube.

(a) The four elements of Z2
2 can be visualized geometrically as the four

corners of the 2-cube. Algebraically describe the statements:

(i) Corners a and b are adjacent.
(ii) Corners a and b are diagonally opposite one another.

(b) The eight elements of Z2
3 can be visualized as the eight corners

of the 3-cube. One face contains Z2 × Z2 × {0} and the opposite

https://en.wikipedia.org/wiki/XOR_linked_list
https://en.wikipedia.org/wiki/XOR_linked_list

CHAPTER 11. ALGEBRAIC STRUCTURES 298

face contains the remaining four elements so that (a, b, 1) is behind
(a, b, 0). As in part a, describe statements i and ii algebraically.

(c) If you could imagine a geometric figure similar to the square or cube
in n dimensions, and its corners were labeled by elements of Z2

n

as in parts a and b, how would statements i and ii be expressed
algebraically?

4.
(a) Suppose that you were to be given a group [G; ∗] and asked to

solve the equation x ∗ x = e. Without knowing the group, can you
anticipate how many solutions there will be?

(b) Answer the same question as part a for the equation x ∗ x = x.
5. Which of the following sets are subgroups of Z× Z? Give a reason for any

negative answers.
(a) {0}

(b) {(2j, 2k) | j, k ∈ Z}

(c) {(2j + 1, 2k) | j, k ∈ Z}

(d) {(n, n2) | n ∈ Z}

(e) {(j, k) | j + k is even}
6. Determine the following values in the group Z3 × R∗:

(a) (2, 1) ∗ (1, 2)

(b) the identity element

(c) (1, 1/2)−1

11.7 Isomorphisms
The following informal definition of isomorphic systems should be memorized.
No matter how technical a discussion about isomorphic systems becomes, keep
in mind that this is the essence of the concept.

Definition 11.7.1 Isomorphic Systems/Isomorphism - Informal Ver-
sion. Two algebraic systems are isomorphic if there exists a translation rule
between them so that any true statement in one system can be translated to a
true statement in the other. ♢

Example 11.7.2 How to Do Greek Arithmetic. Imagine that you are
a six-year-old child who has been reared in an English-speaking family, has
moved to Greece, and has been enrolled in a Greek school. Suppose that your
new teacher asks the class to do the following addition problem that has been
written out in Greek.

τρία συν τ ϵ́σσερα ισoύται ____

The natural thing for you to do is to take out your Greek-English/English-Greek
dictionary and translate the Greek words to English, as outlined in Figure 11.7.3
After you’ve solved the problem, you can consult the same dictionary to find
the proper Greek word that the teacher wants. Although this is not the
recommended method of learning a foreign language, it will surely yield the
correct answer to the problem. Mathematically, we may say that the system

CHAPTER 11. ALGEBRAIC STRUCTURES 299

of Greek integers with addition (συν) is isomorphic to English integers with
addition (plus). The problem of translation between natural languages is more
difficult than this though, because two complete natural languages are not
isomorphic, or at least the isomorphism between them is not contained in a
simple dictionary.

Figure 11.7.3 Solution of a Greek arithmetic problem
□

Example 11.7.4 Software Implementation of Sets. In this example, we
will describe how set variables can be implemented on a computer. We will
describe the two systems first and then describe the isomorphism between them.

System 1: The power set of {1, 2, 3, 4, 5} with the operation union, ∪. For
simplicity, we will only discuss union. However, the other operations are
implemented in a similar way.

System 2: Strings of five bits of computer memory with an OR gate.
Individual bit values are either zero or one, so the elements of this system can
be visualized as sequences of five 0’s and 1’s. An OR gate, Figure 11.7.5, is a
small piece of computer hardware that accepts two bit values at any one time
and outputs either a zero or one, depending on the inputs. The output of an
OR gate is one, except when the two bit values that it accepts are both zero, in
which case the output is zero. The operation on this system actually consists
of sequentially inputting the values of two bit strings into the OR gate. The
result will be a new string of five 0’s and 1’s. An alternate method of operating
in this system is to use five OR gates and to input corresponding pairs of bits
from the input strings into the gates concurrently.

Figure 11.7.5 Translation between sets and strings of bits
The Isomorphism: Since each system has only one operation, it is clear that

union and the OR gate translate into one another. The translation between
sets and bit strings is easiest to describe by showing how to construct a set
from a bit string. If a1a2a3a4a5, is a bit string in System 2, the set that it
translates to contains the number k if and only if ak equals 1. For example,
10001 is translated to the set {1, 5}, while the set {1, 2} is translated to 11000.
Now imagine that your computer is like the child who knows English and must
do a Greek problem. To execute a program that has code that includes the
set expression {1, 2} ∪ {1, 5}, it will follow the same procedure as the child to
obtain the result, as shown in Figure 11.7.6.

Figure 11.7.6 Translation of a problem in set theory

CHAPTER 11. ALGEBRAIC STRUCTURES 300

□

11.7.1 Group Isomorphisms
Example 11.7.7 Multiplying without doing multiplication. This
isomorphism is between [R+; ·] and [R; +]. Until the 1970s, when the price of
calculators dropped, multiplication and exponentiation were performed with
an isomorphism between these systems. The isomorphism (R+ to R) between
the two groups is that · is translated into + and any positive real number a is
translated to the logarithm of a. To translate back from R to R+ , you invert
the logarithm function. If base ten logarithms are used, an element of R, b, will
be translated to 10b. In pre-calculator days, the translation was done with a
table of logarithms or with a slide rule. An example of how the isomorphism is
used appears in Figure 11.7.8.

Figure 11.7.8 Multiplication using logarithms
□

The following definition of an isomorphism between two groups is a more
formal one that appears in most abstract algebra texts. At first glance, it
appears different, it is really a slight variation on the informal definition. It
is the common definition because it is easy to apply; that is, given a function,
this definition tells you what to do to determine whether that function is an
isomorphism.

Definition 11.7.9 Group Isomorphism. If [G1; ∗1] and [G2; ∗2] are groups,
f : G1 → G2 is an isomorphism from G1 into G2 if:

(1) f is a bijection, and

(2) f (a ∗1 b) = f(a) ∗2 f(b) for all a, b ∈ G1

If such a function exists, then we say G1 is isomorphic to G2, denoted
G1 ∼= G2. ♢

We should note that “is isomorphic to” is an equivalence relation on the set
of all groups. We leave it to the reader to verify the following.

• The identity function on a group G is an isomorphism.

• Bijections have inverses, the inverse of an isomorphism is an isomorphism.

• The composition of any two isomorphisms that can be composed is an
isomorphism.

CHAPTER 11. ALGEBRAIC STRUCTURES 301

Figure 11.7.10 Steps in proving that G1 and G2 are isomorphic

Note 11.7.11
(a) There could be several different isomorphisms between the same pair

of groups. Thus, if you are asked to demonstrate that two groups are
isomorphic, your answer need not be unique.

(b) Any application of this definition requires a procedure outlined in Fig-
ure 11.7.10. The first condition, that an isomorphism be a bijection,
reflects the fact that every true statement in the first group should have
exactly one corresponding true statement in the second group. This is
exactly why we run into difficulty in translating between two natural
languages. To see how Condition (b) of the formal definition is consistent
with the informal definition, consider the function L : R+ → R defined
by L(x) = log10 x. The translation diagram between R+ and R for the
multiplication problem a · b appears in Figure 11.7.12. We arrive at the
same result by computing L−1(L(a) + L(b)) as we do by computing a · b.
If we apply the function L to the two results, we get the same image:

L(a · b) = L
(
L−1(L(a) + L(b))

)
= L(a) + L(b) (11.7.1)

since L
(
L−1(x)

)
= x. Note that (11.7.1) is exactly Condition b of the

formal definition applied to the two groups R+ and R.

Figure 11.7.12 General Multiplication using logarithms

Example 11.7.13 Consider G =
{(

1 a

0 1

)∣∣∣∣ a ∈ R
}

with matrix multiplica-

tion. The group [R; +] is isomorphic to G. Our translation rule is the function

f : R → G defined by f(a) =
(

1 a

0 1

)
. Since groups have only one opera-

tion, there is no need to state explicitly that addition is translated to matrix
multiplication. That f is a bijection is clear from its definition.

CHAPTER 11. ALGEBRAIC STRUCTURES 302

If a and b are any real numbers,

f(a)f(b) =
(

1 a

0 1

)(
1 b

0 1

)
=
(

1 a + b

0 1

)
= f(a + b)

We can apply this translation rule to determine the inverse of a matrix in
G. We know that a + (−a) = 0 is a true statement in R. Using f to translate
this statement, we get

f(a)f(−a) = f(0)

or (
1 a

0 1

)(
1 −a

0 1

)
=
(

1 0
0 1

)
therefore, (

1 a

0 1

)−1

=
(

1 −a

0 1

)
□

The next theorem summarizes some of the general facts about group isomor-
phisms that are used most often in applications. We leave the proof to the
reader.
Theorem 11.7.14 Properties of Isomorphisms. If [G; ∗] and [H; ⋄] are
groups with identities e and e′, respectively, and T : G→ H is an isomorphism
from G into H, then:

(a) T (e) = e′

(b) T (a)−1 = T
(
a−1) for all a ∈ G, and

(c) If K is a subgroup of G, then T (K) = {T (a) : a ∈ K} is a subgroup of H
and is isomorphic to K.

“Is isomorphic to” is an equivalence relation on the set of all groups. There-
fore, the set of all groups is partitioned into equivalence classes, each equivalence
class containing groups that are isomorphic to one another.

11.7.2 The order sequence of a finite group
This topic is somewhat obscure. It doesn’t appear in most texts, but is a nice
companion to degree sequences in graph theory. Recall that every undirected
graph has a degree sequence, and graphs with different degree sequences 9.1.31
are not isomorphic. This is a convenient way to identify non-isomorphic
graphs. We see below that order sequences play exactly the same role in
identifying whether two finite groups are isomorphic. Furthermore, identical
order sequences of two finite groups give an excellent set of hints for constructing
an isomorphism, if one such exists. My colleague, Jim Propp, has been using
this idea for a while in his classes and I “discovered” it later. Neither of us can
claim originality. Much of the following discussion is paraphrased from Jim’s
notes.
Definition 11.7.15 Order Sequence. The order sequence of a finite group
is the sequence whose terms are the respective orders of all the elements of the
group, arranged in increasing order. ♢

CHAPTER 11. ALGEBRAIC STRUCTURES 303

In Z3 the element 0 has order 1, the element 1 has order 3, and the element
2 has order 3, so the order sequence of this group is 1,3,3.

In Z4 the element 0 has order 1, the element 1 has order 4, the element
2 has order 2, and the element 3 has order 4, so the order sequence of this
group is 1,2,4,4. (Note that we have arranged the numbers 1,4,2,4 in increasing
order.)

Theorem 11.7.16 If G1 and G2 are finite groups and f is an isomorphism
between them, with g ∈ G1 and f(g) ∈ G2, the order of g in G1 equals the order
of f(g) in G2.

Consequently:

Corollary 11.7.17 If two groups are isomorphic, they have the same order
sequence.

The theorem is a handy tools for proving that two particular groups are not
isomorphic. Consider the group Z2 × Z2; the element (0, 0) has order 1 while
the other elements (0, 1), (1, 0), and (1, 1) each have order 2, implying that the
order sequence is 1,2,2,2. Since this is different from the sequence 1,2,4,4, the
group Z2 × Z2 is not isomorphic to the group Z4.

Order sequences are also useful in helping one find isomorphisms. Consider
the group U5 (the set {1, 2, 3, 4} with mod-5 multiplication). Its order sequence
is 1, 2, 4, 4, which suggests that it might be isomorphic to Z4. In fact, any
isomorphism f from Z4 to U5 must map 0 (the only element of order 1 in Z4)
to 1 (the only element of order 1 in U4) and must map 2 (the only element of
order 2 in Z4) to 4 (the only element of order 2 in U4). There are only two
bijections f from Z4 to U4 satisfying f(0) = 1 and f(2) = 4, so these are the
only two candidate isomorphisms (and both candidates turn out to be true
isomorphisms).

The following code will compute the order sequence for the group of integers
mod n. The default value of n is 12 and you can change it in the last line of
input.

def order_sequence_Z(n):
G = Integers(n)
os=[]
for a in G:

os=os+[a.order()]
print(sorted(os))

order_sequence_Z (12)

[1, 2, 3, 3, 4, 4, 6, 6, 12, 12, 12, 12]

11.7.3 Conditions for groups to not be isomorphic
How do you decide that two groups are not isomorphic to one another? The
negation of “G and H are isomorphic” is that no translation rule between G
and H exists. If G and H have different cardinalities, then no bijection from G
into H can exist. Hence they are not isomorphic. Given that |G| = |H|, it is
usually impractical to list all bijections from G into H and show that none of
them satisfy Condition b of the formal definition. The best way to prove that
two groups are not isomorphic is to find a true statement about one group that
is not true about the other group. We illustrate this method in the following
checklist that you can apply to most pairs of non-isomorphic groups in this
book.

CHAPTER 11. ALGEBRAIC STRUCTURES 304

Assume that [G; ∗] and [H; ⋄] are groups. The following are reasons for G
and H to be not isomorphic.

(a) G and H do not have the same cardinality. For example, Z12 × Z5 can’t
be isomorphic to Z50 and [R; +] can’t be isomorphic to [Q+; ·].

(b) G is abelian and H is not abelian since a ∗ b = b ∗ a is always true in
G, but T (a) ⋄ T (b) = T (b) ⋄ T (a) would not always be true. We have
seen two groups with six elements that apply here. They are Z6 and the
group of 3× 3 rook matrices (see Exercise 11.2.4.5). The second group is
non-abelian, therefore it can’t be isomorphic to Z6.

(c) G has a certain kind of subgroup that H doesn’t have. Part (c) of
Theorem 11.7.14 states that this cannot happen if G is isomorphic to
H. [R∗; ·] and [R+; ·] are not isomorphic since R∗ has a subgroup with
two elements, {−1, 1}, while the proper subgroups of R+ are all infinite
(convince yourself of this fact!).

(d) The number of solutions of x ∗ x = e in G is not equal to the number of
solutions of y ⋄ y = e′ in H. Z8 is not isomorphic to Z2

3 since x +8 x = 0
has two solutions, 0 and 4, while y + y = (0, 0, 0) is true for all y ∈ Z2

3.
If the operation in G is defined by a table, then the number of solutions
of x ∗ x = e will be the number of occurrences of e in the main diagonal
of the table. The equations x3 = e, x4 = e, . . . can also be used in the
same way to identify pairs of non-isomorphic groups.

(e) One of the cyclic subgroups of G equals G (i. e., G is cyclic), while none
of H’s cyclic subgroups equals H (i. e., H is noncyclic). This is a special
case of Condition c. Z and Z× Z are not isomorphic since Z = ⟨1⟩ and
Z× Z is not cyclic.

11.7.4 Exercises
1. State whether each pair of groups below is isomorphic. For each pair that

is, give an isomorphism; for those that are not, give your reason.
(a) Z× R and R× Z

(b) Z2 × Z and Z× Z

(c) R and Q×Q

(d) P({1, 2}) with symmetric difference and Z2
2

(e) Z2
2 and Z4

(f) R4 and M2×2(R) with matrix addition

(g) R2 and R× R+

(h) Z2 and the 2× 2 rook matrices

(i) Z6 and Z2 × Z3

2. If you know two natural languages, show that they are not isomorphic.
3. Prove that the relation “is isomorphic to” on groups is transitive.
4.

(a) Write out the operation table for G = [{1,−1, i,−i}; ·] where i is the
complex number for which i2 = −1. Show that G is isomorphic to
[Z4; +4].

CHAPTER 11. ALGEBRAIC STRUCTURES 305

(b) Solve x2 = −1 in G by first translating the equation to Z4 , solving
the equation in Z4, and then translating back to G.

5. The two groups [Z4; +4] and [U5;×5] are isomorphic. One isomorphism
T : Z4 → U5 is partially defined by T (1) = 3. Determine the values of
T (0), T (2), and T (3).

6. Prove Theorem 11.7.14.
7. Prove that all infinite cyclic groups are isomorphic to Z.
8.

(a) Prove that R∗ is isomorphic to Z2 × R.

(b) Describe how multiplication of nonzero real numbers can be accom-
plished doing only additions and translations.

9. Prove that if G is any group and g is some fixed element of G, then the
function ϕg defined by ϕg(x) = g ∗ x ∗ g−1 is an isomorphism from G into
itself. An isomorphism of this type is called an inner automorphism.

10. Prove that “is isomorphic to” is an equivalence relation on the set of
all groups by expanding on the observations made immediately after the
definiton of an isomorphism.

11. It can be shown that there are five non-isomorphic groups of order eight.
You should be able to describe at least three of them. Do so without use
of tables. Be sure to explain why they are not isomorphic.

12. In Section 11.2 we posed the question of whether the two monoids [P(U);∩]
and [P(U);∪], both monoids on the power set of some nonempty universal
set U , are different or really the same. At the time we didn’t have the
notion of isomorphism to draw upon. Now that we do, determine whether
they are isomorphic monoids.

13. Prove that the number of 3’s in an order sequence is even.
14. Prove that the number of 5’s an order sequence is a multiple of four.

Chapter 12

More Matrix Algebra

augmented matrix

There’s a Gaussian technique whose intent
Is to solve the constraints you present

As a matrix equation—
Once you’ve had the occasion

To write down your constants (augment).

Steve Ngai, The Omnificent English Dictionary In Limerick Form

In Chapter 5 we studied matrix operations and the algebra of sets and logic.
We also made note of the strong resemblance of matrix algebra to elementary
algebra. The reader should briefly review this material. In this chapter we
shall look at a powerful matrix tool in the applied sciences, namely a technique
for solving systems of linear equations. We will then use this process for
determining the inverse of n× n matrices, n ≥ 2, when they exist. We proceed
with a development of the diagonalization process, with a discussion of several
of its applications. Finally, we discuss the solution of linear equations over the
integers modulo 2.

12.1 Systems of Linear Equations

12.1.1 Solutions
The method of solving systems of equations by matrices that we will look at is
based on procedures involving equations that we are familiar with from previous
mathematics courses. The main idea is to reduce a given system of equations
to another simpler system that has the same solutions.

Definition 12.1.1 Solution Set. Given a system of equations involving real
variables x1, x2, . . ., xn, the solution set of the system is the set of n-tuples in
Rn, (a1, a2, . . . , an) such that the substitutions x1 = a1, x2 = a2, . . ., xn = an

make all the equations true. ♢
In terms of logic, a solution set is a truth set of a system of equations, which

is a proposition over n-tuples of real numbers.
In general, if the variables are from a set S, then the solution set will be a

subset of Sn. For example, in number theory mathematicians study Diophantine
equations, where the variables can only take on integer values instead of real
values.

306

CHAPTER 12. MORE MATRIX ALGEBRA 307

Definition 12.1.2 Equivalent Systems of Equations. Two systems of
linear equations are called equivalent if they have the same set of solutions. ♢

Example 12.1.3 Two equivalent systems. The previous definition tells us
that if we know that the system

4x1 + 2x2 + x3 = 1
2x1 + x2 + x3 = 4
2x1 + 2x2 + x3 = 3

is equivalent to the system

x1 + 0x2 + 0x3 = −1
0x1 + x2 + 0x3 = −1
0x1 + 0x2 + x3 = 7

then both systems have the solution set {(−1,−1, 7)}. In other words, the
simultaneous values x1 = −1, x2 = −1, and x3 = 7 are the only values of the
variables that make all three equations in either system true. □

12.1.2 Elementary Operations on Equations
Theorem 12.1.4 Elementary Operations on Equations. If any sequence
of the following operations is performed on a system of equations, the resulting
system is equivalent to the original system:

(a) Interchange any two equations in the system.

(b) Multiply both sides of any equation by a nonzero constant.

(c) Multiply both sides of any equation by a nonzero constant and add the
result to a second equation in the system, with the sum replacing the latter
equation.

Let us now use the above theorem to work out the details of Example 12.1.3
and see how we can arrive at the simpler system.

The original system:

4x1 + 2x2 + x3 = 1
2x1 + x2 + x3 = 4
2x1 + 2x2 + x3 = 3

(12.1.1)

Step 1. We will first change the coefficient of x1 in the first equation to one
and then use it as a pivot to obtain 0’s for the coefficients of x1 in Equations 2
and 3.

• Multiply Equation 1 by 1
4 to obtain

x1 + x2
2 + x3

4 = 1
4

2x1 + x2 + x3 = 4
2x1 + 2x2 + x3 = 3 (12.1.2)

• Multiply Equation 1 by −2 and add the result to Equation 2 to obtain

x1 + x2
2 + x3

4 = 1
4

0x1 + 0x2 + x3
2 = 7

2
2x1 + 2x2 + x3 = 3 (12.1.3)

CHAPTER 12. MORE MATRIX ALGEBRA 308

• Multiply Equation 1 by −2 and add the result to Equation 3 to obtain

x1 + x2
2 + x3

4 = 1
4

0x1 + 0x2 + x3
2 = 7

2
0x1 + x2 + x3

2 = 5
2

(12.1.4)

We’ve explicitly written terms with zero coefficients such as 0x1 to make
a point that all variables can be thought of as being involved in all equations.
After this example is complete, we will discontinue this practice in favor of the
normal practice of making these terms “disappear.”

Step 2. We would now like to proceed in a fashion analogous to Step
1; namely, multiply the coefficient of x2 in the second equation by a suitable
number so that the result is 1. Then use it as a pivot to obtain 0’s as coefficients
for x2 in the first and third equations. This is clearly impossible (Why?), so we
will first interchange Equations 2 and 3 and proceed as outlined above.

• Exchange Equations 2 and 3 to obtain

x1 + x2
2 + x3

4 = 1
4

0x1 + x2 + x3
2 = 5

2
0x1 + 0x2 + x3

2 = 7
2

(12.1.5)

• Multiply Equation 2 by 1
2 and subtract the result from Equation 1 to

obtain

x1 + 0x2 + 0x3 = −1
0x1 + x2 + x3

2 = 5
2

0x1 + 0x2 + x3
2 = 7

2
(12.1.6)

Step 3. Next, we will change the coefficient of x3 in the third equation to
one and then use it as a pivot to obtain 0’s for the coefficients of x3 in Equations
1 and 2. Notice that the coefficient of x3 is already zero in Equation 1, so we
have been saved some work!

• Multiply Equation 3 by 2 to obtain

x1 + 0x2 + 0x3 = −1
0x1 + x2 + x3

2 = 5
2

0x1 + 0x2 + x3 = 7

• Multiply Equation 3 by −1/2 and add the result to Equation 2 to obtain

x1 + 0x2 + 0x3 = −1
0x1 + x2 + 0x3 = −1
0x1 + 0x2 + x3 = 7

(12.1.7)

From the system of equations at the end of Step 3, we see that the solution
to the original system is x1 = −1, x2 = −1, and x3 = 7.

CHAPTER 12. MORE MATRIX ALGEBRA 309

12.1.3 Transition to Matrices
In the above sequence of steps, we note that the variables serve the sole purpose
of keeping the coefficients in the appropriate location. This we can effect by
using matrices. The matrix of the original system in our example is 4 2 1 1

2 1 1 4
2 2 1 3

where the matrix of the first three columns is called the coefficient matrix and
the complete matrix is referred to as the augmented matrix. Since we are now
using matrices to solve the system, we will translate Theorem 12.1.4 into matrix
language.

12.1.4 Elementary Row Operations
Theorem 12.1.5 Elementary Row Operations. If any sequence of the
following operations is performed on the augmented matrix of a system of equa-
tions, the resulting matrix is a system that is equivalent to the original system.
The following operations on a matrix are called elementary row operations:

(1) Exchange any two rows of the matrix.

(2) Multiply any row of the matrix by a nonzero constant.

(3) Multiply any row of the matrix by a nonzero constant and add the result
to a second row, with the sum replacing that second row.

Definition 12.1.6 Row Equivalent Matrices. Two matrices, A and B, are
said to be row-equivalent if one can be obtained from the other by any sequence
of zero or more elementary row operations. ♢

If we use the notation Ri to stand for Row i of a matrix and −→ to stand
for row equivalence, then

A
cRi+Rj−→ B

means that the matrix B is obtained from the matrix A by multiplying the
Row i of A by c and adding the result to Row j. The operation of multiplying
row i by c is indicated by

A
cRi−→ B

while exchanging rows i and j is denoted by

A
Ri↔Rj−→ B.

The matrix notation for the system given in our first example, with the

CHAPTER 12. MORE MATRIX ALGEBRA 310

subsequent steps, is: 4 2 1 1
2 1 1 4
2 2 1 3

 1
4 R1−→

 1 1
2

1
4

1
4

2 1 1 4
2 2 1 3

 −2R1+R2−→

 1 1
2

1
4

1
4

0 0 1
2

7
2

2 2 1 3

−2R1+R3−→

 1 1
2

1
4

1
4

0 0 1
2

7
2

0 1 1
2

5
2

 R2↔R3−→

 1 1
2

1
4

1
4

0 1 1
2

5
2

0 0 1
2

7
2

− 1

2 R2+R1−→

 1 0 0 −1
0 1 1

2
5
2

0 0 1
2

7
2

 2R3−→

 1 0 0 −1
0 1 1

2
5
2

0 0 1 7

− 1

2 R3+R2−→

 1 0 0 −1
0 1 0 −1
0 0 1 7

This again gives us the solution. This procedure is called the Gauss-Jordan
elimination method.

It is important to remember when solving any system of equations via
this or any similar approach that at any step in the procedure we can rewrite
the matrix in “equation format” to help us to interpret the meaning of the
augmented matrix.

In our first example we found a unique solution, only one triple, namely
(−1,−1, 7), which satisfies all three equations. For a system involving three
unknowns, are there any other possible results? To answer this question, let’s
review some basic facts from analytic geometry.

The graph of a linear equation in three-dimensional space is a plane. So
geometrically we can visualize the three linear equations as three planes in
three-space. Certainly the three planes can intersect in a unique point, as in
the first example, or two of the planes could be parallel. If two planes are
parallel, there are no common points of intersection; that is, there are no triple
of real numbers that will satisfy all three equations. Another possibility is
that the three planes could intersect along a common axis or line. In this case,
there would be an infinite number of real number triples in R3. Yet another
possibility would be if the first two planes intersect in a line, but the line is
parallel to, but not on, the third plane, giving us no solution. Finally if all
three equations describe the same plane, the solution set would be that plane.

We can generalize these observations. In a system of n linear equations, n
unknowns, there can be

(1) a unique solution,

(2) no solution, or

(3) an infinite number of solutions.

To illustrate these points, consider the following examples:

Example 12.1.7 A system with no solutions. Find all solutions to the
system

x1 + 3x2 + x3 = 2
x1 + x2 + 5x3 = 4

2x1 + 2x2 + 10x3 = 6

CHAPTER 12. MORE MATRIX ALGEBRA 311

The reader can verify that the augmented matrix of this system,

 1 3 1 2
1 1 5 4
2 2 10 6

,

reduces to

 1 3 1 2
1 1 5 4
0 0 0 −2

.

We can attempt to row-reduce this matrix further if we wish. However,
any further row-reduction will not substantially change the last row, which,
in equation form, is 0x1 + 0x2 + 0x3 = −2, or simply 0 = −2. It is clear
that we cannot find real numbers x1, x2, and x3 that will satisfy this equation.
Hence we cannot find real numbers that will satisfy all three original equations
simultaneously. When this occurs, we say that the system has no solution, or
the solution set is empty. □

Example 12.1.8 A system with an infinite number of solutions. Next,
let’s attempt to find all of the solutions to:

x1 + 6x2 + 2x3 = 1
2x1 + x2 + 3x3 = 2
4x1 + 2x2 + 6x3 = 4

The augmented matrix for the system is 1 6 2 1
2 1 3 2
4 2 6 4

 (12.1.8)

which reduces to 1 0 16
11 1

0 1 1
11 0

0 0 0 0

 (12.1.9)

If we apply additional elementary row operations to this matrix, it will
only become more complicated. In particular, we cannot get a one in the third
row, third column. Since the matrix is in simplest form, we will express it in
equation format to help us determine the solution set.

x1 + 16
11 x3 = 1

x2 + 1
11 x3 = 0

0 = 0
(12.1.10)

Any real numbers will satisfy the last equation. However, the first equation can
be rewritten as x1 = 1− 16

11 x3, which describes the coordinate x1 in terms of x3
. Similarly, the second equation gives x2 in terms of x3 . A convenient way of
listing the solutions of this system is to use set notation. If we call the solution
set of the system S, then

S =
{(

1− 16
11x3,− 1

11x3, x3

)
| x3 ∈ R

}
.

What this means is that if we wanted to list all solutions, we would replace
x3 by all possible numbers. Clearly, there is an infinite number of solutions,
two of which are (1, 0, 0) and (−15,−1, 11), when x3 takes on the values 0 and
11, respectively.

A Word Of Caution: Frequently we may can get “different-looking” an-
swers to the same problem when a system has an infinite number of solu-
tions. Assume the solutions set in this example is reported to be A =

CHAPTER 12. MORE MATRIX ALGEBRA 312

{(1 + 16x2, x2,−11x3) | x3 ∈ R}. Certainly the result described by S looks
different from that described by A. To see whether they indeed describe the
same set, we wish to determine whether every solution produced in S can be
generated in A. For example, the solution generated by S when x3 = 11 is
(−15,−1, 11). The same triple can be produced by A by taking x2 = −1. We
must prove that every solution described in S is described in A and, conversely,
that every solution described in A is described in S. (See Exercise 6 of this
section.) □

To summarize the procedure in the Gauss-Jordan technique for solving
systems of equations, we attempt to obtain 1’s along the main diagonal of
the coefficient matrix with 0’s above and below the diagonal. We may find
in attempting this that this objective cannot be completed, as in the last two
examples we have seen. Depending on the way we interpret the results in
equation form, we either recognize that no solution exists, or we identify “free
variables” on which an infinite number of solutions are based. The final matrix
forms that we have produced in our examples are referred to as echelon forms.

In practice, larger systems of linear equations are solved using computers.
Generally, the Gauss-Jordan algorithm is the most useful; however, slight
variations of this algorithm are also used. The different approaches share many
of the same advantages and disadvantages. The two major concerns of all
methods are:

(1) minimizing inaccuracies due to round-off errors, and

(2) minimizing computer time.

12.1.5 The Gauss-Jordan Algorithm
The accuracy of the Gauss-Jordan method can be improved by always choosing
the element with the largest absolute value as the pivot element, as in the
following algorithm.

Algorithm 12.1.9 The Gauss-Jordan Algorithm. Given a matrix equation
Ax = b, where A is n×m, let C be the augmented matrix [A|b]. The process of
row-reducing to echelon form involves performing the following algorithm where
C[i] is the ith row of C.

(1) i = 1

(2) j = 1

(3) while i <= n and j <= m):

(a) maxi=i

(b) for k = i+1 to n:
if abs(C[k,j])>abs(C[maxi,j]): then maxi=k

(c) if C[maxi,j] != 0 then:
(i) exchange rows i and maxi

(ii) divide each entry in row i by C[i,j]

(iii) for u = i+1 to n:
subtract C[u,j]*C[i] from C[u]

(iv) i = i+1

(d) j=j+1

Note 12.1.10 At the end of this algorithm, with the final form of C you can
revert back to the equation form of the system and a solution should be clear.

CHAPTER 12. MORE MATRIX ALGEBRA 313

In general,
• If any row of C is all zeros, it can be ignored.

• If any row of C has all zero entries except for the entry in the (m + 1)st

position, the system has no solution. Otherwise, if a column has no pivot,
the variable corresponding to it is a free variable. Variables corresponding
to pivots are basic variables and can be expressed in terms of the free
variables.

Example 12.1.11 If we apply The Gauss-Jordan Algorithm to the system

5x1 + x2 + 2x3 + x4 = 2
3x1 + x2 − 2x3 = 5
x1 + x2 + 3x3 − x4 = −1

the augmented matrix is 5 1 2 1 2
3 1 −2 0 5
1 1 3 −1 −1

is reduced to 1 0 0 1

2
1
2

0 1 0 − 3
2

3
2

0 0 1 0 −1

Therefore, x4 is a free variable in the solution and general solution of the system
is

x =

x1
x2
x3
x4

 =

1
2 −

1
2 x4

3
2 + 3

2 x4
−1
x4

This conclusion is easy to see if you revert back to the equations that the

final value the reduced matrix represents. □

12.1.6 SageMath Note - Matrix Reduction
Given an augmented matrix, C, there is a matrix method called echelon_form
that can be used to row reduce C. Here is the result for the system in
Example 12.1.11. In the assignment of a matrix value to C, notice that the first
argument is QQ, which indicates that the entries should be rational numbers.
As long as all the entries are rational, which is the case here since integers are
rational, the row-reduced matrix will be all rational.

C = Matrix(QQ ,[[5,1,2,1,2],[3,1,-2,0,5],[1,1,3,-1,-1]])
C.echelon_form ()

[1 0 0 1/2 1/2]
[0 1 0 -3/2 3/2]
[0 0 1 0 -1]

If we don’t specify the set from which entries are taken, it would assumed to
be the integers and we do not get a fully row-reduced matrix. This is because
the next step in working with the next output would involve multiplying row 2
by 1

2 and row 3 by 1
9 , but these multipliers are not integers.

CHAPTER 12. MORE MATRIX ALGEBRA 314

C2 = Matrix ([[5,1,2,1,2],[3,1,-2,0,5],[1,1,3,-1,-1]])
C2.echelon_form ()

[1 1 3 -1 -1]
[0 2 2 -3 1]
[0 0 9 0 -9]

If we specifying real entries, the result isn’t as nice and clean as the rational
output.

C3 = Matrix(RR ,[[5,1,2,1,2],[3,1,-2,0,5],[1,1,3,-1,-1]])
C3.echelon_form ()

[1.000000 0.0000000 0.0000000 0.5000000
0.500000000000000]

[0.0000000 1.000000 0.0000000 -1.500000
1.50000000000000]

[0.0000000 0.0000000 1.000000 4.934324e-17
-1.00000000000000]

The default number of decimal places may vary from what you see here,
but it can be controlled. The single small number in row three column four
isn’t exactly zero because of round-off but we could just set it to zero.

12.1.7 Exercises
1. Solve the following systems by describing the solution sets completely:

(a) 2x1 + x2 = 3
x1 − x2 = 1

(b)
2x1 + x2 + 3x3 = 5
4x1 + x2 + 2x3 = −1
8x1 + 2x2 + 4x3 = −2

(c)
x1 + x2 + 2x3 = 1
x1 + 2x2 − x3 = −1
x1 + 3x2 + x3 = 5

(d) x1 − x2 + 3x3 = 7
x1 + 3x2 + x3 = 4

2. Solve the following systems by describing the solution sets completely:

(a)
2x1 + 2x2 + 4x3 = 2
2x1 + x2 + 4x3 = 0
3x1 + 5x2 + x3 = 0

(b)
2x1 + x2 + 3x3 = 2
4x1 + x2 + 2x3 = −1
8x1 + 2x2 + 4x3 = 4

(c)
x1 + x2 + 2x3 + x4 = 3
x1 − x2 + 3x3 − x4 = −2
3x1 + 3x2 + 6x3 + 3x4 = 9

(d)
6x1 + 7x2 + 2x3 = 3
4x1 + 2x2 + x3 = −2
6x1 + x2 + x3 = 1

(e)
x1 + x2 − x3 + 2x4 = 1
x1 + 2x2 + 3x3 + x4 = 5
x1 + 3x2 + 2x3 − x4 = −1

3. Given the final augmented matrices below from the Gauss-Jordan Algo-
rithm, identify the solutions sets. Identify the basic and free variables, and
describe the solution set of the original system.

(a)

 1 0 −5 0 1.2
0 1 4 0 2.6
0 0 0 1 4.5

(b)

 1 0 9 3
0 1 0 4
0 0 0 1

(c)

 1 0 6 5
0 1 −2 1
0 0 0 0

(d)

 1 0 0 −3 1
0 1 0 2 2
0 0 1 −1 1

CHAPTER 12. MORE MATRIX ALGEBRA 315

4.
(a) Write out the details of Example 12.1.7.

(b) Write out the details of Example 12.1.8.

(c) Write out the details of Example 12.1.11.
5. Solve the following systems using only mod 5 arithmetic. Your solutions

should be n− tuples from Z5.

(a) 2x1 + x2 = 3
x1 + 4x2 = 1 (compare your solution to the system in 5(a))

(b)
x1 + x2 + 2x3 = 1
x1 + 2x2 + 4x3 = 4
x1 + 3x2 + 3x3 = 0

6.
(a) Use the solution set S of Example 12.1.8 to list three different

solutions to the given system. Then show that each of these solutions
can be described by the set A in the same example.

(b) Prove that S = A.
7. Given a system of n linear equations in n unknowns in matrix form AX = b,

prove that if b is a matrix of all zeros, then the solution set of AX = b is a
subgroup of Rn.

12.2 Matrix Inversion

12.2.1 Developing the Process
In Chapter 5 we defined the inverse of an n× n matrix. We noted that not all
matrices have inverses, but when the inverse of a matrix exists, it is unique.
This enables us to define the inverse of an n× n matrix A as the unique matrix
B such that AB = BA = I, where I is the n×n identity matrix. In order to get
some practical experience, we developed a formula that allowed us to determine
the inverse of invertible 2 × 2 matrices. We will now use the Gauss-Jordan
procedure for solving systems of linear equations to compute the inverses, when
they exist, of n×n matrices, n ≥ 2. The following procedure for a 3× 3 matrix
can be generalized for n× n matrices, n ≥ 2.

Given the matrix A =

 1 1 2
2 1 4
3 5 1

, we want to find its inverse, the matrix

B =

 x11 x12 x13
x21 x22 x23
x31 x32 x33

, if it exists, such that AB = I and BA = I. We will

concentrate on finding a matrix that satisfies the first equation and then verify
that B also satisfies the second equation.

The equation 1 1 2
2 1 4
3 5 1

 x11 x12 x13
x21 x22 x23
x31 x32 x33

 =

 1 0 0
0 1 0
0 0 1

CHAPTER 12. MORE MATRIX ALGEBRA 316

is equivalent to x11 + x21 + 2x31 x12 + x22 + 2x32 x13 + x23 + 2x33
2x11 + x21 + 4x31 2x12 + x22 + 4x32 2x13 + x23 + 4x33
3x11 + 5x21 + x31 3x12 + 5x22 + x32 3x13 + 5x23 + x33

 =

 1 0 0
0 1 0
0 0 1

By definition of equality of matrices, this gives us three systems of equations

to solve. The augmented matrix of one of the systems, the one equating the
first columns of the two matrices is: 1 1 2 1

2 1 4 0
3 5 1 0

 (12.2.1)

Using the Gauss-Jordan algorithm, we have: 1 1 2 1
2 1 4 0
3 5 1 0

 −2R1+R2−→

 1 1 2 1
0 −1 0 −2
3 5 1 0

 −3R1+R3−→

 1 1 2 1
0 −1 0 −2
0 2 −5 −3

−1R2−→

 1 1 2 1
0 1 0 2
0 2 −5 −3

−R2+R1 and−2R2+R3−→

 1 0 2 −1
0 1 0 2
0 0 −5 −7

− 1

5 R3−→

 1 0 2 −1
0 1 0 2
0 0 1 7/5

 −2R3+R1−→

 1 0 0 − 19
5

0 1 0 2
0 0 1 7

5

So x11 = −19/5, x21 = 2 and x31 = 7/5, which gives us the first column of B.

The matrix form of the system to obtain x12, x22, and x32, the second
column of B, is: 1 1 2 0

2 1 4 1
3 5 1 0

 (12.2.2)

which reduces to 1 0 0 9
5

0 1 0 −1
0 0 1 − 2

5

 (12.2.3)

The critical thing to note here is that the coefficient matrix in (12.2.2) is the
same as the matrix in (12.2.1), hence the sequence of row operations that we
used in row reduction are the same in both cases.

To determine the third column of B, we reduce 1 1 2 0
2 1 4 0
3 5 1 1

to obtain x13 = 2/5, x23 = 0 and x33 = −1/5. Here again it is important to
note that the sequence of row operations used to solve this system is exactly the
same as those we used in the first system. Why not save ourselves a considerable

CHAPTER 12. MORE MATRIX ALGEBRA 317

amount of time and effort and solve all three systems simultaneously? This we
can do this by augmenting the coefficient matrix by the identity matrix I. We
then have, by applying the same sequence of row operations as above, 1 1 2 1 0 0

2 1 4 0 1 0
3 5 1 0 0 1

 −→
 1 0 0 − 19

5
9
5

2
5

0 1 0 2 −1 0
0 0 1 7

5 − 2
5 − 1

5

So that

B =

 − 19
5

9
5

2
5

2 −1 0
7
5 − 2

5 − 1
5

The reader should verify that BA = I so that A−1 = B.

12.2.2 The General Method for Computing Inverses
As the following theorem indicates, the verification that BA = I is not necessary.
The proof of the theorem is beyond the scope of this text. The interested reader
can find it in most linear algebra texts.

Theorem 12.2.1 Let A be an n× n matrix. If a matrix B can be found such
that AB = I, then BA = I, so that B = A−1. In fact, to find A−1, we need
only find a matrix B that satisfies one of the two conditions AB = I or BA = I.

It is clear from Chapter 5 and our discussions in this chapter that not all
n × n matrices have inverses. How do we determine whether a matrix has
an inverse using this method? The answer is quite simple: the technique we
developed to compute inverses is a matrix approach to solving several systems
of equations simultaneously.

Example 12.2.2 Recognition of a non-invertible matrix. The reader can

verify that if A =

 1 2 1
−1 −2 −1
0 5 8

 then the augmented matrix

 1 2 1 1 0 0
−1 −2 −2 0 1 0
0 5 8 0 0 1

reduces to 1 2 1 1 0 0

0 0 0 1 1 0
0 5 8 0 0 1

 (12.2.4)

Although this matrix can be row-reduced further, it is not necessary to do
so since, in equation form, we have:

Table 12.2.3

x11 + 2x21 + x31 = 1
0 = 1
5x21 + 8x31 = 0

x12 + 2x22 + x32 = 0
0 = 1
5x22 + 8x32 = 0

x13 + 2x23 + x33 = 0
0 = 0
5x23 + 8x33 = 1

Clearly, there are no solutions to the first two systems, therefore A−1 does
not exist. From this discussion it should be obvious to the reader that the
zero row of the coefficient matrix together with the nonzero entry in the fourth
column of that row in matrix (12.2.4) tells us that A−1 does not exist. □

CHAPTER 12. MORE MATRIX ALGEBRA 318

12.2.3 Exercises
1. In order to develop an understanding of the technique of this section, work

out all the details of Example 12.2.2.
2. Use the method of this section to find the inverses of the following matrices

whenever possible. If an inverse does not exist, explain why.

(a)
(

1 2
−1 3

)

(b)

0 3 2 5
1 −1 4 0
0 0 1 1
0 1 3 −1

(c)

 2 −1 0
−1 2 −1
0 −1 2

(d)

 1 2 −1
−2 −3 1
1 4 −3

(e)

 6 7 2
4 2 1
6 1 1

(f)

 2 1 3
4 2 1
8 2 4

3. Use the method of this section to find the inverses of the following matrices

whenever possible. If an inverse does not exist, explain why.

(a)
(1

3 2
1
5 −1

)

(b)

1 0 0 3
2 −1 0 6
0 2 1 0
0 −1 3 2

(c)

 1 −1 0
−1 2 −1
0 −1 1

(d)

 1 0 0
2 2 −1
1 −1 1

(e)

 2 3 4
3 4 5
4 5 6

(f)

 1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

4.

(a) Find the inverses of the following matrices.

(i)

 2 0 0
0 3 0
0 0 5

(ii)

−1 0 0 0
0 5

2 0 0
0 0 1

7 0
0 0 0 3

4

(b) If D is a diagonal matrix whose diagonal entries are nonzero, what

is D−1?

CHAPTER 12. MORE MATRIX ALGEBRA 319

5. Express each system of equations in Exercise 12.1.7.1 in the form Ax = B.
When possible, solve each system by first finding the inverse of the matrix
of coefficients.

12.3 An Introduction to Vector Spaces

12.3.1 Motivation for the study of vector spaces

When we encountered various types of matrices in Chapter 5, it became
apparent that a particular kind of matrix, the diagonal matrix, was much easier

to use in computations. For example, if A =
(

2 1
2 3

)
, then A5 can be found,

but its computation is tedious. If D =
(

1 0
0 4

)
then

D5 =
(

1 0
0 4

)5

=
(

15 0
0 45

)
=
(

1 0
0 1024

)
Even when presented with a non-diagonal matrix, we will see that it is sometimes
possible to do a bit of work to be able to work with a diagonal matrix. This
process is called diagonalization.

In a variety of applications it is beneficial to be able to diagonalize a
matrix. In this section we will investigate what this means and consider a few
applications. In order to understand when the diagonalization process can be
performed, it is necessary to develop several of the underlying concepts of linear
algebra.

12.3.2 Vector Spaces
By now, you realize that mathematicians tend to generalize. Once we have
found a “good thing,” something that is useful, we apply it to as many different
concepts as possible. In doing so, we frequently find that the “different concepts”
are not really different but only look different. Four sentences in four different
languages might look dissimilar, but when they are translated into a common
language, they might very well express the exact same idea.

Early in the development of mathematics, the concept of a vector led to a
variety of applications in physics and engineering. We can certainly picture
vectors, or “arrows,” in the xy − plane and even in the three-dimensional
space. Does it make sense to talk about vectors in four-dimensional space, in
ten-dimensional space, or in any other mathematical situation? If so, what is
the essence of a vector? Is it its shape or the rules it follows? The shape in
two- or three-space is just a picture, or geometric interpretation, of a vector.
The essence is the rules, or properties, we wish vectors to follow so we can
manipulate them algebraically. What follows is a definition of what is called a
vector space. It is a list of all the essential properties of vectors, and it is the
basic definition of the branch of mathematics called linear algebra.

Definition 12.3.1 Vector Space. Let V be any nonempty set of objects.
Define on V an operation, called addition, for any two elements x, y ∈ V , and
denote this operation by x + y. Let scalar multiplication be defined for a real
number a ∈ R and any element x ∈ V and denote this operation by ax. The
set V together with operations of addition and scalar multiplication is called a
vector space over R if the following hold for all x, y, z ∈ V , and a, b ∈ R:

• x + y = y + x

CHAPTER 12. MORE MATRIX ALGEBRA 320

• (x + y) + z = x + (y + z)

• There exists a vector 0 ∈ V , such that x + 0 = x for all x ∈ V .

• For each vector x ∈ V , there exists a unique vector −x ∈ V , such that
−x + x = 0.

These are the main properties associated with the operation of addition. They
can be summarized by saying that [V ; +] is an abelian group.

The next four properties are associated with the operation of scalar multi-
plication and how it relates to vector addition.

• a (x + y) = ax + ay

• (a + b)x = ax + bx

• a (bx) = (ab)x

• 1x = x.

♢
In a vector space it is common to call the elements of V vectors and those

from R scalars. Vector spaces over the real numbers are also called real vector
spaces.

Example 12.3.2 A Vector Space of Matrices. Let V = M2×3(R) and let
the operations of addition and scalar multiplication be the usual operations of
addition and scalar multiplication on matrices. Then V together with these
operations is a real vector space. The reader is strongly encouraged to verify
the definition for this example before proceeding further (see Exercise 3 of this
section). Note we can call the elements of M2×3(R) vectors even though they
are not arrows. □

Example 12.3.3 The Vector Space R2. Let R2 = {(a1, a2) | a1, a2 ∈ R}.
If we define addition and scalar multiplication the natural way, that is, as we
would on 1× 2 matrices, then R2 is a vector space over R. See Exercise 12.3.3.4
of this section.

In this example, we have the “bonus” that we can illustrate the algebraic
concept geometrically. In mathematics, a “geometric bonus” does not always
occur and is not necessary for the development or application of the concept.
However, geometric illustrations are quite useful in helping us understand
concepts and should be utilized whenever available.

Figure 12.3.4 Sum of two vectors in R2

Let’s consider some illustrations of the vector space R2. Let x = (1, 4)
and y = (3, 1). We illustrate the vector (a1, a2) as a directed line segment, or
“arrow,” from the point (0, 0) to the point(a1, a2). The vectors x and y are as
shown in Figure 12.3.4 together with x + y = (1, 4) + (3, 1) = (4, 5). The vector

CHAPTER 12. MORE MATRIX ALGEBRA 321

2x = 2(1, 4) = (2, 8) is a vector in the same direction as x, but with twice its
length. □

Note 12.3.5
(1) The common convention is to use that boldface letters toward the end of

the alphabet for vectors, while letters early in the alphabet are scalars.

(2) A common alternate notation for vectors is to place an arrow about a
variable to indicate that it is a vector such as this: ⇀

x .

(3) The vector (a1, a2, . . . , an) ∈ Rn is referred to as an n-tuple.

(4) For those familiar with vector calculus, we are expressing the vector
x = a1̂i + a2̂j + a3k̂ ∈ R3 as (a1, a2, a3). This allows us to discuss vectors
in Rn in much simpler notation.

In many situations a vector space V is given and we would like to describe
the whole vector space by the smallest number of essential reference vectors.
An example of this is the description of R2, the xy-plane, via the x and y axes.
Again our concepts must be algebraic in nature so we are not restricted solely
to geometric considerations.

Definition 12.3.6 Linear Combination. A vector yyy in vector space V (over
R) is a linear combination of the vectors x1, x2, . . ., xn if there exist scalars
a1, a2, . . . , an in R such that y = a1x1 + a2x2 + . . . + anxn ♢

Example 12.3.7 A Basic Example. The vector (2, 3) in R2 is a linear
combination of the vectors (1, 0) and (0, 1) since (2, 3) = 2(1, 0) + 3(0, 1). □

Example 12.3.8 A little less obvious example. Prove that the vector
(4, 5) is a linear combination of the vectors (3, 1) and (1, 4).

By the definition we must show that there exist scalars a1 and a2 such that:

(4, 5) = a1(3, 1) + a2(1, 4)
= (3a1 + a2, a1 + 4a2)

⇒ 3a1 + a2 = 4
a1 + 4a2 = 5

This system has the solution a1 = 1, a2 = 1.
Hence, if we replace a1 and a2 both by 1, then the two vectors (3, 1) and

(1, 4) produce, or generate, the vector (4,5). Of course, if we replace a1 and
a2 by different scalars, we can generate more vectors from R2. If, for example,
a1 = 3 and a2 = −2, then

a1(3, 1) + a2(1, 4) = 3(3, 1) + (−2)(1, 4) = (9, 3) + (−2,−8) = (7,−5)

□
Will the vectors (3, 1) and (1, 4) generate any vector we choose in R2? To

see if this is so, we let (b1, b2) be an arbitrary vector in R2 and see if we can
always find scalars a1 and a2 such that a1(3, 1) + a2(1, 4) = (b1, b2). This is
equivalent to solving the following system of equations:

3a1 + a2 = b1
a1 + 4a2 = b2

which always has solutions for a1 and a2 , regardless of the values of the real
numbers b1 and b2. Why? We formalize this situation in a definition:

Definition 12.3.9 Generation of a Vector Space. Let {x1, x2, . . . , xn}
be a set of vectors in a vector space V over R. This set is said to generate, or
span, V if, for any given vector y ∈ V , we can always find scalars a1, a2, . . ., an

CHAPTER 12. MORE MATRIX ALGEBRA 322

such that y = a1x1 + a2x2 + . . . + anxn. A set that generates a vector space is
called a generating set. ♢

We now give a geometric interpretation of the previous examples.
We know that the standard coordinate system, x axis and y axis, were

introduced in basic algebra in order to describe all points in the xy-plane
algebraically. It is also quite clear that to describe any point in the plane we
need exactly two axes.

We can set up a new coordinate system in the following way. Draw the
vector (3, 1) and an axis from the origin through (3, 1) and label it the x′ axis.
Also draw the vector (1, 4) and an axis from the origin through (1, 4) to be
labeled the y′ axis. Draw the coordinate grid for the axis, that is, lines parallel,
and let the unit lengths of this “new” plane be the lengths of the respective
vectors, (3, 1) and (1, 4), so that we obtain Figure 12.3.10.

From Example 12.3.8 and Figure 12.3.10, we see that any vector on the
plane can be described using the standard xy-axes or our new x′y′-axes. Hence
the position which had the name (3, 1) in reference to the standard axes has
the name (1, 0) with respect to the x′y′ axes, or, in the phraseology of linear
algebra, the coordinates of the point (1, 4) with respect to the x′y′ axes are
(1, 0).

Figure 12.3.10 Two sets of axes for the plane

Example 12.3.11 One point, Two position descriptions. From Exam-
ple 12.3.8 we found that if we choose a1 = 1 and a2 = 1, then the two vectors
(3, 1) and (1, 4) generate the vector (4, 5). Another geometric interpretation of
this problem is that the coordinates of the position (4, 5) with respect to the
x′y′ axes of Figure 12.3.10 is (1, 1). In other words, a position in the plane has
the name (4, 5) in reference to the xy-axes and the same position has the name
(1, 1) in reference to the x′y′ axes.

From the above, it is clear that we can use different axes to describe points
or vectors in the plane. No matter what choice we use, we want to be able to
describe each position in a unique manner. This is not the case in Figure 12.3.12.
Any point in the plane could be described via the x′y′ axes, the x′z′ axes or
the y′z′ axes. Therefore, in this case, a single point would have three different
names, a very confusing situation.

CHAPTER 12. MORE MATRIX ALGEBRA 323

Figure 12.3.12 Three axes on a plane
□

We formalize the our observations in the previous examples in two definitions
and a theorem.
Definition 12.3.13 Linear Independence/Linear Dependence. A set of
vectors {x1, x2, . . . , xn} from a real vector space V is linearly independent
if the only solution to the equation a1x1 + a2x2 + . . . + anxn = 0 is a1 = a2 =
. . . = an = 0. Otherwise the set is called a linearly dependent set. ♢

Definition 12.3.14 Basis. A set of vectors B = {x1, x2, . . . , xn} is a basis
for a vector space V if:

(1) B generates V , and

(2) B is linearly independent.

♢

Theorem 12.3.15 The fundamental property of a basis. If {x1, x2, . . . , xn}
is a basis for a vector space V over R, then any vector y ∈ V can be uniquely
expressed as a linear combination of the xi’s.
Proof. Assume that {x1, x2, . . . , xn} is a basis for V over R. We must prove
two facts:

(1) each vector y ∈ V can be expressed as a linear combination of the xi’s,
and

(2) each such expression is unique.

Part 1 is trivial since a basis, by its definition, must generate all of V .
The proof of part 2 is a bit more difficult. We follow the standard approach

for any uniqueness facts. Let y be any vector in V and assume that there are
two different ways of expressing y, namely

y = a1x1 + a2x2 + . . . + anxn

and
y = b1x1 + b2x2 + . . . + bnxn

where at least one ai is different from the corresponding bi. Then equating
these two linear combinations we get

a1x1 + a2x2 + . . . + anxn = b1x1 + b2x2 + . . . + bnxn

so that
(a1 − b1) x1 + (a2 − b2) x2 + . . . + (an − bn) xn = 0

CHAPTER 12. MORE MATRIX ALGEBRA 324

Now a crucial observation: since the x′
is form a linearly independent set, the

only solution to the previous equation is that each of the coefficients must equal
zero, so ai − bi = 0 for i = 1, 2, . . . , n. Hence ai = bi, for all i. This contradicts
our assumption that at least one ai is different from the corresponding bi, so
each vector y ∈ V can be expressed in one and only one way. ■

This theorem, together with the previous examples, gives us a clear insight
into the significance of linear independence, namely uniqueness in representing
any vector.

Example 12.3.16 Another basis for R2. Prove that {(1, 1), (−1, 1)} is a
basis for R2 over R and explain what this means geometrically.

First we show that the vectors (1, 1) and (−1, 1) generate all of R2. We can do
this by imitating Example 12.3.8 and leave it to the reader (see Exercise 12.3.3.10
of this section). Secondly, we must prove that the set is linearly independent.

Let a1 and a2 be scalars such that a1(1, 1) + a2(−1, 1) = (0, 0). We must
prove that the only solution to the equation is that a1 and a2 must both equal
zero. The above equation becomes (a1 − a2, a1 + a2) = (0, 0) which gives us
the system

a1 − a2 = 0
a1 + a2 = 0

The augmented matrix of this system reduces in such way that the only solution
is the trivial one of all zeros:(

1 −1 0
1 1 0

)
−→

(
1 0 0
0 1 0

)
⇒ a1 = a2 = 0

Therefore, the set is linearly independent. □
To explain the results geometrically, note through Exercise 12, part a, that

the coordinates of each vector y ∈ R2 can be determined uniquely using the
vectors (1,1) and (-1, 1). The concept of dimension is quite obvious for those
vector spaces that have an immediate geometric interpretation. For example,
the dimension of R2 is two and that of R3 is three. How can we define the
concept of dimension algebraically so that the resulting definition correlates
with that of R2 and R3? First we need a theorem, which we will state without
proof.

Theorem 12.3.17 Basis Size is Constant. If V is a vector space with a
basis containing n elements, then all bases of V contain n elements.
Definition 12.3.18 Dimension of a Vector Space. Let V be a vector
space over R with basis {x1, x2, . . . , xn}. Then the dimension of V is n. We
use the notation dim V = n to indicate that V is n-dimensional. ♢

12.3.3 Exercises

1. If a = 2, b = −3, A =
(

1 0 −1
2 3 4

)
, B =

(
2 −2 3
4 5 8

)
, and C =(

1 0 0
3 2 −2

)
verify that all properties of the definition of a vector space

are true for M2×3(R) with these values.
2. Let a = 3, b = 4, x === (−1, 3), y = (2, 3),and z = (1, 0). Verify that

all properties of the definition of a vector space are true for R2 for these
values.

CHAPTER 12. MORE MATRIX ALGEBRA 325

3.
(a) Verify that M2×3(R) is a vector space over R. What is its dimension?

(b) Is Mm×n(R) a vector space over R? If so, what is its dimension?
4.

(a) Verify that R2 is a vector space over R.

(b) Is Rn a vector space over R for every positive integer n?
5. Let P 3 =

{
a0 + a1x + a2x2 + a3x3 | a0, a1, a2, a3 ∈ R

}
; that is, P 3 is the

set of all polynomials in x having real coefficients with degree less than
or equal to three. Verify that P 3 is a vector space over R. What is its
dimension?

6. For each of the following, express the vector yyy as a linear combination of
the vectors x1 and x2.

(a) y = (5, 6), x1 = (1, 0), and x2 = (0, 1)

(b) y = (2, 1), x1 = (2, 1), and x2 = (1, 1)

(c) y = (3, 4), x1 = (1, 1), and x2 = (−1, 1)

7. Express the vector
(

1 2
−3 3

)
∈ M2×2(R), as a linear combination of(

1 1
1 1

)
,
(
−1 5
2 1

)
,
(

0 1
1 1

)
and

(
0 0
0 1

)
8. Express the vector x3−4x2 +3 ∈ P 3 as a linear combination of the vectors

1, x, x2 , and x3.
9.

(a) Show that the set {x1, x2} generates R2 for each of the parts in
Exercise 6 of this section.

(b) Show that {x1, x2, x3} generates R2 where x1 = (1, 1), x2 = (3, 4),
and x3 = (−1, 5).

(c) Create a set of four or more vectors that generates R2.

(d) What is the smallest number of vectors needed to generate R2? Rn?

(e) Show that the set

{A1, A2, A3, A4} = {
(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
}

generates M2×2(R)

(f) Show that
{

1, x, x2, x3} generates P 3.

10. Complete Example 12.3.16 by showing that {(1, 1), (−1, 1)} generates R2.
11.

(a) Prove that {(4, 1), (1, 3)} is a basis for R2 over R.

(b) Prove that {(1, 0), (3, 4)} is a basis for R2 over R.

(c) Prove that {(1, 0,−1), (2, 1, 1), (1,−3,−1)} is a basis for R3 over R.

(d) Prove that the sets in Exercise 9, parts e and f, form bases of the
respective vector spaces.

CHAPTER 12. MORE MATRIX ALGEBRA 326

12.
(a) Determine the coordinates of the points or vectors (3, 4), (−1, 1),

and (1, 1) with respect to the basis {(1, 1), (−1, 1)} of R2. Interpret
your results geometrically.

(b) Determine the coordinates of the points or vector (3, 5, 6) with respect
to the basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Explain why this basis is
called the standard basis for R3.

13.
(a) Let y1 = (1, 3, 5, 9), y2 = (5, 7, 6, 3), and c = 2. Find y1 + y2 and

cy1.

(b) Let f1(x) = 1 + 3x + 5x2 + 9x3 , f2(x) = 5 + 7x + 6x2 + 3x3 and
c = 2. Find f1(x) + f2(x) and cf1(x).

(c) Let A =
(

1 3
5 9

)
, B =

(
5 7
6 3

)
, and c = 2. Find A + B and cA.

(d) Are the vector spaces R4 , P 3 and M2×2(R) isomorphic to each
other? Discuss with reference to previous parts of this exercise.

12.4 The Diagonalization Process

12.4.1 Eigenvalues and Eigenvectors
We now have the background to understand the main ideas behind the diago-
nalization process.

Definition 12.4.1 Eigenvalue, Eigenvector. Let A be an n × n matrix
over R. λ is an eigenvalue of A if for some nonzero column vector x ∈ Rn we
have Ax = λx. x is called an eigenvector corresponding to the eigenvalue λ.

♢

Example 12.4.2 Examples of eigenvalues and eigenvectors. Find the

eigenvalues and corresponding eigenvectors of the matrix A =
(

2 1
2 3

)
.

We want to find nonzero vectors X =
(

x1
x2

)
and real numbers λ such that

AX = λX ⇔
(

2 1
2 3

)(
x1
x2

)
= λ

(
x1
x2

)
⇔
(

2 1
2 3

)(
x1
x2

)
− λ

(
x1
x2

)
=
(

0
0

)
⇔
(

2 1
2 3

)(
x1
x2

)
− λ

(
1 0
0 1

)(
x1
x2

)
=
(

0
0

)
⇔
((

2 1
2 3

)
− λ

(
1 0
0 1

))(
x1
x2

)
=
(

0
0

)
⇔
(

2− λ 1
2 3− λ

)(
x1
x2

)
=
(

0
0

)
(12.4.1)

The last matrix equation will have nonzero solutions if and only if

det
(

2− λ 1
2 3− λ

)
= 0

CHAPTER 12. MORE MATRIX ALGEBRA 327

or (2− λ)(3− λ)− 2 = 0, which simplifies to λ2 − 5λ + 4 = 0. Therefore, the
solutions to this quadratic equation, λ1 = 1 and λ2 = 4, are the eigenvalues of
A. We now have to find eigenvectors associated with each eigenvalue.

Case 1. For λ1 = 1, (12.4.1) becomes:(
2− 1 1

2 3− 1

)(
x1
x2

)
=
(

0
0

) (
1 1
2 2

)(
x1
x2

)
=
(

0
0

)
which reduces to the single equation, x1 + x2 = 0. From this, x1 = −x2. This
means the solution set of this equation is (in column notation)

E1 =
{(

−c

c

)∣∣∣∣ c ∈ R
}

So any column vector of the form
(
−c

c

)
where c is any nonzero real number

is an eigenvector associated with λ1 = 1. The reader should verify that, for
example, (

2 1
2 3

)(
1
−1

)
= 1

(
1
−1

)

so that
(

1
−1

)
is an eigenvector associated with eigenvalue 1.

Case 2. For λ2 = 4 (12.4.1) becomes:(
2− 4 1

2 3− 4

)(
x1
x2

)
=
(

0
0

) (
−2 1
2 −1

)(
x1
x2

)
=
(

0
0

)
which reduces to the single equation −2x1 + x2 = 0, so that x2 = 2x1. The
solution set of the equation is

E2 =
{(

c

2c

)∣∣∣∣ c ∈ R
}

Therefore, all eigenvectors of A associated with the eigenvalue λ2 = 4 are of

the form
(

c

2c

)
, where c can be any nonzero number. □

The following theorems summarize the most important aspects of the
previous example.

Theorem 12.4.3 Characterization of Eigenvalues of a Square Matrix.
Let A be any n× n matrix over R. Then λ ∈ R is an eigenvalue of A if and
only if det(A− λI) = 0.

The equation det(A− λI) = 0 is called the characteristic equation, and
the left side of this equation is called the characteristic polynomial of A.

Theorem 12.4.4 Linear Independence of Eigenvectors. Nonzero eigen-
vectors corresponding to distinct eigenvalues are linearly independent.

The solution space of (A − λI)x = 0 is called the eigenspace of A corre-
sponding to λ. This terminology is justified by Exercise 2 of this section.

12.4.2 Diagonalization
We now consider the main aim of this section. Given an n× n (square) matrix
A, we would like to transform A into a diagonal matrix D, perform our tasks

CHAPTER 12. MORE MATRIX ALGEBRA 328

with the simpler matrix D, and then describe the results in terms of the given
matrix A.
Definition 12.4.5 Diagonalizable Matrix. An n× n matrix A is called
diagonalizable if there exists an invertible n× n matrix P such that P −1AP is
a diagonal matrix D. The matrix P is said to diagonalize the matrix A. ♢

Example 12.4.6 Diagonalization of a Matrix. We will now diagonalize
the matrix A of Example 12.4.2. We form the matrix P as follows: Let P (1) be
the first column of P . Choose for P (1) any eigenvector from E1. We may as

well choose a simple vector in E1 so P (1) =
(

1
−1

)
is our candidate.

Similarly, let P (2) be the second column of P , and choose for P (2) any

eigenvector from E2. The vector P (2) =
(

1
2

)
is a reasonable choice, thus

P =
(

1 1
−1 2

)
and P −1 = 1

3

(
2 −1
1 1

)
=
(2

3 − 1
3

1
3

1
3

)
so that

P −1AP = 1
3

(
2 −1
1 1

)(
2 1
2 3

)(
1 1
−1 2

)
=
(

1 0
0 4

)
Notice that the elements on the main diagonal of D are the eigenvalues of A,
where Dii is the eigenvalue corresponding to the eigenvector P (i) . □

Note 12.4.7
(1) The first step in the diagonalization process is the determination of the

eigenvalues. The ordering of the eigenvalues is purely arbitrary. If we
designate λ1 = 4 and λ2 = 1, the columns of P would be interchanged

and D would be
(

4 0
0 1

)
(see Exercise 3b of this section). Nonethe-

less, the final outcome of the application to which we are applying the
diagonalization process would be the same.

(2) If A is an n× n matrix with distinct eigenvalues, then P is also an n× n
matrix whose columns P (1), P (2), . . ., P (n) are n linearly independent
vectors.

Example 12.4.8 Diagonalization of a 3 by 3 matrix. Diagonalize the
matrix

A =

 1 12 −18
0 −11 18
0 −6 10

 .

First, we find the eigenvalues of A.

det(A− λI) = det

 1− λ 12 −18
0 −λ− 11 18
0 −6 10− λ

= (1− λ) det

(
−λ− 11 18
−6 10− λ

)
= (1− λ)((−λ− 11)(10− λ) + 108) = (1− λ)

(
λ2 + λ− 2

)
Hence, the equation det(A− λI) becomes

(1− λ)
(
λ2 + λ− 2

)
= −(λ− 1)2(λ + 2)

CHAPTER 12. MORE MATRIX ALGEBRA 329

Therefore, our eigenvalues for A are λ1 = −2 and λ2 = 1. We note that we do
not have three distinct eigenvalues, but we proceed as in the previous example.

Case 1. For λ1 = −2 the equation (A− λI)x = 0 becomes 3 12 −18
0 −9 18
0 −6 12

 x1
x2
x3

 =

 0
0
0

We can row reduce the matrix of coefficients to

 1 0 2
0 1 −2
0 0 0

.

The matrix equation is then equivalent to the equations x1 = −2x3 and x2 =
2x3. Therefore, the solution set, or eigenspace, corresponding to λ1 = −2
consists of vectors of the form −2x3

2x3
x3

 = x3

 −2
2
1

Therefore

 −2
2
1

 is an eigenvector corresponding to the eigenvalue λ1 =

−2, and can be used for our first column of P :

P =

 −2 ? ?
2 ? ?
1 ? ?

Before we continue we make the observation: E1 is a subspace of R3 with

basis
{

P (1)} and dim E1 = 1.
Case 2. If λ2 = 1, then the equation (A− λI)x = 0 becomes 0 12 −18

0 −12 18
0 −6 9

 x1
x2
x3

 =

 0
0
0

Without the aid of any computer technology, it should be clear that all

three equations that correspond to this matrix equation are equivalent to
2x2−3x3 = 0, or x2 = 3

2 x3. Notice that x1 can take on any value, so any vector
of the form x1

3
2 x3
x3

 = x1

 1
0
0

+ x3

 0
3
2
1

will solve the matrix equation.

We note that the solution set contains two independent variables, x1 and x3.
Further, note that we cannot express the eigenspace E2 as a linear combination
of a single vector as in Case 1. However, it can be written as

E2 =

x1

 1
0
0

+ x3

 0
3
2
1

 | x1, x3 ∈ R

 .

We can replace any vector in a basis is with a nonzero multiple of that
vector. Simply for aesthetic reasons, we will multiply the second vector that

CHAPTER 12. MORE MATRIX ALGEBRA 330

generates E2 by 2. Therefore, the eigenspace E2 is a subspace of R3 with basis
 1

0
0

 ,

 0
3
2

 and so dim E2 = 2.

What this means with respect to the diagonalization process is that λ2 = 1
gives us both Column 2 and Column 3 the diagonalizing matrix. The order is
not important so we have

P =

 −2 1 0
2 0 3
1 0 2

The reader can verify (see Exercise 5 of this section) that P −1 =

 0 2 −3
1 4 −6
0 −1 2

and P −1AP =

 −2 0 0
0 1 0
0 0 1

 □

In doing Example 12.4.8, the given 3 × 3 matrix A produced only two,
not three, distinct eigenvalues, yet we were still able to diagonalize A. The
reason we were able to do so was because we were able to find three linearly
independent eigenvectors. Again, the main idea is to produce a matrix P that
does the diagonalizing. If A is an n× n matrix, P will be an n× n matrix, and
its n columns must be linearly independent eigenvectors. The main question in
the study of diagonalizability is “When can it be done?” This is summarized in
the following theorem.

Theorem 12.4.9 A condition for diagonalizability. Let A be an n× n
matrix. Then A is diagonalizable if and only if A has n linearly independent
eigenvectors.
Proof. Outline of a proof: (⇐=) Assume that A has linearly independent
eigenvectors, P (1), P (2), . . . , P (n), with corresponding eigenvalues λ1, λ2, . . . ,
λn. We want to prove that A is diagonalizable. Column i of the n×n matrix AP
is AP (i) (see Exercise 7 of this section). Then, since the P (i) is an eigenvector of
A associated with the eigenvalue λi we have AP (i) = λiP

(i) for i = 1, 2, . . . , n.
But this means that AP = PD, where D is the diagonal matrix with diagonal
entries λ1, λ2, . . ., λn. If we multiply both sides of the equation by P −1 we get
the desired P −1AP = D.

(=⇒) The proof in this direction involves a concept that is not covered in
this text (rank of a matrix); so we refer the interested reader to virtually any
linear algebra text for a proof. ■

We now give an example of a matrix that is not diagonalizable.

Example 12.4.10 A Matrix that is Not Diagonalizable. Let us attempt

to diagonalize the matrix A =

 1 0 0
0 2 1
1 −1 4

CHAPTER 12. MORE MATRIX ALGEBRA 331

First, we determine the eigenvalues.

det(A− λI) = det

 1− λ 0 0
0 2− λ 1
1 −1 4− λ

= (1− λ) det

(
2− λ 1
−1 4− λ

)
= (1− λ)((2− λ)(4− λ) + 1)
= (1− λ)

(
λ2 − 6λ + 9

)
= (1− λ)(λ− 3)2

Therefore there are two eigenvalues, λ1 = 1 and λ2 = 3. Since λ1 is an eigenvalue
of degree one, it will have an eigenspace of dimension 1. Since λ2 is a double
root of the characteristic equation, the dimension of its eigenspace must be 2 in
order to be able to diagonalize.

Case 1. For λ1 = 1, the equation (A− λI)x = 0 becomes 0 0 0
0 1 1
1 −1 3

 x1
x2
x3

 =

 0
0
0

Row reduction of this system reveals one free variable and eigenspace x1

x2
x3

 =

 −4x3
−x3
x3

 = x3

 −4
−1
1

Hence,

 −4
−1
1

 is a basis for the eigenspace of λ1 = 1.

Case 2. For λ2 = 3, the equation (A− λI)x = 0 becomes −2 0 0
0 −1 1
1 −1 1

 x1
x2
x3

 =

 0
0
0

Once again there is only one free variable in the row reduction and so the

dimension of the eigenspace will be one: x1
x2
x3

 =

 0
x3
x3

 = x3

 0
1
1

Hence,

 0

1
1

 is a basis for the eigenspace of λ2 = 3. This means that

λ2 = 3 produces only one column for P . Since we began with only two
eigenvalues, we had hoped that λ2 = 3 would produce a vector space of
dimension two, or, in matrix terms, two linearly independent columns for P .
Since A does not have three linearly independent eigenvectors A cannot be
diagonalized. □

CHAPTER 12. MORE MATRIX ALGEBRA 332

12.4.3 SageMath Note - Diagonalization
We demonstrate how diagonalization can be done in Sage. We start by defining
the matrix to be diagonalized, and also declare D and P to be variables.

var ('␣D,␣P')
A = Matrix (QQ, [[4, 1, 0], [1, 5, 1], [0, 1, 4]]);A

[4 1 0]
[1 5 1]
[0 1 4]

We have been working with “right eigenvectors” since the x in Ax = λx
is a column vector. It’s not so common but still desirable in some situa-
tions to consider “left eigenvectors,” so SageMath allows either one. The
right_eigenmatrix method returns a pair of matrices. The diagonal matrix, D,
with eigenvalues and the diagonalizing matrix, P , which is made up of columns
that are eigenvectors corresponding to the eigenvectors of D.

(D,P)=A.right_eigenmatrix ();(D,P)

([6 0 0]
[0 4 0]
[0 0 3],
[1 1 1]
[2 0 -1]
[1 -1 1])

We should note here that P is not unique because even if an eigenspace has
dimension one, any nonzero vector in that space will serve as an eigenvector.
For that reason, the P generated by Sage isn’t necessarily the same as the one
computed by any other computer algebra system such as Mathematica. Here
we verify the result for our Sage calculation. Recall that an asterisk is used for
matrix multiplication in Sage.

P.inverse ()*A*P

[6 0 0]
[0 4 0]
[0 0 3]

Here is a second matrix to diagonalize.

A2=Matrix(QQ ,[[8,1,0],[1,5,1] ,[0,1,7]]);A2

[8 1 0]
[1 5 1]
[0 1 7]

Here we’ve already specified that the underlying system is the rational
numbers. Since the eigenvalues are not rational, Sage will revert to approximate
number by default. We’ll just pull out the matrix of eigenvectors this time and
display rounded entries.

P=A2.right_eigenmatrix ()[1]
P.numerical_approx(digits =3)
print('------------------')
D=(P.inverse ()*A2*P);D.numerical_approx(digits =3)

CHAPTER 12. MORE MATRIX ALGEBRA 333

[4.35 0.000 0.000]
[0.000 7.27 0.000]
[0.000 0.000 8.38]

Finally, we examine how Sage reacts to the matrix from Example 12.4.10
that couldn’t be diagonalized. Notice that the last column is a zero column,
indicating the absence of one needed eigenvector.

A3=Matrix(QQ ,[[1, 0, 0],[0,2,1],[1,-1,4]])
(D,P)=A3.right_eigenmatrix ();(D,P)

([1 0 0]
[0 3 0]
[0 0 3],
[1 0 0]
[1/4 1 0]
[-1/4 1 0])

12.4.4 Exercises
1.

(a) List three different eigenvectors of A =
(

2 1
2 3

)
, the matrix of

Example 12.4.2, associated with each of the two eigenvalues 1 and 4.
Verify your results.

(b) Choose one of the three eigenvectors corresponding to 1 and one of
the three eigenvectors corresponding to 4, and show that the two
chosen vectors are linearly independent.

2.
(a) Verify that E1 and E2 in Example 12.4.2 are vector spaces over R.

Since they are also subsets of R2, they are called subvector-spaces,
or subspaces for short, of R2. Since these are subspaces consisting of
eigenvectors, they are called eigenspaces.

(b) Use the definition of dimension in the previous section to find dim E1
and dim E2 . Note that dim E1 + dim E2 = dimR2. This is not a
coincidence.

3.

(a) Verify that P −1AP is indeed equal to
(

1 0
0 4

)
, as indicated in

Example 12.4.6.

(b) Choose P (1) =
(

1
2

)
and P (2) =

(
1
−1

)
and verify that the new

value of P satisfies P −1AP =
(

4 0
0 1

)
.

(c) Take two different (from the previous part) linearly independent
eigenvectors of the matrix A of Example 12.4.6 and verify that
P −1AP is a diagonal matrix.

4.

CHAPTER 12. MORE MATRIX ALGEBRA 334

(a) Let A be the matrix in Example 12.4.8 and P =

 0 1 0
1 0 1
1 0 2

.

Without doing any actual matrix multiplications, determine the
value of P −1AP

(b) If you choose the columns of P in the reverse order, what is P −1AP ?
5. Diagonalize the following, if possible:

(a)
(

1 2
3 2

)

(b)
(
−2 1
−7 6

)
(c)

(
3 0
0 4

)

(d)

 1 −1 4
3 2 −1
2 1 −1

(e)

 6 0 0
0 7 −4
9 1 3

(f)

 1 −1 0
−1 2 −1
0 −1 1

6. Diagonalize the following, if possible:

(a)
(

0 1
1 1

)

(b)
(

2 1
4 2

)
(c)

(
2 −1
1 0

)

(d)

 1 3 6
−3 −5 −6
3 3 6

(e)

 1 1 0
1 0 1
0 1 1

(f)

 2 −1 0
−1 2 −1
0 −1 2

7. Let A and P be as in Example 12.4.8. Show that the columns of the

matrix AP can be found by computing AP (1), AP (2), . . . , AP (n).
8. Prove that if P is an n × n matrix and D is a diagonal matrix with

diagonal entries d1, d2, . . . , dn, then PD is the matrix obtained from P ,
by multiplying column i of P by di, i = 1, 2, . . . , n.

12.5 Some Applications
A large and varied number of applications involve computations of powers
of matrices. These applications can be found in science, the social sciences,
economics, engineering, and, many other areas where mathematics is used. We
will consider a few diverse examples the mathematics behind these applications
here.

12.5.1 Diagonalization
We begin by developing a helpful technique for computing Am, m > 1. If A
can be diagonalized, then there is a matrix P such that P −1AP = D, where D
is a diagonal matrix and

Am = PDmP −1 for all m ≥ 1 (12.5.1)

The proof of this identity was an exercise in Section 5.4. The condition that
D be a diagonal matrix is not necessary but when it is, the calculation on the
right side is particularly easy to perform. Although the formal proof is done by
induction, the reason why it is true is easily seen by writing out an example

CHAPTER 12. MORE MATRIX ALGEBRA 335

such as m = 3:
A3 =

(
PDP −1)3

=
(
PDP −1) (PDP −1) (PDP −1)

= PD
(
P −1P

)
D
(
P −1P

)
DP −1 by associativity of matrix multiplication

= PDIDIDP −1

= PDDDP −1

= PD3P −1

Example 12.5.1 Application to Recursion: Matrix Computation
of the Fibonnaci Sequence. Consider the computation of terms of the
Fibonnaci Sequence. Recall that F0 = 1, F1 = 1 and Fk = Fk−1 + Fk−2 for
k ≥ 2.

In order to formulate the calculation in matrix form, we introduced the
“dummy equation” Fk−1 = Fk−1 so that now we have two equations

Fk = Fk−1 + Fk−2
Fk−1 = Fk−1

If A =
(

1 1
1 0

)
, these two equations can be expressed in matrix form as

(
Fk

Fk−1

)
=
(

1 1
1 0

)(
Fk−1
Fk−2

)
if k ≥ 2

= A

(
Fk−1
Fk−2

)
= A2

(
Fk−2
Fk−3

)
if k ≥ 3

etc.

We can use induction to prove that if k ≥ 2,(
Fk

Fk−1

)
= Ak−1

(
1
1

)
Next, by diagonalizing A and using the fact that Am = PDmP −1. we can

show that

Fk = 1√
5

((
1 +
√

5
2

)k

−
(

1−
√

5
2

)k
)

Some comments on this example:

(1) An equation of the form Fk = aFk−1 + bFk−2 , where a and b are given
constants, is referred to as a linear homogeneous second-order difference
equation. The conditions F0 = c0 and F1 = c1 , where c1 and c2 are
constants, are called initial conditions. Those of you who are familiar with
differential equations may recognize that this language parallels what is
used in differential equations. Difference (aka recurrence) equations move
forward discretely; that is, in a finite number of positive steps. On the
other hand, a differential equation moves continuously; that is, takes an
infinite number of infinitesimal steps.

(2) A recurrence relationship of the form Sk = aSk−1 + b, where a and b are
constants, is called a first-order difference equation. In order to write out

CHAPTER 12. MORE MATRIX ALGEBRA 336

the sequence, we need to know one initial condition. Equations of this
type can be solved similarly to the method outlined in the example by
introducing the superfluous equation 1 = 0 · Fk−1 + 1 to obtain in matrix
equation:(

Fk

1

)
=
(

a b

0 1

)(
Sk−1

1

)
⇒
(

Fk

1

)
=
(

a b

0 1

)k (
F0
1

)
□

12.5.2 Path Counting
In the next example, we apply the following theorem, which can be proven by
induction.
Theorem 12.5.2 Path Counting Theorem. If A is the adjacency matrix
of a graph with vertices {v1, v2, . . . , vn}, then the entry

(
Ak
)

ij
is the number of

paths of length k from node vi to node vj.

Example 12.5.3 Counting Paths with Diagonalization. Consider the
graph in Figure 12.5.4.

Figure 12.5.4 Counting Numbers of Paths
As we saw in Section 6.4, the adjacency matrix of this graph is A = 1 1 0
1 0 1
0 1 1

.

Recall that Ak is the adjacency matrix of the relation rk, where r is the
relation {(a, a), (a, b), (b, a), (b, c), (c, b), (c, c)} of the above graph. Also recall
that in computing Ak, we used Boolean arithmetic. What happens if we use

“regular” arithmetic? If we square A we get A2 =

 2 1 1
1 2 1
1 1 2

How can we interpret this? We note that A33 = 2 and that there are two

paths of length two from c (the third node) to c. Also, A13 = 1, and there
is one path of length 2 from a to c. The reader should verify these claims by
examining the graph.

How do we compute Ak for possibly large values of k? From the discussion at
the beginning of this section, we know that Ak = PDkP −1 if A is diagonalizable.
We leave to the reader to show that λ = 1, 2, and − 1 are eigenvalues of A
with eigenvectors 1

0
−1

 ,

 1
1
1

 , and

 1
−2
1

Then

Ak = P

 1 0 0
0 2k 0
0 0 (−1)k

P −1

where P =

 1 1 1
0 1 −2
−1 1 1

 and P −1 =

 1
2 0 − 1

2
1
3

1
3

1
3

1
6 − 1

3
1
6

CHAPTER 12. MORE MATRIX ALGEBRA 337

See Exercise 12.5.5.5 of this section for the completion of this example. □

12.5.3 Matrix Calculus
Example 12.5.5 Matrix Calculus - Exponentials. Those who have
studied calculus recall that the Maclaurin series is a useful way of expressing
many common functions. For example, ex =

∑∞
k=0

xk

k! . Indeed, calculators and
computers use these series for calculations. Given a polynomial f(x), we defined
the matrix-polynomial f(A) for square matrices in Chapter 5. Hence, we are in
a position to describe eA for an n× n matrix A as a limit of polynomials, the
partial sums of the series. Formally, we write

eA = I + A + A2

2! + A3

3! + · · · =
∞∑

k=0

Ak

k!

Again we encounter the need to compute high powers of a matrix. Let A be
an n× n diagonalizable matrix. Then there exists an invertible n× n matrix P
such that P −1AP = D, a diagonal matrix, so that

eA = eP DP −1

=
∞∑

k=0

(
PDP −1)k

k!

= P

(∞∑
k=0

Dk

k!

)
P −1

The infinite sum in the middle of this final expression can be easily evaluated
if D is diagonal. All entries of powers off the diagonal are zero and the i th

entry of the diagonal is(∞∑
k=0

Dk

k!

)
ii =

∞∑
k=0

Dii
k

k! = eDii

For example, if A =
(

2 1
2 3

)
, the first matrix we diagonalized in Section

12.3, we found that P =
(

1 1
−1 2

)
and D =

(
1 0
0 4

)
.

Therefore,

eA =
(

1 1
−1 2

)(
e 0
0 e4

)(2
3 − 1

3
1
3

1
3

)
=
(

2e
3 + e4

3 − e
3 + e4

3
− 2e

3 + 2e4

3
e
3 + 2e4

3

)

≈
(

20.0116 17.2933
34.5866 37.3049

)
□

Remark 12.5.6 Many of the ideas of calculus can be developed using matrices.

For example, if A(t) =
(

t3 3t2 + 8t

et 2

)
then dA(t)

dt =
(

3t2 6t + 8
et 0

)
Many of the basic formulas in calculus are true in matrix calculus. For

CHAPTER 12. MORE MATRIX ALGEBRA 338

example,
d(A(t) + B(t))

dt
= dA(t)

dt
+ dB(t)

dt

and if A is a constant matrix,

deAt

dt
= AeAt

Matrix calculus can be used to solve systems of differential equations in a
similar manner to the procedure used in ordinary differential equations.

12.5.4 SageMath Note - Matrix Exponential
Sage’s matrix exponential method is exp.

A=Matrix(QQ ,[[2 ,1] ,[2 ,3]])
A.exp()

[1/3*e^4 + 2/3*e 1/3*e^4 - 1/3*e]
[2/3*e^4 - 2/3*e 2/3*e^4 + 1/3*e]

12.5.5 Exercises
1.

(a) Write out all the details of Example 12.5.1 to show that the formula
for Fk given in the text is correct.

(b) Use induction to prove the assertion made in the example that(
Fk

Fk−1

)
= Ak−1

(
1
1

)
2.

(a) Do Example 8.3.14 using the method outlined in Example 12.5.1.
Note that the terminology characteristic equation, characteristic
polynomial, and so on, introduced in Chapter 8, comes from the
language of matrix algebra,

(b) What is the significance of Algorithm 8.3.12, part c, with respect to
this section?

3. Solve S(k) = 5S(k − 1) + 4, with S(0) = 0, using the method of this
section.

4. How many paths are there of length 6 from vertex 1 to vertex 3 in
Figure 12.5.7? How many paths from vertex 2 to vertex 2 of length 6 are
there?

Figure 12.5.7 Graph for exercise 4

CHAPTER 12. MORE MATRIX ALGEBRA 339

Hint. The characteristic polynomial of the adjacency matrix is λ4 − 4λ2.
5. Regarding Example 12.5.3,

(a) Use matrices to determine the number of paths of length 1 that exist
from vertex a to each of the vertices in the given graph. Verify using
the graph. Do the same for vertices b and c.

(b) Verify all the details provided in the example.

(c) Use matrices to determine the number of paths of length 4 there
between each pair of nodes in the graph. Verify your results using
the graph.

6. Let A =
(

2 −1
−1 2

)
(a) Find eA

(b) Recall that sin x =
∑∞

k=0
(−1)kxk

(2k+1)! and compute sin A.

(c) Formulate a reasonable definition of the natural logarithm of a matrix
and compute ln A.

7. We noted in Chapter 5 that since matrix algebra is not commutative

under multiplication, certain difficulties arise. Let A =
(

1 1
0 0

)
and

B =
(

0 0
0 2

)
.

(a) Compute eA, eB , and eA+B . Compare eAeB , eBeA and eA+B .

(b) Show that if 000 is the 2× 2 zero matrix, then e000 = I.

(c) Prove that if A and B are two matrices that do commute, then
eA+B = eAeB , thereby proving that eA and eB commute.

(d) Prove that for any matrix A,
(
eA
)−1 = e−A.

8. Another observation for adjacency matrices: For the matrix in Exam-
ple 12.5.3, note that the sum of the elements in the row corresponding to
the node a (that is, the first row) gives the outdegree of a. Similarly, the
sum of the elements in any given column gives the indegree of the node
corresponding to that column.

Figure 12.5.8 Graph for exercise 8

(a) Using the matrix A of Example 12.5.3, find the outdegree and the
indegree of each node. Verify by the graph.

(b) Repeat part (a) for the directed graphs in Figure 12.5.8.

CHAPTER 12. MORE MATRIX ALGEBRA 340

12.6 Linear Equations over the Integers Mod 2

12.6.1 Row reduction mod 2
The methods we have studied for solving systems of equations up to this
point can be applied to systems in which all arithmetic is done over other
algebraic systems, including the integers modulo 2. The mod 2 case will become
particularly useful in our later study of coding theory.

When solving systems of equations with mod 2 arithmetic, the elementary
row operations are still fundamental. However, since there is only one nonzero
element, 1, you never need to multiply a row by a nonzero constant. One other
big difference is that the number of possible solutions is always finite. If you
have m linear equations in n unknowns, each unknown can only take on one of
two values, 0 or 1. Therefore there are only 2n possible n-tuples to from which
to draw a solution set. Assuming m ≤ n, you typically (but not always) will
have m basic variables after row-reduction and n−m free variable. If this is
the case, and any solution exists, there will be 2n−m different solutions.

Let’s look at an example, which is coverted to matrix form immediately.

x1 + x2 + x4 = 1
x1 + x3 + x5 = 0

x2 + x3 + x6= 0

The augmented matrix of the system is 1 1 0 1 0 0 1
1 0 1 0 1 0 0
0 1 1 0 0 1 0

The steps in row-reducing this matrix follow. Entries on which we “pivot” are
displayed in bold face to more easily identify the basic variables. 1 1 0 1 0 0 1

1 0 1 0 1 0 0
0 1 1 0 0 1 0

 add R1 to R2−→

 1 1 0 1 0 0 1
0 1 1 1 1 0 1
0 1 1 0 0 1 0

add R2 to R1−→

 1 0 1 0 1 0 0
0 1 1 1 1 0 1
0 1 1 0 0 1 0

add R2 to R3−→

 1 0 1 0 1 0 0
0 1 1 1 1 0 1
0 0 0 1 1 1 1

Notice that at this point, we cannot pivot on the third row, third column

since that entry is zero. Therefore we move over to the next column, making
the x4 basic.

add R3 to R2−→

 1 0 1 0 1 0 0
0 1 1 0 0 1 0
0 0 0 1 1 1 1

This completes the row reduction and we can now identify the solution set.

Keep in mind that since addition is subtraction, terms can be moved to either
side of an equals sign without any change in sign. The basic variables are x1,

CHAPTER 12. MORE MATRIX ALGEBRA 341

x2, and x4, while the other three variables are free. The general solution of the
system is

x1 = x3 + x5
x2 = x3 + x6

x3 = x3
x4 = 1 + x5 + x6

x5 = x5
x6 = x6

With three free variables, there are 23 = 8 solutions to this system. For
example, one of them is obtained by setting x3 = 1, x5 = 1, and x6 = 0, which
produces (x1, x2, x3, x4, x5, x6) = (0, 1, 1, 0, 1, 0).

We can check our row reduction with SageMath:

H=Matrix(Integers (2) ,[[1,1,0,1,0,0,1],
[1,0,1,0,1,0,0],[0,1,1,0,0,1,0]])

H.echelon_form ()

[1 0 1 0 1 0 0]
[0 1 1 0 0 1 0]
[0 0 0 1 1 1 1]

12.6.2 Exercises
In all of the exercises that follow, the systems of equations are over Z2, and so
mod 2 arithmetic should be used in solving them.

1. Solve the following systems, describing the solution sets completely:

(a) x1 + x2 = 0
x1 + x3= 0

(b)

x1 + x2 = 0
x2 + x3 = 0

x3 + x4= 1
x1 + x2 + x3 = 1

2. This exercise provides an example in which the number of basic variables
is less than the number of equations. The only difference between the two
systems below is the right hand sides. You can start with an augmented
matrix having two right side columns and do row reduction for both
systems at the same time.

(a)
x1 + x2 + x4= 1
x1 + x3 + x4= 0

x2 + x3 = 1

(b)
x1 + x2 + x4= 1
x1 + x3 + x4= 0

x2 + x3 = 0
3. This exercise motivates the concept of a coset in Chapter 15.

(a) Solve the following system and prove that the solution set is a linear
combination of vectors in Z5

2 and also a subgroup of the group Z5
2

CHAPTER 12. MORE MATRIX ALGEBRA 342

under coordinatewise mod 2 addition.

x1 + x2 + x5= 0
x1 + x3 + x5= 0
x1 + x3 + x4 = 0

x2 + x3 + x4 = 0

(b) Describe the solution set to the following system as it relates to the
solution set to the system in the previous part of this exercise.

x1 + x2 + x5= 1
x1 + x3 + x5= 0
x1 + x3 + x4 = 1

x2 + x3 + x4 = 0

343

CHAPTER 13. BOOLEAN ALGEBRA 344

Chapter 13

Boolean Algebra

Figure 13.0.1 George Boole, 1815 - 1864

CHAPTER 13. BOOLEAN ALGEBRA 345

George Boole

George Boole wasn’t idle a lot.
He churned out ideas on the spot,

Making marvellous use of
Inclusive/exclusive

Expressions like AND, OR, and NOT

Andrew Robinson, The Omnificent English Dictionary In Limerick Form

In this chapter we will develop a type of algebraic system, Boolean algebras,
that is particularly important to computer scientists, as it is the mathematical
foundation of computer design, or switching theory. The similarities of Boolean
algebras and the algebra of sets and logic will be discussed, and we will discover
properties of finite Boolean algebras.

In order to achieve these goals, we will recall the basic ideas of posets
introduced in Chapter 6 and develop the concept of a lattice. The reader should
view the development of the topics of this chapter as another example of an
algebraic system. Hence, we expect to define first the elements in the system,
next the operations on the elements, and then the common properties of the
operations in the system.

13.1 Posets Revisited
We recall the definition a partially ordering:

Definition 13.1.1 Partial Ordering. Let ⪯ be a relation on a set L. We say
that ⪯ is a partial ordering on L if it is reflexive, antisymmetric, and transitive.
That is:

(1) ⪯ is reflexive: a ⪯ a ∀a ∈ L

(2) ⪯ is antisymmetric: a ⪯ b and a ̸= b⇒ b ⪯̸ a ∀a, b ∈ L

(3) ⪯ is transitive: a ⪯ b and b ⪯ c⇒ a ⪯ c ∀a, b, c ∈ L

The set together with the relation (L,⪯) is called a poset. ♢

Example 13.1.2 Some posets. We recall a few examples of posets:
(a) (R,≤) is a poset. Notice that our generic symbol for the partial ordering,
⪯, is selected to remind us that a partial ordering is similar to “less than
or equal to.”

(b) Let A = {a, b}. Then (P(A),⊆) is a poset.

(c) Let L = {1, 2, 3, 6}. Then (L, |) is a poset.

□
The posets we will concentrate on in this chapter will be those which have

upper and lower bounds in relation to any pair of elements. Next, we define
this concept precisely.

Definition 13.1.3 Lower Bound, Upper Bound. Let (L,⪯) be a poset,
and a, b ∈ L. Then c ∈ L is a lower bound of a and b if c ⪯ a and c ⪯ b. Also,
d ∈ L is an upper bound of a and b if a ⪯ d and b ⪯ d. ♢

In most of the posets that will interest us, every pair of elements have both
upper and lower bounds, though there are posets for which this is not true.

CHAPTER 13. BOOLEAN ALGEBRA 346

Definition 13.1.4 Greatest Lower Bound. Let (L,⪯) be a poset. If
a, b ∈ L, then ℓ ∈ L is a greatest lower bound of a and b if and only if

• ℓ ⪯ a

• ℓ ⪯ b

• If ℓ′ ∈ L such that ℓ′ ⪯ a and ℓ′ ⪯ b, then ℓ′ ⪯ ℓ.

♢
The last condition in the definition of Greatest Lower Bound says that if ℓ′

is also a lower bound, then ℓ is “greater” in relation to ⪯ than ℓ′. The definition
of a least upper bound is a mirror image of a greatest lower bound:

Definition 13.1.5 Least Upper Bound. Let (L,⪯) be a poset. If a, b ∈ L,
then u ∈ L is a least upper bound of a and b if and only if

• a ⪯ u

• b ⪯ u

• If u′ ∈ L such that if a ⪯ u′ and b ⪯ u′, then u ⪯ u′.

♢
Notice that the two definitions above refer to “...a greatest lower bound”

and “a least upper bound.” Any time you define an object like these you need
to have an open mind as to whether more than one such object can exist. In
fact, we now can prove that there can’t be two greatest lower bounds or two
least upper bounds.

Theorem 13.1.6 Uniqueness of Least Upper and Greatest Lower
Bounds. Let (L,⪯) be a poset, and a, b ∈ L. If a greatest lower bound of a
and b exists, then it is unique. The same is true of a least upper bound, if it
exists.
Proof. Let ℓ and ℓ′ be greatest lower bounds of a and b. We will prove that
ℓ = ℓ′.

(1) ℓ a greatest lower bound of a and b ⇒ ℓ is a lower bound of a and b.

(2) ℓ′ a greatest lower bound of a and b and ℓ a lower bound of a and b
⇒ ℓ ⪯ ℓ′, by the definition of greatest lower bound.

(3) ℓ′ a greatest lower bound of a and b ⇒ ℓ′ is a lower bound of a and b.

(4) ℓ a greatest lower bound of a and b and ℓ′ a lower bound of a and b.
⇒ ℓ′ ⪯ ℓ by the definition of greatest lower bound.

(5) ℓ ⪯ ℓ′ and ℓ′ ⪯ ℓ ⇒ ℓ = ℓ′ by the antisymmetry property of a partial
ordering.

The proof of the second statement in the theorem is almost identical to the
first and is left to the reader. ■

Definition 13.1.7 Greatest Element, Least Element. Let (L,⪯) be a
poset. M ∈ L is called the greatest (maximum) element of L if, for all a ∈ L,
a ⪯M . In addition, m ∈ L is called the least (minimum) element of L if for all
a ∈ L, m ⪯ a. The greatest and least elements, when they exist, are frequently
denoted by 111 and 000 respectively. ♢

Example 13.1.8 Bounds on the divisors of 105. Consider the partial
ordering “divides” on L = {1, 3, 5, 7, 15, 21, 35, 105}. Then (L, |) is a poset. To
determine the least upper bound of 3 and 7, we look for all u ∈ L, such that

CHAPTER 13. BOOLEAN ALGEBRA 347

3|u and 7|u. Certainly, both u = 21 and u = 105 satisfy these conditions and
no other element of L does. Next, since 21|105, 21 is the least upper bound of 3
and 7. Similarly, the least upper bound of 3 and 5 is 15. The greatest element
of L is 105 since a|105 for all a ∈ L. To find the greatest lower bound of 15
and 35, we first consider all elements g of L such that g | 15. They are 1, 3, 5,
and 15. The elements for which g | 35 are 1, 5, 7, and 35. From these two lists,
we see that ℓ = 5 and ℓ = 1 satisfy the required conditions. But since 1|5, the
greatest lower bound is 5. The least element of L is 1 since 1|a for all a ∈ L. □

Definition 13.1.9 The Set of Divisors of an Integer. For any positive
integer n, the divisors of n is the set of integers that divide evenly into n. We
denote this set Dn. ♢

For example, the set L of Example 13.1.8 is D105.

Example 13.1.10 The power set of a three element set. Consider the
poset (P(A),⊆), where A = {1, 2, 3}. The greatest lower bound of {1, 2} and
{1, 3} is ℓ = {1}. For any other element ℓ′ which is a subset of {1, 2} and {1, 3}
(there is only one; what is it?), ℓ′ ⊆ ℓ. The least element of P(A) is ∅ and the
greatest element is A = {1, 2, 3}. The Hasse diagram of this poset is shown in
Figure 13.1.11.

Figure 13.1.11 Power Set of {1, 2, 3}
□

The previous examples and definitions indicate that the least upper bound
and greatest lower bound are defined in terms of the partial ordering of the
given poset. It is not yet clear whether all posets have the property such that
every pair of elements always has both a least upper bound and greatest lower
bound. Indeed, this is not the case (see Exercise 13.1.3).

Exercises
1. Consider the poset (D30, |), where D30 = {1, 2, 3, 5, 6, 10, 15, 30}.

(a) Find all lower bounds of 10 and 15.

(b) Find the greatest lower bound of 10 and 15.

(c) Find all upper bounds of 10 and 15.

(d) Determine the least upper bound of 10 and 15.

(e) Draw the Hasse diagram for D30 with respect to |. Compare this
Hasse diagram with that of Example 13.1.10. Note that the two
diagrams are structurally the same.

CHAPTER 13. BOOLEAN ALGEBRA 348

2. List the elements of the sets D8, D50, and D1001. For each set, draw the
Hasse diagram for “divides.”

3. Figure 13.1.12 contains Hasse diagrams of posets.
(a) Determine the least upper bound and greatest lower bound of all

pairs of elements when they exist. Indicate those pairs that do not
have a least upper bound (or a greatest lower bound).

(b) Find the least and greatest elements when they exist.

Figure 13.1.12 Figure for Exercise 3
4. For the poset (N,≤), what are the greatest lower bound and least upper

bound of two elements a and b? Are there least and/or greatest elements?
5.

(a) Prove the second part of Theorem 13.1.6, the least upper bound of
two elements in a poset is unique, if one exists.

(b) Prove that if a poset L has a least element, then that element is
unique.

6. We naturally order the numbers in Am = {1, 2, ..., m} with “less than or
equal to,” which is a partial ordering. We define an ordering, ⪯ on the
elements of Am ×An by

(a, b) ⪯ (a′, b′)⇔ a ≤ a′ and b ≤ b′

(a) Prove that ⪯ is a partial ordering on Am ×An.

(b) Draw the ordering diagrams for ⪯ on A2×A2, A2×A3, and A3×A3.

(c) In general, how does one determine the least upper bound and
greatest lower bound of two elements of Am ×An, (a, b) and (a′, b′)?

(d) Are there least and/or greatest elements in Am ×An?
7. Let P0 be the set of all subsets T of S = {1, 2, . . . , 9} such that the sum of

the elements in T is even. (Note that the empty set ∅ will be included as
an element of P0.) For instance, {2, 3, 6, 7} is in P0 because 2 + 3 + 6 + 7
is even, but {1, 3, 5, 6} is not in P0 because 1 + 3 + 5 + 6 is odd. Consider

CHAPTER 13. BOOLEAN ALGEBRA 349

the poset (P0,⊆). Let A = {1, 2, 3, 6} and B = {2, 3, 6, 7} be elements of
P0.

(a) Explain why A ∩B is not element of the poset.

(b) Use the definitions of the italicized terms and the given partial
ordering to complete the following statements:

(i) R ∈ P0 is an upper bound of A and B if
(ii) R ∈ P0 is the least element of P0 if

(c) Find three different upper bounds of A and B.

(d) Find the least upper bound of A and B. If it doesn’t exist, explain
why not.

13.2 Lattices
In this section, we restrict our discussion to lattices, those posets for which
every pair of elements has both a greatest lower bound and least upper bound.
We first introduce some notation.
Definition 13.2.1 Join, Meet. Let (L,⪯) be a poset, and a, b ∈ L. We
define:

• a∨ b, read “a join b”, as the least upper bound of a and b, if it exists. and

• a ∧ b, read “a meet b”, as the greatest lower bound of a and b, if it exists.

♢
Since the join and meet produce a unique result in all cases where they

exist, by Theorem 13.1.6, we can consider them as binary operations on a set if
they always exist. Thus the following definition:

Definition 13.2.2 Lattice. A lattice is a poset (L,⪯) for which every pair of
elements has a greatest lower bound and least upper bound. Since a lattice L is
an algebraic system with binary operations ∨ and ∧, it is denoted by [L;∨,∧].
If we want to make it clear what partial ordering the lattice is based on, we say
it is a lattice under ⪯. ♢

Example 13.2.3 The power set of a three element set. Consider the
poset (P(A),⊆) we examined in Example 13.1.10. It isn’t too surprising that
every pair of sets had a greatest lower bound and least upper bound. Thus, we
have a lattice in this case; and A∨B = A∪B and A∧B = A∩B. The reader
is encouraged to write out the operation tables [P(A);∪,∩]. □

Our first concrete lattice can be generalized to the case of any set A,
producing the lattice [P(A);∨,∧], where the join operation is the set operation
of union and the meet operation is the operation intersection; that is, ∨ = ∪
and ∧ = ∩.

It can be shown (see the exercises) that the commutative laws, associative
laws, idempotent laws, and absorption laws are all true for any lattice. A
concrete example of this is clearly [P(A);∪,∩], since these laws hold in the
algebra of sets. This lattice also has distributive property in that join is
distributive over meet and meet is distributive over join. However, this is not
always the case for lattices in general.

Definition 13.2.4 Distributive Lattice. Let L = [L;∨,∧] be a lattice
under ⪯ . L is called a distributive lattice if and only if the distributive laws

CHAPTER 13. BOOLEAN ALGEBRA 350

hold; that is, for all a, b, c ∈ L we have

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
and

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

♢

Example 13.2.5 A Nondistributive Lattice. We now give an example
of a lattice where the distributive laws do not hold. Let L = {000, a, b, c,111}. We
define the partial ordering ⪯ on L by the set

{(000,000), (000, a), (000, b), (000, c), (000,111), (a, a), (a,111), (b, b), (b,111), (c, c), (c,111), (111,111)}

The operation tables for ∨ and ∧ on L are:

∨ 000 a b c 111
000 000 a b c 111
a a a 111 111 111
b b 111 b 111 111
c c 111 111 c 111
111 111 111 111 111 111

∧ 000 a b c 111
000 000 000 000 000 000
a 000 a 000 000 a

b 000 000 b 000 b

c 000 000 000 c c

111 000 a b c 111

Since every pair of elements in L has both a join and a meet, [L;∨,∧] is a
lattice (under divides). Is this lattice distributive? We note that: a ∨ (c ∧ b) =
a∨000 = a and (a∨ c)∧ (a∨ b) = 111∧111 = 111. Therefore, a∨ (b∧ c) ̸= (a∨ b)∧ (a∨ c)
for some values of a, b, c ∈ L. Thus, this lattice is not distributive. □

Our next observation uses the term “sublattice”, which we have not defined
at this point, but we would hope that you could anticipate a definition, and we
will leave it as an exercise to do so.

It can be shown that a lattice is nondistributive if and only if it contains
a sublattice isomorphic to one of the lattices in Figure 13.2.6. The ordering
diagram on the right of this figure, produces the diamond lattice, which is
precisely the one that is defined in Example 13.2.5. The lattice based on the
left hand poset is called the pentagon lattice.

Figure 13.2.6 Nondistributive lattices, the pentagon and diamond lattices

Exercises
1. Let L be the set of all propositions generated by p and q. What are the

meet and join operations in this lattice under implication? What are the
maximum and minimum elements?

2. Which of the posets in Exercise 13.1.3 are lattices? Which of the lattices
are distributive?

CHAPTER 13. BOOLEAN ALGEBRA 351

3.
(a) State the commutative laws, associative laws, idempotent laws, and

absorption laws for lattices.

(b) Prove laws you stated.
4. Demonstrate that the pentagon lattice is nondistributive.
5. What is a reasonable definition of the term sublattice?
6. Let [L;∨,∧] be a lattice based on a partial ordering ⪯. Prove that if

a, b, c ∈ L,
(a) a ⪯ a ∨ b.

(b) a ∧ b ⪯ a.

(c) b ⪯ a and c ⪯ a⇒ b ∨ c ⪯ a.

13.3 Boolean Algebras
In order to define a Boolean algebra, we need the additional concept of comple-
mentation. A lattice must have both a greatest element and a least element in
order for complementation to take place. The following definition will save us
some words in the rest of this section.
Definition 13.3.1 Bounded Lattice. A bounded lattice is a lattice that
contains both a least element and a greatest element. ♢

We use the symbols 000 and 111 for the least and greatest elements of a bounded
lattice in the remainder of this section.
Definition 13.3.2 The Complement of a Lattice Element. Let [L;∨,∧]
be a bounded lattice. If a ∈ L, then a has a complement if there exists b ∈ L
such that

a ∨ b = 111
and

a ∧ b = 000

♢
Notice that by the commutative laws for lattices, if b complements a, then

a complements b.

Definition 13.3.3 Complemented Lattice. Let L = [L;∨,∧] be a bounded
lattice. L is a complemented lattice if every element of L has a complement in
L. ♢

Example 13.3.4 Set Complement is a Complement. In Chapter 1, we
defined the complement of a subset of any universe. This turns out to be a
concrete example of the general concept we have just defined, but we will reason
through why this is the case here. Let L = P(A), where A = {a, b, c}. Then
[L;∪,∩] is a bounded lattice with 0 = ∅ and 1 = A. To find the complement, if
it exists, of B = {a, b} ∈ L, for example, we want D such that

{a, b} ∩D = ∅
and

{a, b} ∪D = A

It’s not too difficult to see that D = {c}, since we need to include c to make
the first condition true and can’t include a or b if the second condition is to be
true. Of course this is precisely how we defined Ac in Chapter 1. Since it can
be shown that each element of L has a complement (see Exercise 1), [L;∪,∩] is

CHAPTER 13. BOOLEAN ALGEBRA 352

a complemented lattice. Note that if A is any set and L = P(A), then [L;∪,∩]
is a complemented lattice where the complement of B ∈ L is Bc = A−B. □

In Example 13.3.4, we observed that the complement of each element of L
is unique. Is this always true in a complemented lattice? The answer is no.
Consider the following.

Example 13.3.5 A Lattice for which complements are not unique.
Let L = {1, 2, 3, 5, 30} and consider the lattice [L;∨,∧] (under “divides”). The
least element of L is 1 and the greatest element is 30. Let us compute the
complement of the element a = 2. We want to determine ā such that 2 ∧ ā = 1
and 2 ∨ ā = 30. Certainly, ā = 3 works, but so does ā = 5, so the complement
of a = 2 in this lattice is not unique. However, [L;∨,∧] is still a complemented
lattice since each element does have at least one complement. □

Definition 13.3.6 Complementation as an operation. If a complemented
lattice has the property that the complement of every element is unique, then
we consider complementation to be a unary operation. The usual notation for
the complement of a is ā. ♢

The following theorem gives us an insight into when uniqueness of comple-
ments occurs.
Theorem 13.3.7 One condition for unique complements. If [L;∨,∧]
is a complemented, distributive lattice, then the complement of each element
a ∈ L is unique.
Proof. Let a ∈ L and assume to the contrary that a has two complements,
namely a1 and a2. Then by the definition of complement,

a ∧ a1 = 0 and a ∨ a1 = 1,

and

a ∧ a2 = 0 and a ∨ a2 = 1,

.

Then

a1 = a1 ∧ 111 = a1 ∧ (a ∨ a2)
= (a1 ∧ a) ∨ (a1 ∧ a2)
= 000 ∨ (a1 ∧ a2)
= a1 ∧ a2

On the other hand,

a2 = a2 ∧ 111 = a2 ∧ (a ∨ a1)
= (a2 ∧ a) ∨ (a2 ∧ a1)
= 000 ∨ (a2 ∧ a1)
= a2 ∧ a1

= a1 ∧ a2

Hence a1 = a2, which contradicts the assumption that a has two different
complements. ■

Definition 13.3.8 Boolean Algebra. A Boolean algebra is a lattice that
contains a least element and a greatest element and that is both complemented
and distributive. The notation [B;∨,∧, ¯] is used to denote the boolean
algebra with operations join, meet and complementation. ♢

CHAPTER 13. BOOLEAN ALGEBRA 353

Since the complement of each element in a Boolean algebra is unique (by
Theorem 13.3.7), complementation is a valid unary operation over the set under
discussion, which is why we will list it together with the other two operations
to emphasize that we are discussing a set together with three operations. Also,
to help emphasize the distinction between lattices and lattices that are Boolean
algebras, we will use the letter B as the generic symbol for the set of a Boolean
algebra; that is, [B;∨,∧, ¯] will stand for a general Boolean algebra.

Example 13.3.9 Boolean Algebra of Sets. Let A be any set, and let
B = P(A). Then [B;∪,∩, c] is a Boolean algebra. Here, c stands for the
complement of an element of B with respect to A, A−B.

This is a key example for us since all finite Boolean algebras and many
infinite Boolean algebras look like this example for some A. In fact, a glance
at the basic Boolean algebra laws in Table 13.3.11, in comparison with the set
laws of Chapter 4 and the basic laws of logic of Chapter 3, indicates that all
three systems behave the same; that is, they are isomorphic. □

Example 13.3.10 Divisors of 30. A somewhat less standard example of a
boolean algebra is derived from the lattice of divisors of 30 under the relation
“divides”. If you examine the ordering diagram for this lattice, you see that it
is structurally the same as the boolean algebra of subsets of a three element
set. Therefore, the join, meet and complementation operations act the same
as union, intersection and set complementation. We might conjecture that the
lattice of divisors of any integer will produce a boolean algebra, but it is only
the case of certain integers. Try out a few integers to see if you can identify
what is necessary to produce a boolean algebra. □

Table 13.3.11 Basic Boolean Algebra Laws

Commutative Laws a ∨ b = b ∨ a a ∧ b = b ∧ a

Associative Laws a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∧ (b ∧ c) = (a ∧ b) ∧ c

Distributive Laws a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
Identity Laws a ∨ 0 = 0 ∨ a = a a ∧ 1 = 1 ∧ a = a

Complement Laws a ∨ ā = 1 a ∧ ā = 0
Idempotent Laws a ∨ a = a a ∧ a = a

Null Laws a ∨ 1 = 1 a ∧ 0 = 0
Absorption Laws a ∨ (a ∧ b) = a a ∧ (a ∨ b) = a

DeMorgan’s Laws a ∨ b = ā ∧ b̄ a ∧ b = ā ∨ b̄

Involution Law ā = a

The “pairings” of the boolean algebra laws reminds us of the principle of
duality, which we state for a Boolean algebra.

Definition 13.3.12 Principle of Duality for Boolean Algebras. Let
B = [B;∨,∧, c] be a Boolean algebra under ⪯, and let S be a true statement
for B. If S∗ is obtained from S by replacing ⪯ with ⪰ (this is equivalent to
turning the graph upside down), ∨ with ∧, ∧ with ∨, 000 with 111, and 111 with 000,
then S∗ is also a true statement in B. ♢

Exercises
1. Determine the complement of each element B ∈ L in Example 13.3.4. Is

this lattice a Boolean algebra? Why?
2.

(a) Determine the complement of each element of D6 in [D6;∨,∧].

CHAPTER 13. BOOLEAN ALGEBRA 354

(b) Repeat part a using the lattice in Example 13.2.5.

(c) Repeat part a using the lattice in Exercise 13.1.1.

(d) Are the lattices in parts a, b, and c Boolean algebras? Why?
3. Determine which of the lattices of Exercise 13.1.3 of Section 13.1 are

Boolean algebras.
4. Let A = {a, b} and B = P(A).

(a) Prove that [B;∪,∩, c] is a Boolean algebra.

(b) Write out the operation tables for the Boolean algebra.
5. It can be shown that the following statement, S, holds for any Boolean

algebra [B;∨,∧,−] : (a ∧ b) = a if and only if a ≤ b.
(a) Write the dual, S∗, of the statement S.

(b) Write the statement S and its dual, S∗, in the language of sets.

(c) Are the statements in part b true for all sets?

(d) Write the statement S and its dual, S∗, in the language of logic.

(e) Are the statements in part d true for all propositions?
6. State the dual of:

(a) a ∨ (b ∧ a) = a.

(b) a ∨
((

b̄ ∨ a
)
∧ b
)

= 1.

(c)
(

a ∧ b̄
)
∧ b = a ∨ b.

7. Formulate a definition for isomorphic Boolean algebras.
8. For what positive integers, n, does the lattice [Dn, |] produce a boolean

algebra?

13.4 Atoms of a Boolean Algebra
In this section we will look more closely at something we’ve hinted at, which
is that every finite Boolean algebra is isomorphic to an algebra of sets. We
will show that every finite Boolean algebra has 2n elements for some n with
precisely n generators, called atoms.

Consider the Boolean algebra [B;∨,∧,̄], whose ordering diagram is depicted
in Figure 13.4.1

CHAPTER 13. BOOLEAN ALGEBRA 355

Figure 13.4.1 Illustration of the atom concept
We note that 1 = a1 ∨ a2 ∨ a3, b1 = a1 ∨ a2, b2 = a1 ∨ a3, and b3 = a2 ∨ a3;

that is, each of the elements above level one can be described completely and
uniquely in terms of the elements on level one. The ai’s have uniquely generated
the non-least elements of B much like a basis in linear algebra generates the
elements in a vector space. We also note that the ai’s are the immediate
successors of the minimum element, 0. In any Boolean algebra, the immediate
successors of the minimum element are called atoms. For example, let A
be any nonempty set. In the Boolean algebra [P(A);∪,∩, c] (over ⊆), the
singleton sets are the generators, or atoms, of the algebraic structure since each
element P(A) can be described completely and uniquely as the join, or union,
of singleton sets.

Definition 13.4.2 Atom. A non-least element a in a Boolean algebra
[B;∨,∧,̄] is called an atom if for every x ∈ B, x ∧ a = a or x ∧ a = 0. ♢

The condition that x ∧ a = a tells us that x is a successor of a; that is,
a ⪯ x, as depicted in Figure 13.4.3(a)

The condition x ∧ a = 0 is true only when x and a are “not connected.”
This occurs when x is another atom or if x is a successor of atoms different
from a, as depicted in Figure 13.4.3(b).

CHAPTER 13. BOOLEAN ALGEBRA 356

Figure 13.4.3 Conditions for an atom
An alternate definition of an atom is based on the concept of “covering.”

Definition 13.4.4 The Covering Relation. Given a Boolean algebra
[B;∨,∧,̄], let x, z ∈ B. We say that z covers x iff x ≺ z and there does not
exist y ∈ B with x ≺ y ≺ z. ♢

It can be proven that the atoms of Boolean algebra are precisely those
elements that cover the zero element.

The set of atoms of the Boolean algebra [D30;∨,∧, ¯] is M = {2, 3, 5}.
To see that a = 2 is an atom, let x be any non-least element of D30 and note
that one of the two conditions x∧ 2 = 2 or x∧ 2 = 1 holds. Of course, to apply
the definition to this Boolean algebra, we must remind ourselves that in this
case the 0-element is 1, the operation ∧ is greatest common divisor, and the
poset relation is “divides.” So if x = 10, we have 10 ∧ 2 = 2 (or 2 | 10), so
Condition 1 holds. If x = 15, the first condition is not true. (Why?) However,
Condition 2, 15∧ 2 = 1, is true. The reader is encouraged to show that 3 and 5
also satisfy the definition of an atom. Next, if we should compute the join (the
least common multiple in this case) of all possible combinations of the atoms
2, 3, and 5 to generate all nonzero (non-1 in this case) elements of D30. For
example, 2 ∨ 3 ∨ 5 = 30 and 2 ∨ 5 = 10. We state this concept formally in the
following theorem, which we give without proof.

Theorem 13.4.5 Let B = [B;∨,∧,]̄ be any finite Boolean algebra. Let
A = {a1, a2, . . . , an} be the set of all atoms of B. Then every element in B can
be expressed uniquely as the join of a subset of A.

The least element in relation to this theorem bears noting. If we consider
the empty set of atoms, we would consider the join of elements in the empty
set to be the least element. This makes the statement of the theorem above a
bit more tidy since we don’t need to qualify what elements can be generated
from atoms.

We now ask ourselves if we can be more definitive about the structure of
different Boolean algebras of a given order. Certainly, the Boolean algebras
[D30;∨,∧,∧ ¯] and [P(A);∪,∩, c] have the same graph (that of Figure 13.4.1),
the same number of atoms, and, in all respects, look the same except for the
names of the elements and the operations. In fact, when we apply corresponding
operations to corresponding elements, we obtain corresponding results. We
know from Chapter 11 that this means that the two structures are isomorphic
as Boolean algebras. Furthermore, the graphs of these examples are exactly the
same as that of Figure 13.4.1, which is an arbitrary Boolean algebra of order
8 = 23.

In these examples of a Boolean algebra of order 8, we note that each had 3
atoms and 23 = 8 number of elements, and all were isomorphic to [P(A);∪,∩, c],
where A = {a, b, c}. This leads us to the following questions:

CHAPTER 13. BOOLEAN ALGEBRA 357

• Are there any different (nonisomorphic) Boolean algebras of order 8?

• What is the relationship, if any, between finite Boolean algebras and their
atoms?

• How many different (nonisomorphic) Boolean algebras are there of order
2? Order 3? Order 4? etc.

The answers to these questions are given in the following theorem and
corollaries.
Theorem 13.4.6 Let B = [B;∨,∧,−] be any finite Boolean algebra, and let A
be the set of all atoms of B. Then [P(A);∪,∩, c] is isomorphic to [B;∨,∧,−]
Proof. An isomorphism that serves to prove this theorem is T : P(A) → B
defined by T (S) =

∨
a∈S a, where T (∅) is interpreted as the zero of B. We leave

it to the reader to prove that this is indeed an isomorphism. ■

Corollary 13.4.7 Every finite Boolean algebra B = [B;∨,∧, ¯] has 2n ele-
ments for some positive integer n.
Proof. Let A be the set of all atoms of B and let |A| = n. Then there are
exactly 2n elements (subsets) in P(A),and by Theorem 13.4.6, [B;∨,∧, ¯] is
isomorphic to [P(A);∪,∩ c] and must also have 2n elements. ■

Corollary 13.4.8 All Boolean algebras of order 2n are isomorphic to one
another.
Proof.

Figure 13.4.9 Isomorphisms to be combined
Every Boolean algebra of order 2n is isomorphic to [P(A);∪,∩, c] when

|A| = n. Hence, if B1 and B2 each have 2n elements, they each have n atoms.
Suppose their sets of atoms are A1 and A2, respectively. We know there
are isomorphisms T1 and T2, where Ti : Bi → P(Ai), i = 1, 2. In addition
we have an isomorphism, N from P(A1) into P(A2), which we ask you to
prove in Exercise 13.4.9. We can combine these isomorphisms to produce the
isomorphism T −1

2 ◦N ◦ T1 : B1 → B2, which proves the corollary. ■

The above theorem and corollaries tell us that we can only have finite
Boolean algebras of orders 21, 22, 23, .., 2n, and that all finite Boolean algebras
of any given order are isomorphic. These are powerful tools in determining the
structure of finite Boolean algebras. In the next section, we will discuss one of
the easiest ways of describing a Boolean algebra of any given order.

Exercises
1.

(a) Show that a = 2 is an atom of the Boolean algebra [D30;∨,∧,−].

(b) Repeat part a for the elements 3 and 5 of D30.

CHAPTER 13. BOOLEAN ALGEBRA 358

(c) Verify Theorem 13.4.5 for the Boolean algebra [D30;∨,∧,−].
2. Let A = {a, b, c}.

(a) Rewrite the definition of atom for [P(A);∪,∩, c]. What does a ≤ x
mean in this example?

(b) Find all atoms of [P(A);∪,∩, c].

(c) Verify Theorem 13.4.5 for [P(A); c,∪,∩].
3. Verify Theorem 13.4.6 and its corollaries for the Boolean algebras in

Exercises 1 and 2 of this section.
4. Give an example of a Boolean algebra of order 16 whose elements are

certain subsets of the set {1, 2, 3, 4, 5, 6, 7}
5. Corollary 13.4.7 implies that there do not exist Boolean algebras of orders

3, 5, 6, 7, 9, etc. (orders different from 2n). Without this corollary, directly
show that we cannot have a Boolean algebra of order 3.
Hint. Assume that [B;∨,∧,−] is a Boolean algebra of order 3 where
B = {0, x, 1} and show that this cannot happen by investigating the
possibilities for its operation tables.

6.
(a) There are many different, yet isomorphic, Boolean algebras with two

elements. Describe one such Boolean algebra that is derived from a
power set, P(A), under ⊆. Describe a second that is described from
Dn, for some n ∈ P , under “divides.”

(b) Since the elements of a two-element Boolean algebra must be the
greatest and least elements, 1 and 0, the tables for the operations on
{0, 1} are determined by the Boolean algebra laws. Write out the
operation tables for [{0, 1};∨,∧,−].

7. Find a Boolean algebra with a countably infinite number of elements.
8. Prove that the direct product of two Boolean algebras is a Boolean algebra.

Hint. “Copy” the corresponding proof for groups in Section 11.6.
9. Prove if two finite sets A1 and A2 both have n elements then [P(A1);∪,∩, c]

is isomorphic to [P(A2);∪,∩, c]
10. Prove an element of a Boolean algebra is an atom if and only if it covers

the zero element.

13.5 Finite Boolean Algebras as n-tuples of 0’s
and 1’s

From the previous section we know that all finite Boolean algebras are of order
2n, where n is the number of atoms in the algebra. We can therefore completely
describe every finite Boolean algebra by the algebra of power sets. Is there
a more convenient, or at least an alternate way, of defining finite Boolean
algebras? In Chapter 11 we found that we could produce new groups by taking
Cartesian products of previously known groups. We imitate this process for
Boolean algebras.

The simplest nontrivial Boolean algebra is the Boolean algebra on the set
B2 = {0, 1}. The ordering on B2 is the natural one, 0 ≤ 0, 0 ≤ 1, 1 ≤ 1. If we
treat 0 and 1 as the truth values “false” and “true,” respectively, we see that
the Boolean operations ∨(join) and ∧(meet) are nothing more than the logical
operation with the same symbols. The Boolean operation, −, (complementation)

CHAPTER 13. BOOLEAN ALGEBRA 359

is the logical ¬ (negation). In fact, this is why these symbols were chosen as
the names of the Boolean operations. The operation tables for [B2;∨,∧,−] are
simply those of “or,” “and,” and “not,” which we repeat here.

∨ 0 1
0 0 1
1 1 1

∧ 0 1
0 0 0
1 0 1

u
−
u

0 1
1 0

By Theorem 13.4.6 and its corollaries, all Boolean algebras of order 2 are
isomorphic to this one.

We know that if we form B2×B2 = B2
2 we obtain the set {(0, 0), (0, 1), (1, 0), (1, 1)},

a set of order 4. We define operations on B2
2 the natural way, namely com-

ponentwise, so that (0, 1) ∨ (1, 1) = (0 ∨ 1, 1 ∨ 1) = (1, 1), (0, 1) ∧ (1, 1) =
(0∧ 1, 1∧ 1) = (0, 1) and (0, 1) =

(
0̄, 1̄
)

= (1, 0). We claim that B2
2 is a Boolean

algebra under the componentwise operations. Hence,
[
B2

2 ;∨,∧,̄
]

is a Boolean
algebra of order 4. Since all Boolean algebras of order 4 are isomorphic to one
other, we have found a simple way of describing all Boolean algebras of order 4.

It is quite clear that we can describe any Boolean algebra of order 8 by
considering B2 ×B2 ×B2 = B3

2 and, more generally, any Boolean algebra of
order 2n with Bn

2 = B2 ×B2 × · · · ×B2 (n factors).

Exercises
1.

(a) Write out the operation tables for
[
B2

2 ;∨,∧,−
]

.

(b) Draw the Hasse diagram for
[
B2

2 ;∨,∧,−
]

and compare your results
with Figure 6.3.6.

(c) Find the atoms of this Boolean algebra.
2.

(a) Write out the operation tables for
[
B3

2 ;∨,∧,−
]

.

(b) Draw the Hasse diagram for
[
B3

2 ;∨,∧,−
]

3.
(a) List all atoms of B4

2 .

(b) Describe the atoms of Bn
2 , n ≥ 1.

4. Theorem 13.4.6 tells us we can think of any finite Boolean algebra in
terms of sets. In Chapter 4, we defined minsets 4.3.4 and minset normal
form 4.3.9. Rephrase these definitions in the language of Boolean algebra.
The generalization of minsets are called minterms.

13.6 Boolean Expressions
In this section, we will use our background from the previous sections and set
theory to develop a procedure for simplifying Boolean expressions. This proce-
dure has considerable application to the simplification of circuits in switching
theory or logical design.

Definition 13.6.1 Boolean Expression. Let [B;∨,∧,−] be any Boolean
algebra, and let x1, x2, . . . , xk be variables in B; that is, variables that can
assume values from B. A Boolean expression generated by x1, x2, . . . , xk is any
valid combination of the xi and the elements of B with the operations of meet,

CHAPTER 13. BOOLEAN ALGEBRA 360

join, and complementation. ♢
This definition is the analog of the definition of a proposition generated by

a set of propositions, presented in Section 3.2.
Each Boolean expression generated by k variables, e (x1, . . . , xk), defines

a function f : Bk → B where f (a1, . . . , ak) = e (a1, . . . , ak). If B is a finite
Boolean algebra, then there are a finite number of functions from Bk into B.
Those functions that are defined in terms of Boolean expressions are called
Boolean functions. As we will see, there is an infinite number of Boolean
expressions that define each Boolean function. Naturally, the “shortest” of
these expressions will be preferred. Since electronic circuits can be described as
Boolean functions with B = B2, this economization is quite useful.

In what follows, we make use of Exercise 7.1.5.5 in Section 7.1 for counting
number of functions.
Example 13.6.2 Two variables over B2. Consider any Boolean algebra
of order 2, [B;∨,∧,−]. How many functions f : B2 → B are there? First,
all Boolean algebras of order 2 are isomorphic to [B2;∨,∧,−] so we want to
determine the number of functions f : B2

2 → B2. If we consider a Boolean
function of two variables, x1 and x2, we note that each variable has two possible
values 0 and 1, so there are 22 ways of assigning these two values to the k = 2
variables. Hence, the table below has 22 = 4 rows. So far we have a table such
as this one:

x1 x2 f (x1, x2)
0 0 ?
0 1 ?
1 0 ?
1 1 ?

How many possible different functions can there be? To list a few:f1 (x1, x2) =
x1, f2 (x1, x2) = x2, f3 (x1, x2) = x1∨x2, f4 (x1, x2) = (x1 ∧ x2)∨x2, f5 (x1, x2) =
x1 ∧x2 ∨x2, etc. Each of these will fill in the question marks in the table above.
The tables for f1 and f3 are

x1 x2 f1 (x1, x2)
0 0 0
0 1 0
1 0 1
1 1 1

x1 x2 f3 (x1, x2)
0 0 0
0 1 1
1 0 1
1 1 1

Two functions are different if and only if their tables are different for at
least one row. Of course by using the basic laws of Boolean algebra we can see
that f3 = f4. Why? So if we simply list by brute force all “combinations” of
x1 and x2 we will obtain unnecessary duplication. However, we note that for
any combination of the variables x1, and x2 there are only two possible values
for f (x1, x2), namely 0 or 1. Thus, we could write 24 = 16 different functions
on 2 variables. □

Now, let’s count the number of different Boolean functions in a more general
setting. We will consider two cases: first, when B = B2 , and second, when B
is any finite Boolean algebra with 2n elements.

Let B = B2. Each function f : Bk → B is defined in terms of a table having
2k rows. Therefore, since there are two possible images for each element of Bk,
there are 2 raised to the 2k, or 22k different functions. We will show that every
one of these functions is a Boolean function.

Now suppose that |B| = 2n > 2. A function from Bk into B can still be
defined in terms of a table. There are |B|k rows to each table and |B| possible

CHAPTER 13. BOOLEAN ALGEBRA 361

images for each row. Therefore, there are 2n raised to the power 2nk different
functions. We will show that if n > 1, not every one of these functions is a
Boolean function.

Since all Boolean algebras are isomorphic to a Boolean algebra of sets, the
analogues of statements in sets are useful in Boolean algebras.

Definition 13.6.3 Minterm. A Boolean expression generated by x1, x2, . . . , xk

that has the form
k
∧

i=1
yi,

where each yi may be either xi or xi is called a minterm generated by x1, x2, . . . , xk.
We use the notation Mδ1δ2···δk

for the minterm generated by x1, x2, . . . , xk, where
yi = xi if δi = 1 and yi = x̄i if δi = 0 ♢

An example of the notation is that M110 = x1 ∧ x2 ∧ x̄3.
By a direct application of the Rule of Products we see that there are 2k

different minterms generated by x1, . . . , xk.

Definition 13.6.4 Minterm Normal Form. A Boolean expression generated
by x1, . . . , xk is in minterm normal form if it is the join of expressions of the
form a ∧m, where a ∈ B and m is a minterm generated by x1, . . . , xk. That is,
it is of the form

p
∨

j=1
(aj ∧mj) (13.6.1)

where p = 2k, and m1, m2, . . . , mp are the minterms generated by x1, . . . , xk.
♢

Note 13.6.5
• We seem to require every minterm generated by x1, . . . , xk, in (13.6.1),

and we really do. However, some of the values of aj can be 000, which
effectively makes the corresponding minterm disappear.

• If B = B2, then each aj in a minterm normal form is either 0 or 1.
Therefore, aj ∧mj is either 0 or mj .

Theorem 13.6.6 Uniqueness of Minterm Normal Form. Let e (x1, . . . , xk)
be a Boolean expression over B. There exists a unique minterm normal form
M (x1, . . . , xk) that is equivalent to e (x1, . . . , xk) in the sense that e and M
define the same function from Bk into B.

The uniqueness in this theorem does not include the possible ordering of
the minterms in M (commonly referred to as “uniqueness up to the order
of minterms”). The proof of this theorem would be quite lengthy, and not
very instructive, so we will leave it to the interested reader to attempt. The
implications of the theorem are very interesting, however.

If |B| = 2n, then there are 2n raised to the 2k different minterm normal
forms. Since each different minterm normal form defines a different function,
there are a like number of Boolean functions from Bk into B. If B = B2, there
are as many Boolean functions (2 raised to the 2k) as there are functions from
Bk into B, since there are 2 raised to the 2n functions from Bk into B. The
significance of this result is that any desired function can be realized using
electronic circuits having 0 or 1 (off or on, positive or negative) values.

More complex, multivalued circuits corresponding to boolean algebras with
more than two values would not have this flexibility because of the number of
minterm normal forms, and hence the number of boolean functions, is strictly
less than the number of functions.

CHAPTER 13. BOOLEAN ALGEBRA 362

We will close this section by examining minterm normal forms for expressions
over B2 , since they are a starting point for circuit economization.

Example 13.6.7 Consider the Boolean expression f (x1, x2) = x1 ∨ x2. One
method of determining the minterm normal form of f is to think in terms of sets.
Consider the diagram with the usual translation of notation in Figure 13.6.8.
Then

f (x1, x2) = (x1 ∧ x2) ∨ (x1 ∧ x2) ∨ (x1 ∧ x2)
= M00 ∨M10 ∨M11

Figure 13.6.8 Visualization of minterms for x1 ∨ x̄2

□

Table 13.6.9 Definition of the boolean function g

x1 x2 x3 g (x1, x2, x3)
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Example 13.6.10 Consider the function g : B3
2 → B2 defined by Table 13.6.9.

The minterm normal form for g can be obtained by taking the join of
minterms that correspond to rows that have an image value of 1. If g (a1, a2, a3) =
1, then include the minterm y1 ∧ y2 ∧ y3 where

yj =
{

xj if aj = 1
x̄j if aj = 0

Or, to use alternate notation, include Ma1a2a3 in the expression if and only if
g (a1, a2, a3) = 1

Therefore,

g (x1, x2, x3) = (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3) .

□
The minterm normal form is a first step in obtaining an economical way of

expressing a given Boolean function. For functions of more than three variables,
the above set theory approach tends to be awkward. Other procedures are

CHAPTER 13. BOOLEAN ALGEBRA 363

used to write the normal form. The most convenient is the Karnaugh map, a
discussion of which can be found in any logical design/switching theory text
(see, for example, [18]), on en.wikipedia.org/wiki/Karnaugh_map.

Exercises
1.

(a) Write the 16 possible functions of Example 13.6.2.

(b) Write out the tables of several of the above Boolean functions to
show that they are indeed different.

(c) Determine the minterm normal forms of

(i) g1 (x1, x2) = x1 ∨ x2,

(ii) g2 (x1, x2) = x1 ∨ x2

(iii) g3 (x1, x2) = x1 ∧ x2

(iv) g4 (x1, x2) = 1
2. Consider the Boolean expression f (x1, x2, x3) = (x3 ∧ x2) ∨ (x1 ∧ x3) ∨

(x2 ∧ x3) on
[
B3

2 ;∨,∧,−
]

.

(a) Simplify this expression using basic Boolean algebra laws.

(b) Write this expression in minterm normal form.

(c) Write out the table for the given function defined by f and compare
it to the tables of the functions in parts a and b.

(d) How many possible different functions in three variables on [B2;∨,∧,−]
are there?

3. Let [B;∨,∧,−] be a Boolean algebra of order 4, and let f be a Boolean
function of two variables on B.

(a) How many elements are there in the domain of f?

(b) How many different Boolean functions are there of two, variables?
Three variables?

(c) Determine the minterm normal form of f (x1, x2) = x1 ∨ x2.

(d) If B = {0, a, b, 1}, define a function from B2 into B that is not a
Boolean function.

13.7 A Brief Introduction to Switching Theory
and Logic Design

Disclaimer : I’m still looking for a good application for drawing logic gates.
The figures here are quite rough.

Early computers relied on many switches to perform the logical operations
needed for computation. This was true as late as the 1970’s when early personal
computers such as the Altair (Figure 13.7.1) started to appear. Pioneering
computer scientists such as Claude Shannon realized that the operation of
these computers could be simplified by making use of an isomorphism between
computer circuits and boolean algebra. The term Switching Theory was used
at the time. Logical gates realized through increasingly smaller and smaller

https://en.wikipedia.org/wiki/Karnaugh_map

CHAPTER 13. BOOLEAN ALGEBRA 364

integrated circuits still perform the same functions as in early computers,
but using purely electronic means. In this section, we give examples of some
switching circuits. Soon afterward, we will transition to the more modern form
of circuits that are studied in Logic Design, where gates replace switches. Our
main goal is to give you an overview of how boolean functions corresponds to
any such circuit. We will introduce the common system notation used in logic
design and show how it corresponds with the mathematical notation of Boolean
algebras. Any computer scientist should be familiar with both systems.

Figure 13.7.1 The Altair Computer, an early PC, by Todd Dailey, Creative
Commons

The simplest switching device is the on-off switch. If the switch is closed/ON,
current will pass through it; if it is open/OFF, current will not pass through
it. If we designate ON by 1, and OFF by 0, we can describe electrical circuits
containing switches by Boolean expressions with the variables representing the
variable states of switches or the variable bits passing through gates.

The electronics involved in these switches take into account whether we are
negating a switch or not. For electromagnetic switches, a magnet is used to
control whether the switch is open or closed. The magnets themselves may be
controlled by simple ON/OFF switches. There are two types of electromagnetic
switches. One is normally open (OFF) when the magnet is not activated,
but activating the magnet will close the circuit and the switch is then ON. A
separate type of switch corresponds with a negated switch. For that type, the
switch is closed when the magnet is not activated, and when the magnet is
activated, the switch opens. We won’t be overly concerned with the details
of these switches or the electronics corresponding to logical gates. We will
simply assume they are available to plug into a circuit. For simplicity, we use
the inversion symbol on a variable that labels a switch to indicate that it is a
switch of the second type, as in Figure 13.7.3.
Standby power generators that many people have in their homes use a transfer

switch to connect the generator to the home power system. This switch is
open (OFF) if there is power coming from the normal municipal power supply.
It stays OFF because a magnet is keeping it open. When power is lost, the
magnet is no longer activated, and the switch closes and is ON. So the transfer
switch is a normally ON switch.

CHAPTER 13. BOOLEAN ALGEBRA 365

Figure 13.7.2 Representation of a nor-
mally OFF switch controlled by variable
x1

Figure 13.7.3 Representation of a nor-
mally ON switch controlled by variable
x1

The standard notation used for Boolean algebra operations in switching
theory and logic design is + for join, instead of ∨; and · for meet, instead of
∧. Complementation is the same in both notational systems, denoted with an
overline.

The expression x1 · x2 represents the situation in which a series of two
switches appears in sequence as in Figure 13.7.4. In order for current to flow
through the circuit, both switches must be ON; that is, they must both have the
value 1. Similarly, a pair of parallel switches, as in Figure 13.7.5, is described
algebraically by x1 + x2. Here, current flows through this part of the circuit as
long as at least on of the switches is ON.

Figure 13.7.4 Two switches in AND
configuration realizing x1 · x2

Figure 13.7.5 Two switches in OR con-
figuration realizing x1 + x2

All laws and concepts developed previously for Boolean algebras hold. The
only change is purely notational. We make the change in this section solely to
introduce the reader to another frequently used system of notation.

Many of the laws of Boolean algebra can be visualized thought switching
theory. For example, the distributive law of meet over join is expressed as

x1 · (x2 + x3) = x1 · x2 + x1 · x3.

The switching circuit analogue of the above statement is that the circuits in
the two images below are equivalent. In circuit (b), the presence of two x1’s
might represent two electromagnetic switches controlled by the same magnet.

Figure 13.7.6 (a) Figure 13.7.7 (b)

CHAPTER 13. BOOLEAN ALGEBRA 366

The circuits in a computer are now composed of large quantities of gates,
which serve the same purpose as switches, but can be miniaturized to a great
degree. For example, the OR gate, usually drawn as in Figure 13.7.8 implements
the logical OR function. This happens electronically, but is equivalent to
Figure 13.7.5. The AND gate, which is equivalent to two sequential switches is
shown in Figure 13.7.8.

Figure 13.7.8 An OR gate Figure 13.7.9 An AND gate
The complementation process is repre-
sented in a gate diagram by an inverter,
as pictured in Figure 13.7.10.

Figure 13.7.10 Inverter, or NOT gate
When drawing more complex circuits, multiple AND’s or OR’s are sometimes

depicted using a more general gate drawing. For example if we want to depict
an OR gate with three inputs that is ON as long as at least one input is
ON, we would draw it as in Figure 13.7.11, although this would really be two
binary gates, as in Figure 13.7.12. Both diagrams are realizing the boolean
expression x1 + x2 + x3. Strictly speaking, the gates in Figure 13.7.12 represent
(x1 + x2) + x3, but the associative law for join tells us that the grouping doesn’t
matter.

Figure 13.7.11 Simple version of a
ternary OR gate

Figure 13.7.12 A ternary OR gate cre-
ated with binary OR gates

In Figure 13.7.13, we show a few other
commonly used gates, XOR, NAND,
and NOR, which correspond to the
boolean exressions x1 ⊕ x2, x1 · x2, and
x1 + x2, respectively.

Figure 13.7.13 Other common gates
Let’s start with a logic circuit and see how the laws of boolean algebra can

help us simplify it.

Example 13.7.14 Simplification of a circuit. Consider the circuit in
Figure 13.7.15. As usual, we assume that three inputs enter on the left and the
output exits on the right.

CHAPTER 13. BOOLEAN ALGEBRA 367

Figure 13.7.15 Initial gate diagram
If we trace the inputs through the gates we see that this circuit realizes the

boolean function

f (x1, x2, x3) = x1 · x2 · ((x1 + x2) + (x1 + x3)) .

We simplify the boolean expression that defines f , simplifying the circuit in
so doing. You should be able to identify the laws of Boolean algebra that are
used in each of the steps. See Exercise 13.7.1.

x1 · x2 · ((x1 + x2) + (x1 + x3)) = x1 · x2 · (x1 + x2 + x3)
= x1 · x2 · x1 + x1 · x2 · x2 + x1 · x2 · x3

= x1 · x2 + 0 · x1 + x3 · x1 · x2

= x1 · x2 + x3 · x1 · x2

= x1 · x2 · (1 + x3)
= x1 · x2

Therefore, f (x1, x2, x3) = x1 · x2, which can be realized with the much simpler
circuit in Figure 13.7.16, without using the input x3.

Figure 13.7.16 Simplified gate diagram
□

Next, we start with a table of desired outputs based on three bits of input
and design an efficient circuit to realize this output.

Example 13.7.17 Consider the following table of desired outputs for the three
input bits x1, x2, x3.

CHAPTER 13. BOOLEAN ALGEBRA 368

Table 13.7.18 Desired output table

x1 x2 x3 f(x1, x2, x3)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

The first step is to write the Minterm Normal Form of f . Since we are
working with the two value Boolean algebra, B2, the constants in each minterm
are either 0 or 1, and we simply list the minterms that have a 1. These
correspond with the rows of the table above that have an output of 1. We will
then attempt to simplify the expression as much as possible.

f (x1, x2, x3) = (x1 · x2 · x3) + (x1 · x2 · x3) + (x1 · x2 · x3)
= x2 · ((x1 · x3) + (x1 · x3) + (x1 · x3))
= x2 · ((x1 · x3) + x1 · (x3 + x3))
= x2 · ((x1 · x3) + x1)

Therefore we can realize our table with the boolean function f (x1, x2, x3) =
x2 · ((x1 · x3) + x1). A circuit diagram for this function is Figure 13.7.19. But
is this the simplest circuit that realizes the table? See Exercise 13.7.3.

Figure 13.7.19 A realization of the table of desired outputs.
□

Exercises
1. List the laws of boolean algebra that justify the steps in the simplification

of the boolean function f (x1, x2, x3) in Example 13.7.14. Some steps use
more than one law.

2. Write the following Boolean expression in the notation of logic design.

(x1 ∧ x2) ∨ (x1 ∧ x2) ∨ (x1 ∧ x2) .

3. Find a further simplification of the boolean function in Example 13.7.17,
and draw the corresponding gate diagram for the circuit that it realizes.

4. Consider the switching circuit in Figure 13.7.20.

CHAPTER 13. BOOLEAN ALGEBRA 369

Figure 13.7.20 Can this circuit be simplifed?

(a) Draw the corresponding gate diagram for this circuit.

(b) Construct a table of outputs for each of the eight inputs to this
circuit.

(c) Determine the minterm normal of the Boolean function based on the
table.

(d) Simplify the circuit as much as possible.
5. Consider the circuit in Figure 13.7.21.

Figure 13.7.21 Can this circuit be simplifed?

(a) Trace the inputs though this circuit and determine the Boolean
function that it realizes.

(b) Construct a table of outputs for each of the eight inputs to this
circuit.

(c) Find the minterm normal form of f .

(d) Draw the circuit based on the minterm normal form.

(e) Simplify the circuit algebraically and draw the resulting circuit.
6. Consider the Boolean function f (x1, x2, x3, x4) = x1+(x2 · (x1 + x4) + x3 · (x2 + x4)) .

(a) Simplify f algebraically.

(b) Draw the gate diagram based on the simplified version of f .
7. Draw a logic circuit using only AND, OR and NOT gates that realizes an

XOR gate.
8. Draw a logic circuit using only AND, OR and NOT gates that realizes

the Boolean function on three variables that returns 1 if the majority of
inputs are 1 and 0 otherwise.

Chapter 14

Monoids and Automata

At first glance, the two topics that we will discuss in this chapter seem totally
unrelated. The first is monoid theory, which we touched upon in Chapter 11.
The second is automata theory, in which computers and other machines are
described in abstract terms. After short independent discussions of these topics,
we will describe how the two are related in the sense that each monoid can be
viewed as a machine and each machine has a monoid associated with it.

14.1 Monoids
Recall that in Section 11.2 we introduced systems called monoids. Here is the
formal definition.
Definition 14.1.1 Monoid. A monoid is a set M together with a binary
operation ∗ with the properties

• ∗ is associative: ∀a, b, c ∈M , (a ∗ b) ∗ c = a ∗ (b ∗ c) and

• ∗ has an identity in M : ∃e ∈M such that ∀a ∈M , a ∗ e = e ∗ a = a

♢

Note 14.1.2 Since the requirements for a group contain the requirements for a
monoid, every group is a monoid.
Example 14.1.3 Some Monoids.

(a) The power set of any set together with any one of the operations intersec-
tion, union, or symmetric difference is a monoid.

(b) The set of integers, Z, with multiplication, is a monoid. With addition, Z
is also a monoid.

(c) The set of n× n matrices over the integers, Mn(Z), n ≥ 2, with matrix
multiplication, is a monoid. This follows from the fact that matrix
multiplication is associative and has an identity, In. This is an example of
a noncommutative monoid since there are matrices, A and B, for which
AB ̸= BA.

(d) [Zn;×n] , n ⩾ 2, is a monoid with identity 1.

(e) Let X be a nonempty set. The set of all functions from X into X, often
denoted XX , is a monoid over function composition. In Chapter 7, we saw
that function composition is associative. The function i : X → X defined

370

CHAPTER 14. MONOIDS AND AUTOMATA 371

by i(a) = a is the identity element for this system. If |X| is greater than 1
then it is a noncommutative monoid. If X is finite,

∣∣XX
∣∣ = |X||X| . For

example, if B = {0, 1},
∣∣BB

∣∣ = 4. The functions z, u, i, and t, defined by
the graphs in Figure 14.1.4, are the elements of BB . This monoid is not
a group. Do you know why?
One reason why BB is noncommutative is that t ◦ z ≠ z ◦ t because
(t ◦ z)(0) = t(z(0)) = t(0) = 1 while (z ◦ t)(0) = z(t(0)) = z(1) = 0.

□

Figure 14.1.4 The functions on B2

Virtually all of the group concepts that were discussed in Chapter 11
are applicable to monoids. When we introduced subsystems, we saw that a
submonoid of monoid M is a subset of M ; that is, it is a monoid with the
operation of M . To prove that a subset is a submonoid, you can apply the
following theorem.

Theorem 14.1.5 Submonoid Test. Assume [M ; ∗] is a monoid and K
is a nonempty subset of M . Then K is a submonoid of M if and only if the
following two conditions are met.

• If a, b ∈ K, then. a ∗ b ∈ K; i. e., K is closed with under ∗.

• The identity of M belongs to K.
Often we will want to discuss the smallest submonoid that includes a certain

subset S of a monoid M . This submonoid can be defined recursively by the
following definition.

Definition 14.1.6 Submonoid Generated by a Set. If S is a subset of
monoid [M ; ∗], the submonoid generated by S, ⟨S⟩, is defined by:.

(a) (Basis) The identity of M belongs to ⟨S⟩; and a ∈ S ⇒ a ∈ ⟨S⟩.

(b) (Recursion) a, b ∈ ⟨S⟩ ⇒ a ∗ b ∈ ⟨S⟩.

♢

Note 14.1.7 If S = {a1, a2, . . . , an}, we write ⟨a1, a2, . . . , an⟩ in place of
⟨{a1, a2, . . . , an}⟩.

Example 14.1.8 Some Submonoids.
(a) One example of a submonoid of [Z; +] is ⟨2⟩ = {0, 2, 4, 6, 8, . . .}.

(b) The power set of Z, P(Z), over union is a monoid with identity ∅. If
S = {{1}, {2}, {3}}, then ⟨S⟩ is the power set of {1, 2, 3}. If S = {{n} :
n ∈ Z}, then ⟨S⟩ is the set of finite subsets of the integers.

CHAPTER 14. MONOIDS AND AUTOMATA 372

□
As you might expect, two monoids are isomorphic if and only if there exists

a translation rule between them so that any true proposition in one monoid is
translated to a true proposition in the other.

Example 14.1.9 M = [P{1, 2, 3};∩] is isomorphic to M2 =
[
Z3

2; ·
]
, where the

operation in M2 is componentwise mod 2 multiplication. A translation rule is
that if A ⊆ {1, 2, 3}, then it is translated to (d1, d2, d3) where

di =
{

1 if i ∈ A

0 if i /∈ A

Two cases of how this translation rule works are:

{1, 2, 3} is the identity for M1
↕

(1, 1, 1) is the identity for M2

{1, 2} ∩ {2, 3} = {2}
↕

(1, 1, 0) · (0, 1, 1) = (0, 1, 0) .

□
A more precise definition of a monoid isomorphism is identical to the

definition of a group isomorphism, Definition 11.7.9.

Exercises
1. For each of the subsets of the indicated monoid, determine whether the

subset is a submonoid.
(a) S1 = {0, 2, 4, 6} and S2 = {1, 3, 5, 7} in [Z8;×8].

(b) {f ∈ NN : f(n) ⩽ n,∀n ∈ N} and
{

f ∈ NN : f(1) = 2
}

in the monoid
[NN; ◦].

(c) {A ⊆ Z | A is finite} and {A ⊆ Z | Ac is finite} in [P(Z);∪].
2. For each subset, describe the submonoid that it generates.

(a) {3} in [Z12;×12]

(b) {5} in [Z25;×25]

(c) the set of prime numbers in [P; ·]

(d) {3, 5} in [N; +]
3. An n× n matrix of real numbers is called stochastic if and only if each

entry is nonnegative and the sum of entries in each column is 1. Prove
that the set of stochastic matrices is a monoid over matrix multiplication.

4. A semigroup is an algebraic system [S; ∗] with the only axiom that ∗ be
associative on S. Prove that if S is a finite set, then there must exist an
idempotent element, that is, an a ∈ S such that a ∗ a = a.

5. Let B be a Boolean algebra and M the set of all Boolean functions on B.
Let ∗ be defined on M by (f ∗ g)(a) = f(a) ∧ g(a). Prove that [M ; ∗] is a
monoid. Construct the operation table of [M ; ∗] for the case of B = B2.

CHAPTER 14. MONOIDS AND AUTOMATA 373

14.2 Free Monoids and Languages
In this section, we will introduce the concept of a language. Languages are
subsets of a certain type of monoid, the free monoid over an alphabet. After
defining a free monoid, we will discuss languages and some of the basic problems
relating to them. We will also discuss the common ways in which languages
are defined.

Let A be a nonempty set, which we will call an alphabet. Our primary
interest will be in the case where A is finite; however, A could be infinite for
most of the situations that we will describe. The elements of A are called letters
or symbols. Among the alphabets that we will use are B = {0, 1}, and the set
of ASCII (American Standard Code for Information Interchange) characters,
which we symbolize as ASCII.

Definition 14.2.1 Strings over an Alphabet. A string of length n, n ⩾ 1
over alphabet A is a sequence of n letters from A: a1a2 . . . an. The null string,
λ, is defined as the string of length zero containing no letters. The set of strings
of length n over A is denoted by An. The set of all strings over A is denoted
A∗. ♢

Note 14.2.2
(a) If the length of string s is n, we write |s| = n.

(b) The null string is not the same as the empty set, although they are similar
in many ways. A0 = {λ}.

(c) A∗ = A0 ∪ A1 ∪ A2 ∪ A3 ∪ · · · and if i ≠ j, Ai ∩ Aj = ∅; that is,
{A0, A1, A2, A3, . . .} is a partition of A∗.

(d) An element of A can appear any number of times in a string.

Theorem 14.2.3 If A is countable, then A∗ is countable.
Proof. Case 1. Given the alphabet B = {0, 1}, we can define a bijection
from the positive integers into B∗. Each positive integer has a binary ex-
pansion dkdk−1 · · · d1d0, where each dj is 0 or 1 and dk = 1. If n has
such a binary expansion, then 2k ≤ n ≤ 2k+1. We define f : P → B∗ by
f(n) = f (dkdk−1 · · · d1d0) = dk−1 · · · d1d0, where f(1) = λ. Every one of the
2k strings of length k are the images of exactly one of the integers between
2k and 2k+1 − 1. From its definition, f is clearly a bijection; therefore, B∗ is
countable.

Case 2: A is Finite. We will describe how this case is handled with an
example first and then give the general proof. If A = {a, b, c, d, e}, then we can
code the letters in A into strings from B3. One of the coding schemes (there
are many) is a ↔ 000, b ↔ 001, c ↔ 010, d ↔ 011, and e ↔ 100. Now every
string in A∗ corresponds to a different string in B∗; for example, ace. would
correspond with 000010100. The cardinality of A∗ is equal to the cardinality of
the set of strings that can be obtained from this encoding system. The possible
coded strings must be countable, since they are a subset of a countable set, B∗.
Therefore, A∗ is countable.

If |A| = m, then the letters in A can be coded using a set of fixed-length
strings from B∗. If 2k−1 < m ≤ 2k, then there are at least as many strings of
length k in Bk as there are letters in A. Now we can associate each letter in A
with with a different element of Bk. Then any string in A∗. corresponds to a
string in B∗. By the same reasoning as in the example above, A∗ is countable.

Case 3: A is Countably Infinite. We will leave this case as an exercise. ■

CHAPTER 14. MONOIDS AND AUTOMATA 374

Definition 14.2.4 Concatenation. Let a = a1a2 · · · am and b = b1b2 · · · bn

be strings of length m and n, respectively. The concatenation of a with b, a + b,
is the string a1a2 · · · amb1b2 · · · bn of length m + n. ♢

There are several symbols that are used for concatenation. We chose to use
the one that is also used in Python and SageMath.

'good'+'bye'

'goodbye '

The set of strings over any alphabet is a monoid under concatenation.

Note 14.2.5
(a) The null string is the identity element of [A∗; +]. Henceforth, we will

denote the monoid of strings over A by A∗.

(b) Concatenation is noncommutative, provided |A| > 1.

(c) If |A1| = |A2|, then the monoids A∗
1 and A∗

2 are isomorphic. An isomor-
phism can be defined using any bijection f : A1 → A2. If a = a1a2 · · · an ∈
A∗

1, f∗(a) = (f(a1)f(a2) · · · f(an)) defines a bijection from A∗
1 into A∗

2.
We will leave it to the reader to prove that for all a, b,∈ A∗

1, f∗(a + b) =
f∗(a) + f∗(b).

The languages of the world, English, German, Russian, Chinese, and so
forth, are called natural languages. In order to communicate in writing in any
one of them, you must first know the letters of the alphabet and then know how
to combine the letters in meaningful ways. A formal language is an abstraction
of this situation.
Definition 14.2.6 Formal Language. If A is an alphabet, a formal language
over A is a subset of A∗. ♢

Example 14.2.7 Some Formal Languages.
(a) English can be thought of as a language over of letters A, B, · · ·Z, both

upper and lower case, and other special symbols, such as punctuation
marks and the blank. Exactly what subset of the strings over this alphabet
defines the English language is difficult to pin down exactly. This is a
characteristic of natural languages that we try to avoid with formal
languages.

(b) The set of all ASCII stream files can be defined in terms of a language
over ASCII. An ASCII stream file is a sequence of zero or more lines
followed by an end-of-file symbol. A line is defined as a sequence of ASCII
characters that ends with the a “new line” character. The end-of-file
symbol is system-dependent.

(c) The set of all syntactically correct expressions in any computer language
is a language over the set of ASCII strings.

(d) A few languages over B are

• L1 = {s ∈ B∗ | s has exactly as many 1’s as it has 0’s}
• L2 = {1 + s + 0 | s ∈ B∗}
• L3 = ⟨0, 01⟩ = the submonoid of B∗ generated by {0, 01}.

□

CHAPTER 14. MONOIDS AND AUTOMATA 375

Investigation 14.2.1 Two Fundamental Problems: Recognition and
Generation. The generation and recognition problems are basic to computer
programming. Given a language, L, the programmer must know how to write
(or generate) a syntactically correct program that solves a problem. On the
other hand, the compiler must be written to recognize whether a program
contains any syntax errors.
Problem 14.2.8 The Recognition Problem. Given a formal language over
alphabet A, the Recognition Problem is to design an algorithm that determines
the truth of s ∈ L in a finite number of steps for all s ∈ A∗. Any such algorithm
is called a recognition algorithm. □

Definition 14.2.9 Recursive Language. A language is recursive if there
exists a recognition algorithm for it. ♢

Example 14.2.10 Some Recursive Languages.
(a) The language of syntactically correct propositions over set of propositional

variables expressions is recursive.

(b) The three languages in 7(d) are all recursive. Recognition algorithms for
L1 and L2 should be easy for you to imagine. The reason a recognition
algorithm for L3 might not be obvious is that the definition of L3 is more
cryptic. It doesn’t tell us what belongs to L3, just what can be used to
create strings in L3. This is how many languages are defined. With a
second description of L3, we can easily design a recognition algorithm.
You can prove that

L3 = {s ∈ B∗ | s = λ or s starts with a 0 and has no consecutive 1’s}.

□

Problem 14.2.11 The Generation Problem. Design an algorithm that
generates or produces any string in L. Here we presume that A is either finite
or countably infinite; hence, A∗ is countable by Theorem 14.2.3, and L ⊆ A∗

must be countable. Therefore, the generation of L amounts to creating a list of
strings in L. The list may be either finite or infinite, and you must be able to
show that every string in L appears somewhere in the list. □

Theorem 14.2.12 Recursive implies Generating.
(a) If A is countable, then there exists a generating algorithm for A∗.

(b) If L is a recursive language over a countable alphabet, then there exists a
generating algorithm for L.

Proof. Part (a) follows from the fact that A∗ is countable; therefore, there
exists a complete list of strings in A∗.

To generate all strings of L, start with a list of all strings in A∗ and an
empty list, W , of strings in L. For each string s, use a recognition algorithm
(one exists since L is recursive) to determine whether s ∈ L. If s ∈ L, add it to
W ; otherwise “throw it out.” Then go to the next string in the list of A∗. ■

Example 14.2.13 Since all of the languages in 7(d) are recursive, they must
have generating algorithms. The one given in the proof of Theorem 14.2.12
is not usually the most efficient. You could probably design more efficient
generating algorithms for L2 and L3; however, a better generating algorithm
for L1 is not quite so obvious. □

The recognition and generation problems can vary in difficulty depending on
how a language is defined and what sort of algorithms we allow ourselves to use.
This is not to say that the means by which a language is defined determines

CHAPTER 14. MONOIDS AND AUTOMATA 376

whether it is recursive. It just means that the truth of the statement “L is
recursive” may be more difficult to determine with one definition than with
another. We will close this section with a discussion of grammars, which are
standard forms of definition for a language. When we restrict ourselves to only
certain types of algorithms, we can affect our ability to determine whether s ∈ L
is true. In defining a recursive language, we do not restrict ourselves in any way
in regard to the type of algorithm that will be used. In the next section, we
will consider machines called finite automata, which can only perform simple
algorithms.

One common way of defining a language is by means of a phrase structure
grammar (or grammar, for short). The set of strings that can be produced
using set of grammar rules is called a phrase structure language.

Example 14.2.14 Zeros before Ones. We can define the set of all strings
over B for which all 0’s precede all 1’s as follows. Define the starting symbol
S and establish rules that S can be replaced with any of the following: λ, 0S,
or S1. These replacement rules are usually called production rules. They are
usually written in the format S → λ, S → 0S, and S → S1. Now define L to
be the set of all strings that can be produced by starting with S and applying
the production rules until S no longer appears. The strings in L are exactly
the ones that are described above. □

Definition 14.2.15 Phrase Structure Grammar. A phrase structure
grammar consists of four components:

(1) A nonempty finite set of terminal characters, T . If the grammar is defining
a language over A, T is a subset of A∗.

(2) A finite set of nonterminal characters, N .

(3) A starting symbol, S ∈ N .

(4) A finite set of production rules, each of the form X → Y , where X and
Y are strings over A ∪N such that X ̸= Y and X contains at least one
nonterminal symbol.

If G is a phrase structure grammar, L(G) is the set of strings that can be
produced by starting with S and applying the production rules a finite number
of times until no nonterminal characters remain. If a language can be defined
by a phrase structure grammar, then it is called a phrase structure language.

♢

Example 14.2.16 Alternating bits language. The language over B
consisting of strings of alternating 0’s and 1’s is a phrase structure language. It
can be defined by the following grammar:

(1) Terminal characters: λ, 0, and 1

(2) Nonterminal characters: S, T , and U

(3) Starting symbol: S

(4) Production rules:

S → T S → U S → λ

S → 0 S → 1
S → 0T S → 1U

T → 10T T → 10
U → 01U U → 01

CHAPTER 14. MONOIDS AND AUTOMATA 377

These rules can be visualized with a graph:

Figure 14.2.17 Production rules for the language of alternating 0’s and 1’s
We can verify that a string such as 10101 belongs to the language by starting

with S and producing 10101 using the production rules a finite number of times:
S → 1U → 101U → 10101. □

Example 14.2.18 Valid SageMath Variables. Let G be the grammar
with components:

(1) Terminal symbols = all letters of the alphabet (both upper and lower
case), digits 0 through 9, and underscore

(2) Nonterminal symbols: {I, X},

(3) Starting symbol: I

(4) Production rules: I → α, where α is any letter, I → α + X for any letter
α, X → X + β for any letter, digit or underscore, β, and X → β for any
letter, digit or underscore, β. There are a total of 52 + 52 + 63 + 63 = 230
production rules for this grammar. The language L(G) consists of all
valid SageMath variable names.

□

Example 14.2.19 Backus-Naur Form. Backus-Naur form (BNF) is a
popular alternate form of defining the production rules in a grammar. If the
production rules A → B1, A → B2, . . . A → Bn are part of a grammar, they
would be written in BNF as A ::= B1 | B2 | · · · | Bn. The symbol | in BNF is
read as “or” while the ::= is read as “is defined as.” Additional notations of
BNF are that {x}, represents zero or more repetitions of x and [y] means that
y is optional.

CHAPTER 14. MONOIDS AND AUTOMATA 378

A BNF version of the production rules for a SageMath variable, I, is

letter ::= a | b | c | · · · | z | A | B | · · · | Z
digit ::= 0 | 1 | · · · | 9
I ::= letter{letter | digit | _}

□

Example 14.2.20 The language of simple arithmetic expressions. An
arithmetic expression can be defined in BNF. For simplicity, we will consider
only expressions obtained using addition and multiplication of integers. The
terminal symbols are (,),+,*, -, and the digits 0 through 9. The nonterminal
symbols are E (for expression), T (term), F (factor), and N (number). The
starting symbol is E. Production rules are

E: := E + T | T
T ::= T ∗ F | F
F ::= (E) | N

N ::= [−]digit{digit}
.

□
One particularly simple type of phrase structure grammar is the regular

grammar.

Definition 14.2.21 Regular Grammar. A regular (right-hand form)
grammar is a grammar whose production rules are all of the form A→ t and
A→ tB, where A and B are nonterminal and t is terminal. A left-hand form
grammar allows only A→ t and A→ Bt. A language that has a regular phrase
structure language is called a regular language. ♢

Example 14.2.22
(a) The set of Sage variable names is a regular language since the grammar

by which we defined the set is a regular grammar.

(b) The language of all strings for which all 0’s precede all 1’s (Exam-
ple 14.2.14) is regular; however, the grammar by which we defined this
set is not regular. Can you define these strings with a regular grammar?

(c) The language of arithmetic expressions is not regular.

□

Exercises
1.

(a) If a computer is being designed to operate with a character set of
350 symbols, how many bits must be reserved for each character?
Assume each character will use the same number of bits.

(b) Do the same for 3,500 symbols.
2. It was pointed out in the text that the null string and the null set are

different. The former is a string and the latter is a set, two different kinds
of objects. Discuss how the two are similar.

CHAPTER 14. MONOIDS AND AUTOMATA 379

3. What sets of strings are defined by the following grammar?
(a) Terminal symbols: λ , 0 and 1

(b) Nonterminal symbols: S and E

(c) Starting symbol: S

(d) Production rules: S → 0S0, S → 1S1, S → E, E → λ, E → 0, E → 1
4. What sets of strings are defined by the following grammar?

(a) Terminal symbols: λ, a, b, and c

(b) Nonterminal symbols: S, T, U and E

(c) Starting symbol: S

(d) Production rules:

S → aS S → T T → bT

T → U U → cU U → E

E → λ

5. Define the following languages over B with phrase structure grammars.
Which of these languages are regular?

(a) The strings with an odd number of characters.

(b) The strings of length 4 or less.

(c) The palindromes, strings that are the same backwards as forwards.
6. Define the following languages over B with phrase structure grammars.

Which of these languages are regular?
(a) The strings with more 0’s than 1’s.

(b) The strings with an even number of 1’s.

(c) The strings for which all 0’s precede all 1’s.
7. Prove that if a language over A is recursive, then its complement is also

recursive.
8. Use BNF to define the grammars in Exercises 3 and 4.
9.

(a) Prove that if X1, X2, . . .is a countable sequence of countable sets,
the union of these sets,

∞
∪

i=1
Xi is countable.

(b) Using the fact that the countable union of countable sets is countable,
prove that if A is countable, then A∗ is countable.

14.3 Automata, Finite-State Machines
In this section, we will introduce the concept of an abstract machine. The
machines we will examine will (in theory) be capable of performing many of the
tasks associated with digital computers. One such task is solving the recognition
problem for a language. We will concentrate on one class of machines, finite-
state machines (finite automata). And we will see that they are precisely the
machines that are capable of recognizing strings in a regular grammar.

CHAPTER 14. MONOIDS AND AUTOMATA 380

Given an alphabet X, we will imagine a string in X∗ to be encoded on a
tape that we will call an input tape. When we refer to a tape, we might imagine
a strip of material that is divided into segments, each of which can contain
either a letter or a blank.

The typical abstract machine includes an input device, the read head, which
is capable of reading the symbol from the segment of the input tape that is
currently in the read head. Some more advanced machines have a read/write
head that can also write symbols onto the tape. The movement of the input tape
after reading a symbol depends on the machine. With a finite-state machine,
the next segment of the input tape is always moved into the read head after a
symbol has been read. Most machines (including finite-state machines) also
have a separate output tape that is written on with a write head. The output
symbols come from an output alphabet, Z, that may or may not be equal to
the input alphabet. The most significant component of an abstract machine is
its memory structure. This structure can range from a finite number of bits of
memory (as in a finite-state machine) to an infinite amount of memory that
can be stored in the form of a tape that can be read from and written on (as in
a Turing machine).

Definition 14.3.1 Finite-State Machine. A finite-state machine is defined
by a quintet (S, X, Z, w, t) where

(1) S = {s1, s2, . . . , sr} is the state set, a finite set that corresponds to the
set of memory configurations that the machine can have at any time.

(2) X = {x1, x2, . . . , xm} is the input alphabet.

(3) Z = {z1, z2, . . . , zn} is the output alphabet.

(4) w : X × S → Z is the output function, which specifies which output
symbol w(x, s) ∈ Z is written onto the output tape when the machine is
in state s and the input symbol x is read.

(5) t : X × S → S is the next-state (or transition) function, which specifies
which state t(x, s) ∈ S the machine should enter when it is in state s and
it reads the symbol x.

♢

Example 14.3.2 Vending Machine as a Finite-State Machine. Many
mechanical devices, such as simple vending machines, can be thought of as
finite-state machines. For simplicity, assume that a vending machine dispenses
packets of gum, spearmint (S), peppermint (P), and bubble (B), for 25 cents
each. We can define the input alphabet to be

{deposit 25 cents, press S, press P, press B}

and the state set to be {Locked, Select}, where the deposit of a quarter unlocks
the release mechanism of the machine and allows you to select a flavor of gum.
We will leave it to the reader to imagine what the output alphabet, output
function, and next-state function would be. You are also invited to let your
imagination run wild and include such features as a coin-return lever and change
maker. □

Example 14.3.3 A Parity Checking Machine. The following machine is
called a parity checker. It recognizes whether or not a string in B∗ contains an
even number of 1s. The memory structure of this machine reflects the fact that
in order to check the parity of a string, we need only keep track of whether an

CHAPTER 14. MONOIDS AND AUTOMATA 381

odd or even number of 1’s has been detected.
The input alphabet is B = {0, 1} and the output alphabet is also B. The

state set is {even, odd}. The following table defines the output and next-state
functions.

x s w(x, s) t(x, s)
0
0
1
1

even
odd
even
odd

0
1
1
0

even
odd
odd
even

Note how the value of the most recent output at any time is an indication
of the current state of the machine. Therefore, if we start in the even state
and read any finite input tape, the last output corresponds to the final state of
the parity checker and tells us the parity of the string on the input tape. For
example, if the string 11001010 is read from left to right, the output tape, also
from left to right, will be 10001100. Since the last character is a 0, we know
that the input string has even parity. □

An alternate method for defining a finite-state machine is with a transition
diagram. A transition diagram is a directed graph that contains a node for
each state and edges that indicate the transition and output functions. An
edge (si, sj) that is labeled x/z indicates that in state si the input x results in
an output of z and the next state is sj . That is, w (x, si) = z and t (x, si) = sj .
The transition diagram for the parity checker appears in Figure 14.3.4. In later
examples, we will see that if there are different inputs, xi and xj , while in the
same state resulting in the same transitions and outputs, we label a single edge
xi, xj/ z instead of drawing two edges with labels xi/ z and xj/ z.

Figure 14.3.4 Transition Diagram for a Parity Checker
One of the most significant features of a finite-state machine is that it retains

no information about its past states that can be accessed by the machine itself.
For example, after we input a tape encoded with the symbols 01101010 into
the parity checker, the current state will be even, but we have no indication
within the machine whether or not it has always been in even state. Note how
the output tape is not considered part of the machine’s memory. In this case,
the output tape does contain a “history” of the parity checker’s past states.
We assume that the finite-state machine has no way of recovering the output
sequence for later use.

Example 14.3.5 A Baseball Machine. Consider the following simplified
version of the game of baseball. To be precise, this machine describes one
half-inning of a simplified baseball game. Suppose that in addition to home
plate, there is only one base instead of the usual three bases. Also, assume
that there are only two outs per inning instead of the usual three. Our input
alphabet will consist of the types of hits that the batter could have: out (O),
double play (DP), single (S), and home run (HR). The input DP is meant to
represent a batted ball that would result in a double play (two outs), if possible.
The input DP can then occur at any time. The output alphabet is the numbers
0, 1, and 2 for the number of runs that can be scored as a result of any input.

CHAPTER 14. MONOIDS AND AUTOMATA 382

The state set contains the current situation in the inning, the number of outs,
and whether a base runner is currently on the base. The list of possible states
is then 00 (for 0 outs and 0 runners), 01, 10, 11, and end (when the half-inning
is over). The transition diagram for this machine appears in Figure 14.3.6

Figure 14.3.6 Transition Diagram for a simplified game of baseball
Let’s concentrate on one state. If the current state is 01, 0 outs and 1 runner

on base, each input results in a different combination of output and next-state.
If the batter hits the ball poorly (a double play) the output is zero runs and
the inning is over (the limit of two outs has been made). A simple out also
results in an output of 0 runs and the next state is 11, one out and one runner
on base. If the batter hits a single, one run scores (output = 1) while the state
remains 01. If a home run is hit, two runs are scored (output = 2) and the next
state is 00. If we had allowed three outs per inning, this graph would only be
marginally more complicated. The usual game with three bases would be quite
a bit more complicated, however. □

Example 14.3.7 Recognition in Regular Languages. As we mentioned
at the outset of this section, finite-state machines can recognize strings in a
regular language. Consider the language L over {a, b, c} that contains the
strings of positive length in which each a is followed by b and each b is followed
by c. One such string is bccabcbc. This language is regular. A grammar for
the language would be nonterminal symbols {A, B, C} with starting symbol C
and production rules A → bB, B → cC, C → aA, C → bB, C → cC, C → c.
A finite-state machine (Figure 14.3.8) that recognizes this language can be
constructed with one state for each nonterminal symbol and an additional
state (Reject) that is entered if any invalid production takes place. At the
end of an input tape that encodes a string in {a, b, c}∗, we will know when
the string belongs to L based on the final output. If the final output is 1, the
string belongs to L and if it is 0, the string does not belong to L. In addition,
recognition can be accomplished by examining the final state of the machine.
The input string belongs to the language if and only if the final state is C.

CHAPTER 14. MONOIDS AND AUTOMATA 383

Figure 14.3.8
The construction of this machine is quite easy: note how each production

rule translates into an edge between states other than Reject. For example,
C → bB indicates that in State C, an input of b places the machine into State
B. Not all sets of production rules can be as easily translated to a finite-state
machine. Another set of production rules for L is A→ aB, B → bC, C → cA,
C → cB, C → cC and C → c. Techniques for constructing finite-state machines
from production rules is not our objective here. Hence we will only expect you
to experiment with production rules until appropriate ones are found. □

Example 14.3.9 A Binary Adder. A finite-state machine can be designed
to add positive integers of any size. Given two integers in binary form, a =
anan−1 · · · a1a0 and b = bnbn−1 · · · b1b0, the machine take as its input sequence
the corresponding bits of a and b reading from right to left with a “parity bit”
added

a0b0 (a0 +2 b0) , a1b1 (a1 +2 b1) . . . , anbn (an +2 bn) , 111

Notice the special input 111 at the end. All possible inputs except the last
one must even parity (contain an even number of ones). The output sequence
is the sum of a and b, starting with the units digit, and comes from the set
{0, 1, λ}. The transition diagram for this machine appears in Figure 14.3.10.

Figure 14.3.10 Transition Diagram for a binary adder
□

CHAPTER 14. MONOIDS AND AUTOMATA 384

Exercises
1. Draw a transition diagram for the vending machine described in Exam-

ple 14.3.2.
2. Construct finite-state machines that recognize the regular languages that

you identified in Section 14.2.
3. What is the input set for the binary adding machine in Example 14.3.9?
4. What input sequence would be used to compute the sum of 1101 and 0111

(binary integers)? What would the output sequence be?
5. The Gray Code Decoder. The finite-state machine defined by the following

figure has an interesting connection with the Gray Code.

Figure 14.3.11 Gray Code Decoder
Given a string x = x1x2 · · ·xn ∈ Bn, we may ask where x appears in

Gn. Starting in Copy state, the input string x will result in an output
string z ∈ Bn, which is the binary form of the position of x in Gn. Recall
that positions are numbered from 0 to 2n − 1.

(a) In what positions (0− 31) do 10110, 00100, and 11111 appear in G5?

(b) Prove that the Gray Code Decoder always works.

14.4 The Monoid of a Finite-State Machine
In this section, we will see how every finite-state machine has a monoid as-
sociated with it. For any finite-state machine, the elements of its associated
monoid correspond to certain input sequences. Because only a finite number of
combinations of states and inputs is possible for a finite-state machine there
is only a finite number of input sequences that summarize the machine. This
idea is illustrated best with a few examples.

Consider the parity checker. The following table summarizes the effect on
the parity checker of strings in B1 and B2. The row labeled “Even” contains
the final state and final output as a result of each input string in B1 and B2

when the machine starts in the even state. Similarly, the row labeled “Odd”
contains the same information for input sequences when the machine starts in
the odd state.

Input String 0 1 00 01 10 11
Even (Even, 0) (Odd, 1) (Even, 0) (Odd, 1) (Odd, 1) (Even, 0)
Odd (Odd, 1) (Even, 1) (Odd, 1) (Even, 1) (Even, 0) (Odd, 1)

Same Effect as 0 1 1 0

Note how, as indicated in the last row, the strings in B2 have the same
effect as certain strings in B1. For this reason, we can summarize the machine
in terms of how it is affected by strings of length 1. The actual monoid that
we will now describe consists of a set of functions, and the operation on the
functions will be based on the concatenation operation.

Let T0 be the final effect (state and output) on the parity checker of the
input 0. Similarly, T1 is defined as the final effect on the parity checker of the
input 1. More precisely,

T0(even) = (even, 0) and T0(odd) = (odd, 1),

CHAPTER 14. MONOIDS AND AUTOMATA 385

while
T1(even) = (odd, 1) and T1(odd) = (even, 0).

In general, we define the operation on a set of such functions as follows: if s,
t are input sequences and Ts and Tt, are functions as above, then Ts ∗ Tt = Tst,
that is, the result of the function that summarizes the effect on the machine by
the concatenation of s with t. Since, for example, 01 has the same effect on the
parity checker as 1, T0 ∗ T1 = T01 = T1. We don’t stop our calculation at T01
because we want to use the shortest string of inputs to describe the final result.

A complete table for the monoid of the parity checker is
∗ T0 T1
T0
T1

T0 T1
T1 T0

What is the identity of this monoid? The monoid of the parity checker is
isomorphic to the monoid [Z2; +2].

This operation may remind you of the composition operation on functions,
but there are two principal differences. The domain of Ts is not the codomain
of Tt and the functions are read from left to right unlike in composition, where
they are normally read from right to left.

You may have noticed that the output of the parity checker echoes the state
of the machine and that we could have looked only at the effect on the machine
as the final state. The following example has the same property, hence we will
only consider the final state.

Example 14.4.1 The transition diagram for the machine that recognizes strings
in B∗ that have no consecutive 1’s appears in Figure 14.4.2. Note how it is
similar to the graph in Figure 9.1.4. Only a “reject state” has been added, for
the case when an input of 1 occurs while in State a. We construct a similar
table to the one in the previous example to study the effect of certain strings on
this machine. This time, we must include strings of length 3 before we recognize
that no “new effects” can be found.

Figure 14.4.2 No Consecutive Ones Monoid

Inputs 0 1 00 01 10 11 000 001 010 011 100 101 110 111
s b a b a b r b a b r b a r r

a b r b a r r b a b r r r r r

b b a b a b r b a b r b a r r

r r r r r r r r r r r r r r r

Same as 0 0 01 0 11 10 1 11 11
The following table summarizes how combinations of the strings 0, 1, 01, 10, and 11

CHAPTER 14. MONOIDS AND AUTOMATA 386

affect this machine.

∗ T0 T1 T01 T10 T11
T0
T1
T01
T10
T11

T0 T1 T01 T10 T11
T10 T11 T1 T11 T11
T0 T11 T01 T11 T11
T10 T1 T1 T10 T11
T11 T11 T11 T11 T11

All the results in this table can be obtained using the previous table. For
example,

T10 ∗ T01 = T1001 = T100 ∗ T1 = T10 ∗ T1 = T101 = T1
and

T01 ∗ T01 = T0101 = T010T1 = T0T1 = T01

Note that none of the elements that we have listed in this table serves as the
identity for our operation. This problem can always be remedied by including
the function that corresponds to the input of the null string, Tλ. Since the null
string is the identity for concatenation of strings, TsTλ = TλTs = Ts for all
input strings s. □

Example 14.4.3 The Unit-time Delay Machine. A finite-state machine
called the unit-time delay machine does not echo its current state, but prints its
previous state. For this reason, when we find the monoid of the unit-time delay
machine, we must consider both state and output. The transition diagram of
this machine appears in Figure 14.4.4.

Figure 14.4.4

Input 0 1 00 01 10 11 100 or000 101 or001 110 or101 111 or011
0
1

Same as

(0, 0) (1, 0) (0, 0) (1, 0) (0, 1) (1, 1) (0, 0) (1, 0) (0, 1) (1, 1)
(0, 1) (1, 1) (0, 0) (1, 0) (0, 1) (1, 1) (0, 0) (1, 0) (0, 1) (1, 1)

00 01 10 11
Again, since no new outcomes were obtained from strings of length 3, only

strings of length 2 or less contribute to the monoid of the machine. The table
for the strings of positive length shows that we must add Tλ to obtain a monoid.

∗ T0 T1 T00 T01 T10 T11
T0
T1
T00
T01
T10
T11

T00 T01 T00 T01 T10 T11
T10 T11 T00 T01 T10 T11
T00 T01 T00 T01 T10 T11
T10 T11 T00 T01 T10 T11
T00 T01 T00 T01 T10 T11
T10 T11 T00 T01 T10 T11

.

□

CHAPTER 14. MONOIDS AND AUTOMATA 387

Exercises
1. For each of the transition diagrams in Figure 5, write out tables for their

associated monoids. Identify the identity in terms of a string of positive
length, if possible.

Figure 14.4.5 Exercise 1

Hint. Where the output echoes the current state, the output can be
ignored.

2. What common monoids are isomorphic to the monoids obtained in the
previous exercise?

3. Can two finite-state machines with nonisomorphic transition diagrams
have isomorphic monoids?

14.5 The Machine of a Monoid
Any finite monoid [M ; ∗] can be represented in the form of a finite-state machine
with input and state sets equal to M . The output of the machine will be ignored
here, since it would echo the current state of the machine. Machines of this
type are called state machines. It can be shown that whatever can be done
with a finite-state machine can be done with a state machine; however, there is
a trade-off. Usually, state machines that perform a specific function are more
complex than general finite-state machines.

Definition 14.5.1 Machine of a Monoid. If [M ; ∗] is a finite monoid, then
the machine of M , denoted m(M), is the state machine with state set M , input
set M , and next-state function t : M ×M →M defined by t(s, x) = s ∗ x. ♢

Example 14.5.2 We will construct the machine of the monoid [Z2; +2]. As
mentioned above, the state set and the input set are both Z2. The next state
function is defined by t(s, x) = s +2 x. The transition diagram for m (Z2)
appears in Figure 14.5.3. Note how it is identical to the transition diagram
of the parity checker, which has an associated monoid that was isomorphic to
[Z2; +2] .

Figure 14.5.3 The machine of [Z2; +2]
□

Example 14.5.4 The transition diagram of the monoids [Z2;×2] and [Z3;×3]
appear in Figure 14.5.5.

CHAPTER 14. MONOIDS AND AUTOMATA 388

Figure 14.5.5 The machines of [Z2;×2] and [Z3;×3]
□

Example 14.5.6 Let U be the monoid that we obtained from the unit-time
delay machine (Example 14.4.3). We have seen that the machine of the monoid
of the parity checker is essentially the parity checker. Will we obtain a unit-time
delay machine when we construct the machine of U? We can’t expect to get
exactly the same machine because the unit-time delay machine is not a state
machine and the machine of a monoid is a state machine. However, we will
see that our new machine is capable of telling us what input was received in
the previous time period. The operation table for the monoid serves as a table
to define the transition function for the machine. The row headings are the
state values, while the column headings are the inputs. If we were to draw a
transition diagram with all possible inputs, the diagram would be too difficult
to read. Since U is generated by the two elements, T0 and T1, we will include
only those inputs. Suppose that we wanted to read the transition function for
the input T01. Since T01 = T0T1, in any state s, t (s, T01) = t (t (s, T0) , T1) . The
transition diagram appears in Figure 14.5.7.

Figure 14.5.7 Unit time delay machine
If we start reading a string of 0’s and 1’s while in state Tλ and are in state

Tab at any one time, the input from the previous time period (not the input
that sent us into Tab, the one before that) is a. In states Tλ, T0 and T1, no
previous input exists. □

Exercises
1. Draw the transition diagrams for the machines of the following monoids:

(a) [Z4; +4]

(b) The direct product of [Z2;×2] with itself.
2. Even though a monoid may be infinite, we can visualize it as an infinite-

state machine provided that it is generated by a finite number of elements.
For example, the monoid B∗ is generated by 0 and 1. A section of
its transition diagram can be obtained by allowing input only from the

CHAPTER 14. MONOIDS AND AUTOMATA 389

generating set. The monoid of integers under addition is generated by the
set {−1, 1}. The transition diagram for this monoid can be visualized by
drawing a small portion of it, as in Figure 10. The same is true for the
additive monoid of integers, as seen in Figure 11.

Figure 14.5.8 An infinite machine B∗

Figure 14.5.9 An infinite machine [Z; +]

(a) Draw a transition diagram for {a, b, c}

(b) Draw a transition diagram for [Z× Z; componentwise addition].

(c) Draw a transition diagram for [Z; +] with generating set {5,−2}.

Chapter 15

Group Theory and Applica-
tions

alternating group

N objects are ordered, and you
Switch consecutive pairs two by two.

All reorders you get
Will comprise a new set

Called an alternating group when you’re through.

Chris Doyle, The Omnificent English Dictionary In Limerick Form

In Chapter 11, we introduced groups as a typical algebraic system. The
associated concepts of subgroup, group isomorphism, and direct products of
groups were also introduced. Groups were chosen for that chapter because
they are among the simplest types of algebraic systems. Despite this simplicity,
group theory abounds with interesting applications. In this chapter we will
introduce some more important concepts in elementary group theory, and some
of their applications.

15.1 Cyclic Groups
Groups are classified according to their size and structure. A group’s structure
is revealed by a study of its subgroups and other properties (e.g., whether it
is abelian) that might give an overview of it. Cyclic groups have the simplest
structure of all groups.

Definition 15.1.1 Cyclic Group. Group G is cyclic if there exists a ∈ G
such that the cyclic subgroup generated by a, ⟨a⟩, equals all of G. That is,
G = {na|n ∈ Z}, in which case a is called a generator of G. The reader should
note that additive notation is used for G. ♢

Example 15.1.2 A Finite Cyclic Group. Z12 = [Z12; +12], where +12 is
addition modulo 12, is a cyclic group. To verify this statement, all we need to
do is demonstrate that some element of Z12 is a generator. One such element is
5; that is, ⟨5⟩ = Z12. One more obvious generator is 1. In fact, 1 is a generator
of every [Zn; +n]. The reader is asked to prove that if an element is a generator,
then its inverse is also a generator. Thus, −5 = 7 and −1 = 11 are the other
generators of Z12. The remaining eight elements of the group are not generators.

390

CHAPTER 15. GROUP THEORY AND APPLICATIONS 391

Figure 15.1.3 Examples of “string art”
Figure 15.1.3(a) is an example of “string art” that illustrates how 5 generates

Z12. Twelve tacks are placed evenly around a circle and numbered 0 through 11.
A string is tied to tack 0, and is then looped around every fifth tack. As a result,
the numbers of the tacks that are reached are exactly the ordered multiples
of 5 modulo 12: 5, 10, 3, ... , 7, 0. Note that if every seventh tack were used,
the same artwork would be produced. If every third tack were connected, as in
Figure 15.1.3(b), the resulting loop would only use four tacks; thus 3 does not
generate Z12. □

Example 15.1.4 The Group of Integers is Cyclic. The additive group of
integers, [Z; +], is cyclic:

Z = ⟨1⟩ = {n · 1|n ∈ Z}

This observation does not mean that every integer is the product of an integer
times 1. It means that

Z = {0} ∪ {
n terms︷ ︸︸ ︷

1 + 1 + · · ·+ 1 | n ∈ P} ∪ {
n terms︷ ︸︸ ︷

(−1) + (−1) + · · ·+ (−1) | n ∈ P}

□

Theorem 15.1.5 Cyclic Implies Abelian. If [G; ∗] is cyclic, then it is
abelian.
Proof. Let a be any generator of G and let b, c ∈ G. By the definition of the
generator of a group, there exist integers m and n such that b = ma and c = na.
Thus, using Theorem 11.3.14,

b ∗ c = (ma) ∗ (na)
= (m + n)a
= (n + m)a
= (na) ∗ (ma)
= c ∗ b

■
One of the first steps in proving a property of cyclic groups is to use the

fact that there exists a generator. Then every element of the group can be
expressed as some multiple of the generator. Take special note of how this is
used in theorems of this section.

Up to now we have used only additive notation to discuss cyclic groups.
Theorem 15.1.5 actually justifies this practice since it is customary to use
additive notation when discussing abelian groups. Of course, some concrete
groups for which we employ multiplicative notation are cyclic. If one of its

CHAPTER 15. GROUP THEORY AND APPLICATIONS 392

elements, a, is a generator,

⟨a⟩ = {an | n ∈ Z}
Example 15.1.6 A Cyclic Multiplicative Group. The group of positive
integers modulo 11 with modulo 11 multiplication, [U11;×11], is cyclic. One of
its generators is 6: 61 = 6, 62 = 3, 63 = 7,. . . , 69 = 2, and 610 = 1, the identity
of the group. □

Example 15.1.7 A Non-cyclic Group. The real numbers with addition,
[R; +] is a noncyclic group. The proof of this statement requires a bit more
generality since we are saying that for all r ∈ R, ⟨r⟩ is a proper subset of
R. If r is nonzero, the multiples of r are distributed over the real line, as in
Figure 15.1.8. It is clear then that there are many real numbers, like r/2, that
are not in ⟨r⟩.

Figure 15.1.8 Elements of ⟨r⟩, r > 0
□

The next two proofs make use of the Theorem 11.4.1.
The following theorem shows that a cyclic group can never be very compli-

cated.
Theorem 15.1.9 Possible Cyclic Group Structures. If G is a cyclic
group, then G is either finite or countably infinite. If G is finite and |G| = n, it
is isomorphic to [Zn; +n]. If G is infinite, it is isomorphic to [Z; +].
Proof. Case 1: |G| <∞. If a is a generator of G and |G| = n, define ϕ : Zn → G
by ϕ(k) = ka for all k ∈ Zn.

Since ⟨a⟩ is finite, we can use the fact that the elements of ⟨a⟩ are the first n
nonnegative multiples of a. From this observation, we see that ϕ is a surjection.
A surjection between finite sets of the same cardinality must be a bijection.
Finally, if p, q ∈ Zn,

ϕ(p) + ϕ(q) = pa + qa

= (p + q)a
= (p +n q)a see exercise 10
= ϕ(p +n q)

Therefore ϕ is an isomorphism.
Case 2: |G| =∞. We will leave this case as an exercise. ■

Theorem 15.1.10 Subgroups of Cyclic Groups. Every subgroup of a
cyclic group is cyclic.
Proof. Let G be cyclic with generator a and let H ≤ G. If H = {e}, H
has e as a generator. We may now assume that |H| ≥ 2 and a ̸= e. Let
m be the least positive integer such that ma belongs to H. This is the key
step. It lets us get our hands on a generator of H. We will now show that
c = ma generates H. Certainly, ⟨c⟩ ⊆ H, but suppose that ⟨c⟩ ≠ H. Then
there exists b ∈ H such that b /∈ ⟨c⟩. Now, since b is in G, there exists n ∈ Z
such that b = na. We now apply the division property and divide n by m.
b = na = (qm + r)a = (qm)a + ra, where 0 ≤ r < m. We note that r cannot
be zero for otherwise we would have b = na = q(ma) = qc ∈ ⟨c⟩. Therefore,
ra = na − (qm)a ∈ H. This contradicts our choice of m because 0 < r < m.

■

Example 15.1.11 All subgroups of Z10. The only proper subgroups of Z10
are H1 = {0, 5} and H2 = {0, 2, 4, 6, 8}. They are both cyclic: H1 = ⟨5⟩, while

CHAPTER 15. GROUP THEORY AND APPLICATIONS 393

H2 = ⟨2⟩ = ⟨4⟩ = ⟨6⟩ = ⟨8⟩. The generators of Z10 are 1, 3, 7, and 9. □

Example 15.1.12 All subgroups of Z. With the exception of {0}, all
subgroups of Z are isomorphic to Z. If H ≤ Z, then H is the cyclic sub-
group generated by the least positive element of H. It is infinite and so by
Theorem 15.1.10 it is isomorphic to Z. □

We now cite a useful theorem for computing the order of cyclic subgroups
of a cyclic group:

Theorem 15.1.13 The order of elements of a finite cyclic group. If G
is a cyclic group of order n and a is a generator of G, the order of ka is n/d,
where d is the greatest common divisor of n and k.
Proof. The proof of this theorem is left to the reader. ■

Example 15.1.14 Computation of an order in a cyclic group. To
compute the order of ⟨18⟩ in Z30, we first observe that 1 is a generator of Z30
and 18 = 18(1). The greatest common divisor of 18 and 30 is 6. Hence, the
order of ⟨18⟩ is 30/6, or 5. □

At this point, we will introduce the idea of a fast adder, a relatively modern
application (Winograd, 1965) of an ancient theorem, Sun Tzu’s Theorem. We
will present only an overview of the theory and rely primarily on examples.

Out of necessity, integer addition with a computer is addition modulo n,
for n some larger number. Consider the case where n is small, like 64. Then
addition involves the addition of six-digit binary numbers. Consider the process
of adding 31 and 1. Assume the computer’s adder takes as input two bit
strings a = {a0, a1, a2, a3, a4, a5} and b = {b0, b1, b2, b3, b4, b5} and outputs
s = {s0, s1, s2, s3, s4, s5}, the sum of a and b. Then, if a = 31 = (1, 1, 1, 1, 1, 0)
and b = 1 = (1, 0, 0, 0, 0, 0), s will be (0, 0, 0, 0, 0, 1), or 32. The output s = 1
cannot be determined until all other outputs have been determined. If addition
is done with a finite-state machine, as in Example 14.3.9, the time required
to get s will be six time units, where one time unit is the time it takes to get
one output from the machine. In general, the time required to obtain s will be
proportional to the number of bits. Theoretically, this time can be decreased,
but the explanation would require a long digression and our relative results
would not change that much. We will use the rule that the number of time
units needed to perform addition modulo n is proportional to ⌈log2 n⌉.

Now we will introduce a hypothetical problem that we will use to illustrate
the idea of a fast adder. Suppose that we had to add 1,000 numbers modulo
27720 = 8 ·9 ·5 ·7 ·11. By the rule above, since 214 < 27720 < 215, each addition
would take 15 time units. If the sum is initialized to zero, 1,000 additions would
be needed; thus, 15,000 time units would be needed to do the additions. We
can improve this time dramatically by applying Sun Tzu’s Theorem. Recall
that k%n is the remainder upon division of k by n.

Theorem 15.1.15 Sun Tzu’s Theorem. Let n1, n2, . . ., np be integers that
have no common factor greater than one between any pair of them; i. e., they
are relatively prime. Let n = n1n2 · · ·np. Define

θ : Zn → Zn1 × Zn2 × · · · × Znp

by
θ(k) = (k1, k2, . . . , kp) = (k%n1, k%n2, . . . , k%np)

where for 1 ≤ i ≤ p, 0 ≤ ki < ni and k ≡ ki (mod ni). Then θ is an
isomorphism from Zn into Zn1 × Zn2 × · · · × Znp .

Sun Tzu’s Theorem can be stated in several different forms, and its proof
can be found in many abstract algebra texts. Older texts most likely will refer

CHAPTER 15. GROUP THEORY AND APPLICATIONS 394

to the theorem as the Chinese Remainder Theorem.
As we saw in Chapter 11, Z6 is isomorphic to Z2 ×Z3 . This is the smallest

case to which Sun Tzu’s Theorem can be applied. An isomorphism between Z6
and Z2 × Z3 is

θ(0) = (0, 0) θ(3) = (1, 0)
θ(1) = (1, 1) θ(4) = (0, 1)
θ(2) = (0, 2) θ(5) = (1, 2)

Let’s consider a somewhat larger case. We start by selecting a modulus that
can be factored into a product of relatively prime integers: n = 21, 600 = 253352.
In this case the factors are 25 = 32, 33 = 27, and 52 = 25. They need not be
powers of primes, but it is easy to break the factors into this form to assure
relatively prime numbers. To add in Zn, we need ⌈log2 n⌉ = 15 time units. Let
G = Z32 × Z27 × Z25. Sun Tzu’s Theorem gives us an isomorphism between
Z21600 and G. The basic idea behind the fast adder, illustrated in Figure 15.1.16,
is to make use of this isomorphism. The notation x += a is interpreted as the
instruction to add the value of a to the variable x.

Figure 15.1.16 Fast Adder Scheme
Assume we have several integers a1, . . . , am to be added. Here, we assume

m = 20. We compute the sum s to compare our result with this true sum.

a=[1878 ,1384 ,84 ,2021 ,784 ,1509 ,1740 ,1201 ,2363 ,1774 ,
1865 ,33 ,1477 ,894 ,690 ,520 ,198 ,1349 ,1278 ,650]

s =0
for t in a:

s+=t
s

23692

Although our sum is an integer calculation, we will put our calculation in
the context of the integers modulo 21600. The isomophism from Z21600 into
G = Z32 × Z27 × Z25 is defined in Sage as theta. In addition we demonstrate
that the operations in these groups are preserved by theta.

G=cartesian_product ([Integers (32),Integers (27),Integers (25)])
def theta(x):

return G((x%32,x%27,x%25))
[theta (1878)+theta (1384) ,theta (1878+1384)]

[(30, 22, 12), (30, 22, 12)]

We initialize the sums in each factor of the range of theta to zero and
decompose each summand t into a triple θ(t) = (t1, t2, t3) ∈ G.

sum=G((0,0,0))
for t in a:

CHAPTER 15. GROUP THEORY AND APPLICATIONS 395

sum+=theta(t)
sum

(12, 13, 17)

Addition in G can be done in parallel so that each new subtotal in the form
of the triple (s1, s2, s3) takes only as long to compute as it takes to add in the
largest modulus, log2 32 = 5 time units, if calculations are done in parallel. By
the time rule that we have established, the addition of 20 numbers can be done
in 20 · 5 = 100 time units, as opposed to 20 · 15 = 300 time units if we do
the calculations in Z21600. However the result is a triple in G. The function
that performs the inverse of theta is built into most mathematics programs,
including Sage. In Sage the function is crt, short for Chinese Remainder
Theorem, the other common name of Sun Tzu’s Theorem. We use this function
to compute the inverse of our triple, which is an element of Z21600. The result
isn’t the true sum because the modulus 21600 is not large enough. However,
we verify that our result is congruent to the true sum modulo 21600.

isum=crt ([12 ,13 ,17] ,[32 ,27 ,25])
[isum ,(s-isum)%(21600)]

[2092, 0]

In order to get the true sum from our scheme, the modulus would need
to be increased by moving from 21600 to, for example, 21600 ∗ 23 = 496800.
Mapping into the new group, G = Z32 × Z27 × Z25 × Z23 will take slightly
longer, as will the inversion process with crt, but adding the summands that
are in the form of quadruples can be done with no additional time.

The computation of θ−1 (s1, s2, s3) that is done by the Sage function crt
can be accomplished in a variety of ways. All of them ultimately are sim-
plified by the fact that θ−1 is also an isomorphism. One approach is to
use the isomorphism property to realize that the value of θ−1 (s1, s2, s3) is
s1θ−1(1, 0, 0) + s2θ−1(0, 1, 0) + s3θ−1(0, 0, 1). The arithmetic in this expression
is in the domain of θ and is more time consuming, but it need only be done
once. This is why the fast adder is only practical in situations where many
additions must be performed to get a single sum.

The inverse images of the “unit vectors” can be computed ahead of time.

u=[crt ([1 ,0 ,0] ,[32 ,27 ,25]),
crt ([0 ,1 ,0] ,[32 ,27 ,25]),crt ([0 ,0 ,1] ,[32 ,27 ,25])]

u

[7425, 6400, 7776]

The result we computed earlier can be computed directly by in the larger
modulus.

(7425*12 + 6400*13+ 7776* 17) %21600

2092

To further illustrate the potential of fast adders, consider increasing the
modulus to n = 2533527211 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 ≈ 3.1× 1021.
Each addition using the usual modulo n addition with full adders would take
72 time units. By decomposing each summand into 15-tuples according to Sun
Tzu’s Theorem, the time is reduced to ⌈log2 49⌉ = 6 time units per addition.

CHAPTER 15. GROUP THEORY AND APPLICATIONS 396

Exercises

1. What generators besides 1 does [Z; +] have?
2. Suppose [G; ∗] is a cyclic group with generator g. If you build a graph of

with vertices from the elements of G and edge set E = {(a, g ∗ a) | a ∈ G},
what would the graph look like? If G is a group of even order, what would
a graph with edge set E′ = {(a, g2 ∗ a) | a ∈ G} look like?

3. Prove that if |G| > 2 and G is cyclic, G has at least two generators.
4. If you wanted to list the generators of Zn you would only have to test the

first n/2 positive integers. Why?
5. Which of the following groups are cyclic? Explain.

(a) [Q; +]

(b) [R+; ·]

(c) [6Z; +] where 6Z = {6n|n ∈ Z}

(d) Z× Z

(e) Z2 × Z3 × Z25

6. For each group and element, determine the order of the cyclic subgroup
generated by the element:

(a) Z25 , 15

(b) Z4 × Z9 , (2, 6) (apply Exercise 8)

(c) Z64 , 2
7. How can Theorem 15.1.13 be applied to list the generators of Zn? What

are the generators of Z25? Of Z256?
8. Prove that if the greatest common divisor of n and m is 1, then (1, 1) is a

generator of Zn × Zm, and hence, Zn × Zm is isomorphic to Znm.
9.

(a) Illustrate how the fast adder can be used to add the numbers 21, 5,
7, and 15 using the isomorphism between Z77 and Z7 × Z11.

(b) If the same isomorphism is used to add the numbers 25, 26, and 40,
what would the result be, why would it be incorrect, and how would
the answer differ from the answer in part a?

10. Prove that if G is a cyclic group of order n with generator a, and p, q ∈
{0, 1, . . . , n− 1}, then (p + q)a = (p +n q) a.

15.2 Cosets and Factor Groups
Consider the group [Z12; +12]. As we saw in the previous section, we can
picture its cyclic properties with the string art of Figure 15.1.3. Here we will
be interested in the non-generators, like 3. The solid lines in Figure 15.2.1
show that only one-third of the tacks have been reached by starting at zero
and jumping to every third tack. The numbers of these tacks correspond to
⟨3⟩ = {0, 3, 6, 9}.

CHAPTER 15. GROUP THEORY AND APPLICATIONS 397

Figure 15.2.1 “String art” cosets
What happens if you start at one of the unused tacks and again jump to

every third tack? The two broken paths on Figure 15.2.1 show that identical
squares are produced. The tacks are thus partitioned into very similar subsets.
The subsets of Z12 that they correspond to are {0, 3, 6, 9}, {1, 4, 7, 10}, and
{2, 5, 8, 11}. These subsets are called cosets. In particular, they are called cosets
of the subgroup {0, 3, 6, 9}. We will see that under certain conditions, cosets of
a subgroup can form a group of their own. Before pursuing this example any
further we will examine the general situation.

Definition 15.2.2 Coset. If [G; ∗] is a group, H ≤ G and a ∈ G, the left
coset of H generated by a is

a ∗H = {a ∗ h|h ∈ H}

and the right coset of H generated by a is

H ∗ a = {h ∗ a|h ∈ H}.

♢

Note 15.2.3
(a) H itself is both a left and right coset since e ∗H = H ∗ e = H.

(b) If G is abelian, a ∗H = H ∗ a and the left-right distinction for cosets can
be dropped. We will normally use left coset notation in that situation.

Definition 15.2.4 Coset Representative. Any element of a coset is called
a representative of that coset. ♢

One might wonder whether a is in any way a special representative of a ∗H
since it seems to define the coset. It is not, as we shall see.

Remark 15.2.5 A Duality Principle. A duality principle can be formulated
concerning cosets because left and right cosets are defined in such similar ways.
Any theorem about left and right cosets will yield a second theorem when “left”
and “right” are exchanged for “right” and “left.”

CHAPTER 15. GROUP THEORY AND APPLICATIONS 398

Theorem 15.2.6 If b ∈ a ∗ H, then a ∗ H = b ∗ H, and if b ∈ H ∗ a, then
H ∗ a = H ∗ b.
Proof. In light of the remark above, we need only prove the first part of this
theorem. Suppose that x ∈ a ∗H. We need only find a way of expressing x as
“b times an element of H.” Then we will have proven that a ∗H ⊆ b ∗H. By
the definition of a ∗H, since b and x are in a ∗H, there exist h1 and h2 in H
such that b = a ∗ h1 and x = a ∗ h2. Given these two equations, a = bh−1

1 and

x = a ∗ h2 = (b ∗ h−1
1) ∗ h2 = b ∗ (h−1

1 ∗ h2)

Since h1, h2 ∈ H, h−1
1 ∗ h2 ∈ H, and we are done with this part of the proof.

In order to show that b ∗H ⊆ a ∗H, one can follow essentially the same steps,
which we will let the reader fill in. ■

Example 15.2.7 In Figure 15.2.1, you can start at either 1 or 7 and obtain
the same path by taking jumps of three tacks in each step. Thus,

1 +12 {0, 3, 6, 9} = 7 +12 {0, 3, 6, 9} = {1, 4, 7, 10}.

□
The set of left (or right) cosets of a subgroup partition a group in a special

way:

Theorem 15.2.8 Cosets Partition a Group. If [G; ∗] is a group and
H ≤ G, the set of left cosets of H is a partition of G. In addition, all of the
left cosets of H have the same cardinality. The same is true for right cosets.
Proof. That every element of G belongs to a left coset is clear because a ∈ a∗H
for all a ∈ G. If a∗H and b∗H are left cosets, we will prove that they are either
equal or disjoint. If a ∗H and b ∗H are not disjoint, a ∗H ∩ b ∗H is nonempty
and some element c ∈ G belongs to the intersection. Then by Theorem 15.2.6,
c ∈ a ∗H ⇒ a ∗H = c ∗H and c ∈ b ∗H ⇒ b ∗H = c ∗H. Hence a ∗H = b ∗H.

We complete the proof by showing that each left coset has the same cardi-
nality as H. To do this, we simply observe that if a ∈ G, ρ : H → a ∗H defined
by ρ(h) = a ∗ h is a bijection and hence |H| = |a ∗H|. We will leave the proof
of this statement to the reader. ■

The function ρ has a nice interpretation in terms of our opening example.
If a ∈ Z12, the graph of {0, 3, 6, 9} is rotated (30a)◦ to coincide with one of the
three cosets of {0, 3, 6, 9}.

Corollary 15.2.9 A Coset Counting Formula. If |G| <∞ and H ≤ G,
the number of distinct left cosets of H equals |G|

|H| . For this reason we use G/H

to denote the set of left cosets of H in G
Proof. This follows from the partitioning of G into equal sized sets, one of
which is H. ■

Example 15.2.10 The set of integer multiples of four, 4Z, is a subgroup of
[Z; +]. Four distinct cosets of 4Z partition the integers. They are 4Z, 1 + 4Z,
2 + 4Z, and 3 + 4Z, where, for example, 1 + 4Z = {1 + 4k|k ∈ Z}. 4Z can also
be written 0 + 4Z. □

Convention 15.2.11 Distinguished Representatives. Although we have
seen that any representative can describe a coset, it is often convenient to
select a distinguished representative from each coset. The advantage to doing
this is that there is a unique name for each coset in terms of its distinguished
representative. In numeric examples such as the one above, the distinguished
representative is usually the smallest nonnegative representative. Remember,
this is purely a convenience and there is absolutely nothing wrong in writing
−203 + 4Z, 5 + 4Z, or 621 + 4Z in place of 1 + 4Z because −203, 5, 621 ∈ 1 + 4Z.

CHAPTER 15. GROUP THEORY AND APPLICATIONS 399

Before completing the main thrust of this section, we will make note of a
significant implication of Theorem 15.2.8. Since a finite group is divided into
cosets of a common size by any subgroup, we can conclude:

Theorem 15.2.12 Lagrange’s Theorem. The order of a subgroup of a
finite group must divide the order of the group.

One immediate implication of Lagrange’s Theorem is that if p is prime, Zp

has no proper subgroups.
We will now describe the operation on cosets which will, under certain

circumstances, result in a group. For most of this section, we will assume that
G is an abelian group. This is one sufficient (but not necessary) condition that
guarantees that the set of left cosets will form a group.

Definition 15.2.13 Operation on Cosets. Let C and D be left cosets of
H, a subgroup of G with representatives c and d, respectively. Then

C ⊗D = (c ∗H)⊗ (d ∗H) = (c ∗ d) ∗H

The operation ⊗ is called the operation induced on left cosets by ∗. ♢
In Theorem 15.2.18, later in this section, we will prove that if G is an abelian

group, ⊗ is indeed an operation. In practice, if the group G is an additive
group, the symbol ⊗ is replaced by +, as in the following example.

Example 15.2.14 Computing with cosets of 4Z. Consider the cosets
described in Example 15.2.10. For brevity, we rename 0 + 4Z, 1 + 4Z, 2 + 4Z,
and 3 + 4Z with the symbols 0̄, 1̄, 2̄, and 3̄. Let’s do a typical calculation,
1̄ + 3̄. We will see that the result is always going to be 0̄ , no matter what
representatives we select. For example, 9 ∈ 1̄, 7 ∈ 3̄, and 9 + 7 = 16 ∈ 0̄. Our
choice of the representatives 1̄ and 3̄ were completely arbitrary. □

In general, C ⊗D can be computed in many ways, and so it is necessary to
show that the choice of representatives does not affect the result. When the
result we get for C ⊗D is always independent of our choice of representatives,
we say that “⊗ is well defined.” Addition of cosets is a well-defined operation
on the left cosets of 4Z and is summarized in the following table. Do you notice
anything familiar?

⊗ 0̄ 1̄ 2̄ 3̄
0̄ 0̄ 1̄ 2̄ 3̄
1̄ 1̄ 2̄ 3̄ 0̄
2̄ 2̄ 3̄ 0̄ 1̄
3̄ 3̄ 0̄ 1̄ 2̄

Example 15.2.15 Cosets of the integers in the group of Real numbers.
Consider the group of real numbers, [R; +], and its subgroup of integers, Z.
Every element of R/Z has the same cardinality as Z. Let s, t ∈ R. s ∈ t +Z if s
can be written t + n for some n ∈ Z. Hence s and t belong to the same coset if
they differ by an integer. (See Exercise 15.2.6 for a generalization of this fact.)

Now consider the coset 0.25+Z. Real numbers that differ by an integer from
0.25 are 1.25, 2.25, 3.25, . . . and −0.75,−1.75,−2.75, If any real number
is selected, there exists a representative of its coset that is greater than or
equal to 0 and less than 1. We will call that representative the distinguished
representative of the coset. For example, 43.125 belongs to the coset represented
by 0.125; −6.382+Z has 0.618 as its distinguished representative. The operation
on R/Z is commonly called addition modulo 1. A few typical calculations in

CHAPTER 15. GROUP THEORY AND APPLICATIONS 400

R/Z are
(0.1 + Z) + (0.48 + Z) = 0.58 + Z
(0.7 + Z) + (0.31 + Z) = 0.01 + Z
−(0.41 + Z) = −0.41 + Z = 0.59 + Z

and in general, − (a + Z) = (1− a) + Z

.

□

Example 15.2.16 Cosets in a Direct Product. Consider F = (Z4×Z2)/H,
where H = {(0, 0), (0, 1)}. Since Z4 × Z2 is of order 8, each element of F is a
coset containing two ordered pairs. We will leave it to the reader to verify that
the four distinct cosets are (0, 0) + H, (1, 0) + H, (2, 0) + H and (3, 0) + H.
The reader can also verify that F is isomorphic to Z4 , since F is cyclic. An
educated guess should give you a generator. □

Example 15.2.17 Consider the group Z2
4 = Z2 × Z2 × Z2 × Z2 . Let H be

⟨(1, 0, 1, 0)⟩, the cyclic subgroup of Z2
4 generate by (1,0,1,0). Since

(1, 0, 1, 0) + (1, 0, 1, 0) = (1 +2 1, 0 +2 0, 1 +2 1, 0 +2 0) = (0, 0, 0, 0)

the order of H is 2 and , Z2
4/H has |Z4

2/H| = |Z4
2|

|H| = 16
2 = 8 elements. A

typical coset is

C = (0, 1, 1, 1) + H = {(0, 1, 1, 1), (1, 1, 0, 1)}

Note that since 2(0, 1, 1, 1) = (0, 0, 0, 0), 2C = C ⊗ C = H, the identity for the
operation on Z2

4/H. The orders of non-identity elements of this factor group
are all 2, and it can be shown that the factor group is isomorphic to Z2

3. □

Theorem 15.2.18 Coset operation is well-defined (Abelian Case). If
G is an abelian group, and H ≤ G, the operation induced on cosets of H by the
operation of G is well defined.
Proof. Suppose that a, b, and a′, b′. are two choices for representatives of cosets
C and D. That is to say that a, a′ ∈ C, b, b′ ∈ D. We will show that a ∗ b
and a′ ∗ b′ are representatives of the same coset. Theorem 15.2.61 implies that
C = a ∗H and D = b ∗H, thus we have a′ ∈ a ∗H and b′ ∈ b ∗H. Then there
exists h1, h2 ∈ H such that a′ = a ∗ h1 and b′ = b ∗ h2 and so

a′ ∗ b′ = (a ∗ h1) ∗ (b ∗ h2) = (a ∗ b) ∗ (h1 ∗ h2)

by various group properties and the assumption that G is abelian, which lets
us reverse the order in which b and h1 appear in the chain of equalities. This
last expression for a′ ∗ b′ implies that a′ ∗ b′ ∈ (a ∗ b) ∗ H since h1 ∗ h2 ∈ H
because H is a subgroup of G. Thus, we get the same coset for both pairs of
representatives. ■

Theorem 15.2.19 Let G be a group and H ≤ G. If the operation induced on
left cosets of H by the operation of G is well defined, then the set of left cosets
forms a group under that operation.
Proof. Let C1, C2, and C3 be the left cosets with representatives r1, r2, and r3,
respectively. The values of C1⊗ (C2 ⊗ C3) and (C1 ⊗ C2)⊗C3 are determined
by r1 ∗ (r2 ∗ r3) and (r1 ∗ r2) ∗ r3, respectively. By the associativity of ∗ in G,
these two group elements are equal and so the two coset expressions must be
equal. Therefore, the induced operation is associative. As for the identity and
inverse properties, there is no surprise. The identity coset is H, or e ∗H, the
coset that contains G’s identity. If C is a coset with representative a; that is, if

CHAPTER 15. GROUP THEORY AND APPLICATIONS 401

C = a ∗H, then C−1 is a−1 ∗H.

(a ∗H)⊗
(
a−1 ∗H

)
=
(
a ∗ a−1) ∗H = e ∗H = identity coset.

■

Definition 15.2.20 Factor Group. Let G be a group and H ≤ G. If the
set of left cosets of H forms a group, then that group is called the factor group
of “G modulo H.” It is denoted G/H. ♢

Note 15.2.21 If G is abelian, then every subgroup of G yields a factor group.
We will delay further consideration of the non-abelian case to Section 15.4.
Remark 15.2.22 On Notation. It is customary to use the same symbol for
the operation of G/H as for the operation on G. The reason we used distinct
symbols in this section was to make the distinction clear between the two
operations.

Exercises
1. Consider Z10 and the subsets of Z10, {0, 1, 2, 3, 4} and {5, 6, 7, 8, 9}. Why

is the operation induced on these subsets by modulo 10 addition not well
defined?

2. Can you think of a group G, with a subgroup H such that |H| = 6 and
|G/H| = 6? Is your answer unique?

3. For each group and subgroup, what is G/H isomorphic to?
(a) G = Z4 × Z2 and H = ⟨(2, 0)⟩. Compare to Example 15.2.16.

(b) G = [C; +] and H = R.

(c) G = Z20 and H = ⟨8⟩.
4. For each group and subgroup, what is G/H isomorphic to?

(a) G = Z× Z and H = {(a, a)|a ∈ Z}.

(b) G = [R∗; ·] and H = {1,−1}.

(c) G = Z2
5 and H = ⟨(1, 1, 1, 1, 1)⟩.

5. Assume that G is a group, H ≤ G, and a, b ∈ G. Prove that a ∗H = b ∗H
if and only if b−1 ∗ a ∈ H.

6.
(a) Real addition modulo r, r > 0, can be described as the operation

induced on cosets of ⟨r⟩ by ordinary addition. Describe a system of
distinguished representatives for the elements of R/⟨r⟩.

(b) Consider the trigonometric function sine. Given that sin(x + 2πk) =
sin x for all x ∈ R and k ∈ Z, show how the distinguished repre-
sentatives of R/⟨2π⟩ can be useful in developing an algorithm for
calculating the sine of a number.

7. Complete the proof of Theorem 15.2.8 by proving that if a ∈ G, ρ : H →
a ∗H defined by ρ(h) = a ∗ h is a bijection.

CHAPTER 15. GROUP THEORY AND APPLICATIONS 402

15.3 Permutation Groups

15.3.1 The Symmetric Groups
At the risk of boggling the reader’s mind, we will now examine groups whose
elements are functions. Recall that a permutation on a set A is a bijection from
A into A. Suppose that A = {1, 2, 3}. There are 3! = 6 different permutations
on A. We will call the set of all 6 permutations S3. They are listed in the
following table. The matrix form for describing a function on a finite set is
to list the domain across the top row and the image of each element directly
below it. For example r1(1) = 2.

Table 15.3.1 Elements of S3

i =
(

1 2 3
1 2 3

)
r1 =

(
1 2 3
2 3 1

)
r2 =

(
1 2 3
3 1 2

)
f1 =

(
1 2 3
1 3 2

)
f2 =

(
1 2 3
3 2 1

)
f3 =

(
1 2 3
2 1 3

)
The operation that will give {i, r1, r2, f1, f2, f3} a group structure is function

composition. Consider the “product” r1 ◦ f3:

r1 ◦ f3(1) = r1 (f3(1)) = r1(2) = 3
r1 ◦ f3(2) = r1 (f3(2)) = r1(1) = 2
r1 ◦ f3(3) = r1 (f3(3)) = r1(3) = 1

.

The images of 1, 2, and 3 under r1 ◦ f3 and f2 are identical. Thus, by the
definition of equality for functions, we can say r1 ◦ f3 = f2 . The complete
table for the operation of function composition is given in Table 15.3.2.

Table 15.3.2 Operation Table for S3

◦ i r1 r2 f1 f2 f3
i i r1 r2 f1 f2 f3
r1 r1 r2 i f3 f1 f2
r2 r2 i r1 f2 f3 f1
f1 f1 f2 f3 i r1 r2
f2 f2 f3 f1 r2 i r1
f3 f3 f1 f2 r1 r2 i

List 15.3.3

We don’t even need the table to verify that we have a group. Based on
the following observations, the set of all permutations on any finite set
will be a group.

(1) Function composition is always associative.

(2) The identity for the group is i. If g is any one of the permutations
on A and x ∈ A,

(g ◦ i)(x) = g(i(x)) = g(x) (i ◦ g)(x) = i(g(x)) = g(x)

Therefore g ◦ i = i ◦ g = g.

(3) A permutation, by definition, is a bijection. In Chapter 7 we
proved that this implies that it must have an inverse and the
inverse itself is a bijection and hence a permutation. Hence all

CHAPTER 15. GROUP THEORY AND APPLICATIONS 403

elements of S3 have an inverse in S3. If a permutation is displayed
in matrix form, its inverse can be obtained by exchanging the two
rows and rearranging the columns so that the top row is in order.
The first step is actually sufficient to obtain the inverse, but the
sorting of the top row makes it easier to recognize the inverse.
For example, let’s consider a typical permutation on {1, 2, 3, 4, 5},

f =
(

1 2 3 4 5
5 3 2 1 4

)
.

f−1 =
(

5 3 2 1 4
1 2 3 4 5

)
=
(

1 2 3 4 5
4 3 2 5 1

)
.

Note 15.3.4 From Table 15.3.2, we can see that S3 is non-abelian. Remember,
non-abelian is the negation of abelian. The existence of two elements that don’t
commute is sufficient to make a group non-abelian. In this group, r1 and f3
is one such pair: r1 ◦ f3 = f2 while f3 ◦ r1 = f1, so r1 ◦ f3 ̸= f3 ◦ r1. Caution:
Don’t take this to mean that every pair of elements has to have this property.
There are several pairs of elements in S3 that do commute. In fact, the identity,
i, must commute with everything. Also every element must commute with its
inverse.
Definition 15.3.5 Symmetric Group. Let A be a nonempty set. The set
of all permutations on A with the operation of function composition is called
the symmetric group on A, denoted SA.

The cardinality of a finite set A is more significant than the elements, and
we will denote by Sn the symmetric group on any set of cardinality n, n ≥ 1.

♢

Example 15.3.6 The significance of S3. Our opening example, S3, is the
smallest non-abelian group. For that reason, all of its proper subgroups are
abelian: in fact, they are all cyclic. Figure 15.3.7 shows the Hasse diagram for
the subgroups of S3.

Figure 15.3.7 Lattice diagram of subgroups of S3

□

Example 15.3.8 Smallest Symmetric Groups. The only abelian symmetric
groups are S1 and S2 , with 1 and 2 elements, respectively. The elements of S2

are i =
(

1 2
1 2

)
and α =

(
1 2
2 1

)
. S2 is isomorphic to Z2. □

Theorem 15.3.9 For n ≥ 1, |Sn| = n! and for n ≥ 3, Sn is non-abelian.

CHAPTER 15. GROUP THEORY AND APPLICATIONS 404

Proof. The first part of the theorem follows from the extended rule of products
(see Chapter 2). We leave the details of proof of the second part to the reader
after the following hint. Consider f in Sn where f(1) = 2, f(2) = 3, f(3) = 1,
and f(j) = j for 3 < j ≤ n. Therefore the cycle representation of f is (1, 2, 3).
Now define g in a similar manner so that when you compare f(g(1)) and g(f(1))
you get different results. ■

15.3.2 Cycle Notation
A second way of describing a permutation is by means of cycles, which we will
introduce first with an example. Consider f ∈ S8 defined using the now-familiar
matrix notation:

f =
(

1 2 3 4 5 6 7 8
8 2 7 6 5 4 1 3

)
Consider the images of 1 when f is applied repeatedly. The images f(1), f(f(1)),
f(f(f(1))), . . . are 8, 3, 7, 1, 8, 3, 7, In Figure 15.3.10(a), this situation is
represented by a graph with vertices 1, 8, 3, and 7 and shows that the values
that you get by repeatedly applying f cycle through those values. This is why
we refer to this part of f as a cycle of length 4. Of course starting at 8, 3, or 7
also produces the same cycle with only the starting value changing.

Figure 15.3.10 Representations of a cycle of length 4
Figure 15.3.10(a) illustrates how the cycle can be represented in a visual

manner, but it is a bit awkward to write. Part (b) of the figure presents a more
universally recognized way to write a cycle. In (b), a cycle is represented by a
list where the image of any number in the list is its successor. In addition, the
last number in the list has as its image the first number.

The other elements of the domain of f are never reached if you start in
the cycle (1, 8, 3, 7), and so looking at the images of these other numbers will
produce numbers that are disjoint from the set {1, 8, 3, 7}. The other disjoint
cycles of f are (2), (4, 6), and (5). We can express f as a product of disjoint
cycles: f = (1, 8, 3, 7)(2)(4, 6)(5) or f = (1, 8, 3, 7)(4, 6), where the absence of 2
and 5 implies that f(2) = 2 and f(5) = 5.

Note 15.3.11 Disjoint Cycles. We say that two cycles are disjoint if no
number appears in both cycles, as is the case in our expressions for f above.
Disjoint cycles can be written in any order. Thus, we could also say that
f = (4, 6)(1, 8, 3, 7).

Note 15.3.12 Composition of Permutations. We will now consider the
composition of permutations written in cyclic form by an example. Suppose

CHAPTER 15. GROUP THEORY AND APPLICATIONS 405

that f = (1, 8, 3, 7)(4, 6) and g = (1, 5, 6)(8, 3, 7, 4) are elements of S8. To
calculate f ◦ g, we start with simple concatenation:

f ◦ g = (1, 8, 3, 7)(4, 6)(1, 5, 6)(8, 3, 7, 4) (15.3.1)

Although this is a valid expression for f ◦g, our goal is to express the composition
as a product of disjoint cycles as f and g were individually written. We will
start by determining the cycle that contains 1. When combining any number
of cycles, they are always read from right to left, as with all functions. The
first cycle in (15.3.1) does not contain 1; thus we move on to the second. The
image of 1 under that cycle is 5. Now we move on to the next cycle, looking
for 5, which doesn’t appear. The fourth cycle does not contain a 5 either; so
f ◦ g(1) = 5.

At this point, we would have written “f ◦g = (1, 5” on paper. We repeat the
steps to determine f ◦ g(5). This time the second cycle of (15.3.1) moves 5 to 6
and then the third cycle moves 6 to 4. Therefore, f ◦ g(5) = 4. We continue
until the cycle (1, 5, 4, 3) is completed by determining that f ◦ g(3) = 1. The
process is then repeated starting with any number that does not appear in the
cycle(s) that have already been completed.

The final result for our example is f ◦ g = (1, 5, 4, 3)(6, 8, 7). Since f(2) = 2
and g(2) = 2, f ◦ g(2) = 2 and we need not include the one-cycle (2) in the
final result, although it can be included.
Example 15.3.13 Some Compositions.

(a) (1, 2, 3, 4)(1, 2, 3, 4) = (1, 3)(2, 4)

(b) (1, 4)(1, 3)(1, 2) = (1, 2, 3, 4).

Notice that cyclic notation does not indicate the set which is being permuted.
The examples above could be in S5, where the image of 5 is 5. This ambiguity
is usually overcome by making the context clear at the start of a discussion. □

Definition 15.3.14 Transposition. A transposition is a cycle of length 2.
♢

Observation 15.3.15 About transpositions. f = (1, 4) and g = (4, 5) are
transpositions in S5. However, f ◦ g = (1, 4, 5) and g ◦ f = (1, 5, 4) are not
transpositions; thus, the set of transpositions is not closed under composition.
Since f2 = f ◦ f and g2 = g ◦ g are both equal to the identity permutation, f
and g are their own inverses. In fact, every transposition is its own inverse.
Theorem 15.3.16 Decomposition into Cycles. Every cycle of length
greater than 2 can be expressed as a product of transpositions.
Proof. We need only indicate how the product of transpositions can be obtained.
It is easy to verify that a cycle of length k, (a1, a2, a3, . . . , ak), is equal to the
following product of k − 1 transpositions:

(a1, ak) · · · (a1, a3) (a1, a2)

■
Of course, a product of cycles can be written as a product of transpositions

just as easily by applying the rule above to each cycle. For example,

(1, 3, 5, 7)(2, 4, 6) = (1, 7)(1, 5)(1, 3)(2, 6)(2, 4)

Unlike the situation with disjoint cycles, we are not free to change the order of
these transpositions.

CHAPTER 15. GROUP THEORY AND APPLICATIONS 406

15.3.3 Parity of Permutations and the Alternating Group
A decomposition of permutations into transpositions makes it possible to classify
them and identify an important family of groups.

The proofs of the following theorem appears in many abstract algebra texts.

Theorem 15.3.17 Every permutation on a finite set can be expressed as the
product of an even number of transpositions or an odd number of transpositions,
but not both.

Theorem 15.3.17 suggests that Sn can be partitioned into its “even” and
“odd” elements. For example, the even permutations of S3 are i, r1 = (1, 2, 3) =
(1, 3)(1, 2) and r2 = (1, 3, 2) = (1, 2)(1, 3). They form a subgroup, {i, r1, r2} of
S3.

In general:

Definition 15.3.18 The Alternating Group. Let n ≥ 2. The set of even
permutations in Sn is a proper subgroup of Sn called the alternating group on
{1, 2, . . . , n}, denoted An. ♢

We justify our statement that An is a group:

Theorem 15.3.19 Let n ≥ 2. The alternating group is indeed a group and has
order n!

2 .
Proof. In this proof, the symbols si and ti stand for transpositions and p, q are
even nonnegative integers. If f, g ∈ An, we can write the two permutations as
products of even numbers of transpositions, f = s1s2 · · · sp and g = t1t2 · · · tq.
Then

f ◦ g = s1s2 · · · spt1t2 · · · tq

Since p + q is even, f ◦ g ∈ An, and An is closed with respect to function
composition. With this, we have proven that An is a subgroup of Sn by
Theorem 11.5.5.

To prove the final assertion, let Bn be the set of odd permutations and let
τ = (1, 2). Define θ : An → Bn by θ(f) = f ◦ τ . Suppose that θ(f) = θ(g).
Then f ◦ τ = g ◦ τ and by the right cancellation law, f = g. Hence, θ is an
injection. Next we show that θ is also a surjection. If h ∈ Bn, h is the image of
an element of An. Specifically, h is the image of h ◦ τ .

θ(h ◦ τ) = (h ◦ τ) ◦ τ

= h ◦ (τ ◦ τ) Why?
= h ◦ i Why?
= h

Since θ is a bijection, |An| = |Bn| = n!
2 . ■

Example 15.3.20 The Sliding Tile Puzzle. Consider the sliding-tile
puzzles pictured in Figure 15.3.21. Each numbered square is a tile and the dark
square is a gap. Any tile that is adjacent to the gap can slide into the gap.
In most versions of this puzzle, the tiles are locked into a frame so that they
can be moved only in the manner described above. The object of the puzzle
is to arrange the tiles as they appear in Configuration (a). Configurations (b)
and (c) are typical starting points. We propose to show why the puzzle can be
solved starting with (b), but not with (c).

CHAPTER 15. GROUP THEORY AND APPLICATIONS 407

Figure 15.3.21 Configurations of the sliding tile puzzle
We will associate a change in the configuration of the puzzle with an element

of S16. Imagine that a tile numbered 16 fills in the gap. For any configuration
of the puzzle, the identity i, is the function that leave the configurate “as is.”
In general, if f ∈ S16, and 1 ≤ k ≤ 16, f(k) is the position to which the tile
in position k is moved by f that appears in the position of k in configuration
(a). If we call the functions that, starting with configuration (a), result in
configurations (b) and (c) by the names f1 and f2, respectively,

f1 = (1, 5, 3, 7)(2, 6, 4, 8)(9, 10)(11, 14, 13, 12)(15)(16)

and
f2 = (1, 5, 3, 7, 15)(2, 6, 4, 8)(9, 10)(11, 14, 13, 12)(16).

How can we interpret the movement of one tile as a permutation? Consider
what happens when the 12 tile of i slides into the gap. The result is a configura-
tion that we would interpret as (12, 16), a single transposition. Now if we slide
the 8 tile into the 12 position, the result is or (8, 16, 12). Hence, by “exchanging”
the tiles 8 and 16, we have implemented the function (8, 12)(12, 16) = (8, 12, 16).

Figure 15.3.22 The configuration (8, 12, 16)
Every time you slide a tile into the gap, the new permutation is a transposi-

tion composed with the old permutation. Now observe that to start with initial
configuration and terminate after a finite number of moves with the gap in its
original position, you must make an even number of moves. Thus, configuration
corresponding any permutation that leaves 16 fixed cannot be solved if the
permutation is odd. Note that f2 is an odd permutation; thus, Puzzle (c) can’t
be solved. The proof that all even permutations, such as f1, can be solved is
left to the interested reader to pursue. □

15.3.4 Dihedral Groups
Observation 15.3.23 Realizations of Groups. By now we’ve seen several
instances where a group can appear through an isomorphic copy of itself in
various settings. The simplest such example is the cyclic group of order 2.
When this group is mentioned, we might naturally think of the group [Z2; +2],

CHAPTER 15. GROUP THEORY AND APPLICATIONS 408

but the groups [{−1, 1}; ·] and [S2; ◦] are isomorphic to it. None of these groups
are necessarily more natural or important than the others. Which one you use
depends on the situation you are in and all are referred to as realizations
of the cyclic group of order 2. The next family of groups we will study, the
dihedral groups, has two natural realizations, first as permutations and second
as geometric symmetries.

The family of dihedral groups is indexed by the positive integers greater
than or equal to 3. For k ≥ 3, Dk will have 2k elements. We first describe the
elements and the operation on them using geometry.

We can describe Dn in terms of symmetries of a regular n-gon (n = 3:
equilateral triangle, n = 4: square, n = 5: regular pentagon,. . .). Here we will
only concentrate on the case of D4. If a square is fixed in space, there are
several motions of the square that will, at the end of the motion, not change
the apparent position of the square. The actual changes in position can be seen
if the corners of the square are labeled. In Figure 15.3.24, the initial labeling
scheme is shown, along with the four axes of symmetry of the square.

Figure 15.3.24 Axes of symmetry of the square
It might be worthwhile making a square like this with a sheet of paper. Be

careful to label the back so that the numbers match the front. Two motions of
the square will be considered equivalent if the square is in the same position
after performing either motion. There are eight distinct motions. The first four
are 0◦, 90◦, 180◦, and 270◦ clockwise rotations of the square, and the other four
are the 180◦ flips along the axes l1, l2, l3, and l4. We will call the rotations
i, r1, r2, and r3, respectively, and the flips f1, f2, f3, and f4, respectively.
Figure 15.3.25 illustrates r1 and f1. For future reference, we also include the
permutations to which they correspond.

CHAPTER 15. GROUP THEORY AND APPLICATIONS 409

Figure 15.3.25 Two elements of D4

What is the operation on this set of symmetries? We will call the operation
“followed by” and use the symbol ∗ to represent it. The operation will be to
combine motions, applying motions from right to left, as with functions. We
will illustrate how ∗ is computed by finding r1 ∗ f1. Starting with the initial
configuration, if you perform the f1 motion, and then immediately perform r1
on the result, we get the same configuration as if we just performed f4, which
is to flip the square along the line l4. Therefore, r1 ∗ f1 = f4. An important
observation is that f1 ∗ r1 ̸= f4, meaning that this group is nonabelian. The
reader is encouraged to verify this on their own.

We can also realize the dihedral groups as permutations. For any symmetric
motion of the square we can associate with it a permutation. In the case of D4,
the images of each of the numbers 1 through 4 are the positions on the square
that each of the corners 1 through 4 are moved to. For example, since corner 4
moves to position 1 when you perform r1, the corresponding function will map
4 to 1. In addition, 1 gets mapped to 2, 2 to 3 and 3 to 4. Therefore, r1 is the
cycle (1, 2, 3, 4) . The flip f1 transposes two pairs of corners and corresponds
to (1, 4)(2, 3). If we want to combine these two permutations, using the same
names as with motions, we get

r1 ◦ f1 = (1, 2, 3, 4) ◦ (1, 4)(2, 3) = (1)(2, 4)(3) = (2, 4)

Notice that this permutation corresponds with the flip f4.
Although D4 isn’t cyclic (since it isn’t abelian), it can be generated from

the two elements r1 and f1:

D4 = ⟨r1, f1⟩ =
{

i, r1, r1
2, r1

3, f1, r1 ◦ f1, r1
2 ◦ f1, r1

3 ◦ f1
}

It is quite easy to describe any of the dihedral groups in a similar fashion.
Here is the formal definition

CHAPTER 15. GROUP THEORY AND APPLICATIONS 410

Definition 15.3.26 Dihedral Group. Let n be a positive integer greater
than or equal to 3. If r = (1, 2, . . . , n), an n-cycle, and f = (1, n)(2, n− 1) . . .
Then

Dn = ⟨r, f⟩ =
{

i, r, r2, . . . , rn−1, f, r ◦ f, r2 ◦ f, . . . , rn−1 ◦ f
}

is the nth dihedral group. ♢

Note 15.3.27 Caution. You might notice that we use a script D, D, for the
dihedral groups. Occasionally you might see an ordinary D in other sources for
the dihedral groups. Don’t confuse it with the set of divisors of n, which we
denote by Dn. Normally the context of the discussion should make the meaning
of Dn clear.
Example 15.3.28 A Letter-facing Machine. An application of D4 is in
the design of a letter-facing machine. Imagine letters entering a conveyor belt
to be postmarked. They are placed on the conveyor belt at random so that two
sides are parallel to the belt. Suppose that a postmarker can recognize a stamp
in the top right corner of the envelope, on the side facing up. In Figure 15.3.29,
a sequence of machines is shown that will recognize a stamp on any letter,
no matter what position in which the letter starts. The letter P stands for a
postmarker. The letters R and F stand for rotating and flipping machines that
perform the motions of r1 and f1.

Figure 15.3.29 A letter facer
The arrows pointing up indicate that if a letter is postmarked, it is taken

off the conveyor belt for delivery. If a letter reaches the end, it must not
have a stamp. Letter-facing machines like this have been designed (see [16]).
One economic consideration is that R-machines tend to cost more than F -
machines. R-machines also tend to damage more letters. Taking these facts
into consideration, the reader is invited to design a better letter-facing machine.
Assume that R-machines cost $800 and F -machines cost $500. Be sure that all
corners of incoming letters will be examined as they go down the conveyor belt.

□

15.3.5 Exercises

1. Given f =
(

1 2 3 4
2 1 4 3

)
, g =

(
1 2 3 4
2 3 4 1

)
, and h =

(
1 2 3 4
3 2 4 1

)
,

compute
(a) f ◦ g

(b) g ◦ h

(c) (f ◦ g) ◦ h

(d) f ◦ (g ◦ h)

(e) h−1

(f) h−1 ◦ g ◦ h

(g) f−1

2. Write f , g, and h from Exercise 1 as products of disjoint cycles and
determine whether each is odd or even.

3. Do the left cosets of A3 = {i, r1, r2} over S3 form a group under the
induced operation on left cosets of A3? What about the left cosets of ⟨f1⟩?

CHAPTER 15. GROUP THEORY AND APPLICATIONS 411

4. In its realization as permutations, the dihedral group D3 is equal to S3.
Can you give a geometric explanation why? Why isn’t D4 equal to S4?

5.
(a) Complete the list of elements of D4 and write out a table for the

group in its realization as symmetries.

(b) List the subgroups of D4 in a lattice diagram. Are they all cyclic?
To what simpler groups are the subgroups of D4 isomorphic?

6. Design a better letter-facing machine (see Example 15.3.28). How can you
verify that a letter-facing machine does indeed check every corner of a
letter? Can it be done on paper without actually sending letters through
it?

7. Prove by induction that if r ≥ 1 and each ti, is a transposition, then
(t1 ◦ t2 ◦ · · · ◦ tr) −1 = tr ◦ · · · ◦ t2 ◦ t1

8. How many elements are there in D5 ? Describe them geometrically.
9. Complete the proof of Theorem 15.3.9.
10. How many left cosets does An, n ≥ 2 have?
11. Prove that f ◦ r = rn−1 ◦ f in Dn.
12.

(a) Prove that the tile puzzles corresponding to A16∩{f ∈ S16| f(16) = 16}
are solvable.

(b) If f(16) ̸= 16, how can you determine whether f ’s puzzle is solvable?
13.

(a) Prove that S3 is isomorphic to R3, the group of 3× 3 rook matrices
(see Section 11.2 exercises).

(b) Prove that for each n ≥ 2, Rn is isomorphic to Sn.

15.4 Normal Subgroups and Group Homomor-
phisms

Our goal in this section is to answer an open question from earlier in this
chapter and introduce a related concept. The question is: When are left cosets
of a subgroup a group under the induced operation? This question is open for
non-abelian groups. Now that we have some examples to work with, we can
try a few experiments.

15.4.1 Normal Subgroups
Example 15.4.1 Cosets of A3. We have seen that A3 = {i, r1, r2} is a
subgroup of S3, and its left cosets are A3 itself and B3 = {f1, f2, f3}. Whether
{A3, B3} is a group boils down to determining whether the induced operation
is well defined. Consider the operation table for S3 in Figure 15.4.2.

CHAPTER 15. GROUP THEORY AND APPLICATIONS 412

Figure 15.4.2 Operation table for S3

We have shaded in all occurrences of the elements of B3 in gray. We will
call these elements the gray elements and the elements of A3 the white ones.

Now consider the process of computing the coset product A3 ◦ B3. The
“product” is obtained by selecting one white element and one gray element.
Note that white “times” gray is always gray. Thus, A3 ◦ B3 is well defined.
Similarly, the other three possible products are well defined. The table for the
factor group S3/A3 is

◦ A3 B3
A3
B3

A3 B3
B3 A3

Clearly, S3/A3 is isomorphic to Z2. Notice that A3 and B3 are also the
right cosets of A3. This is significant. □

Example 15.4.3 Cosets of another subgroup of S3. Now let’s try the
left cosets of ⟨f1⟩ in S3. There are three of them. Will we get a complicated
version of Z3? The left cosets are C0 = ⟨f1⟩, C1 = r1 ⟨f1⟩ = {r1, f3}, and
C2 = r2 ⟨f1⟩ = {r2, f2}.

The reader might be expecting something to go wrong eventually, and here
it is. To determine C1 ◦ C2 we can choose from four pairs of representatives:

r1 ∈ C1, r2 ∈ C2 −→ r1 ◦ r2 = i ∈ C0
r1 ∈ C1, f2 ∈ C2 −→ r1 ◦ f2 = f ∈ C0
f3 ∈ C1, r2 ∈ C2 −→ f3 ◦ r2 = f2 ∈ C2
f3 ∈ C1, f2 ∈ C2 −→ f3 ◦ f2 = r2 ∈ C2

This time, we don’t get the same coset for each pair of representatives. Therefore,
the induced operation is not well defined and no factor group is produced. □

Observation 15.4.4 This last example changes our course of action. If we
had gotten a factor group from {C0, C1, C2}, we might have hoped to prove
that every collection of left cosets forms a group. Now our question is: How
can we determine whether we will get a factor group? Of course, this question
is equivalent to: When is the induced operation well defined? There was only
one step in the proof of Theorem 15.2.18, where we used the fact that G was

CHAPTER 15. GROUP THEORY AND APPLICATIONS 413

abelian. We repeat the equations here:

a′ ∗ b′ = (a ∗ h1) ∗ (b ∗ h2) = (a ∗ b) ∗ (h1 ∗ h2)

since G was abelian.
The last step was made possible by the fact that h1 ∗b = b∗h1. As the proof

continued, we used the fact that h1 ∗ h2 was in H and so a′ ∗ b′ is (a ∗ b) ∗ h
for some h in H. All that we really needed in the “abelian step” was that
h1 ∗ b = b ∗ (something in H) = b ∗ h3. Then, since H is closed under G’s
operation, h3 ∗ h2 is an element of H. The consequence of this observation is
that we define a certain kind of subgroup that guarantees that the inducted
operation is well-defined.
Definition 15.4.5 Normal Subgroup. If G is a group, H ≤ G, then H is a
normal subgroup of G, denoted H ◁ G, if and only if every left coset of H is a
right coset of H; i. e. a ∗H = H ∗ a ∀a ∈ G ♢

Theorem 15.4.6 If H ≤ G, then the operation induced on left cosets of H
by the operation of G is well defined if and only if any one of the following
conditions is true:

(a) H is a normal subgroup of G.

(b) If h ∈ H, a ∈ G, then there exists h′ ∈ H such that h ∗ a = a ∗ h′.

(c) If h ∈ H, a ∈ G, then a−1 ∗ h ∗ a ∈ H.
Proof. We leave the proof of this theorem to the reader. ■

Be careful, the following corollary is not an “...if and only if...” statement.

Corollary 15.4.7 If H ≤ G, then the operation induced on left cosets of H
by the operation of G is well defined if either of the following two conditions is
true.

(a) G is abelian.

(b) |H| = |G|
2 .

Example 15.4.8 A non-normal subgroup. The right cosets of ⟨f1⟩ ≤ S3
are {i, f1}, {r1f2}, and {r2, f3}. These are not the same as the left cosets of
⟨f1⟩. In addition, f2

−1f1f2 = f2f1f2 = f3 /∈ ⟨f1⟩. Thus, ⟨f1⟩ is not normal. □

The improper subgroups {e} and G of any group G are normal subgroups.
G/{e} is isomorphic to G. All other normal subgroups of a group, if they exist,
are called proper normal subgroups.

Example 15.4.9 By Condition b of Corollary 15.4.7, An is a normal subgroup
of Sn and Sn/An is isomorphic to Z2. □

Example 15.4.10 Subgroups of A5. A5, a group in its own right with 60
elements, has many proper subgroups, but none are normal. Although this
could be done by brute force, the number of elements in the group would make
the process tedious. A far more elegant way to approach the verification of this
statement is to use the following fact about the cycle structure of permutations.
If f ∈ Sn is a permutation with a certain cycle structure, σ1σ2 · · ·σk, where the
length of σi is ℓi, then for any g ∈ Sn, g−1 ◦f ◦g, which is the conjugate of f by
g, will have a cycle structure with exactly the same cycle lengths. For example
if we take f = (1, 2, 3, 4)(5, 6)(7, 8, 9) ∈ S9 and conjugate by g = (1, 3, 5, 7, 9),

g−1 ◦ f ◦ g = (1, 9, 7, 5, 3) ◦ (1, 2, 3, 4)(5, 6)(7, 8, 9) ◦ (1, 3, 5, 7, 9)
= (1, 4, 9, 2)(3, 6)(5, 8, 7)

CHAPTER 15. GROUP THEORY AND APPLICATIONS 414

Notice that the condition for normality of a subgroup H of G is that the
conjugate of any element of H by an element of G must be remain in H.

To verify that A5 has no proper normal subgroups, you can start by cata-
loging the different cycle structures that occur in A5 and how many elements
have those structures. Then consider what happens when you conjugate these
different cycle structures with elements of A5. An outline of the process is in
the exercises. □

Example 15.4.11 Let G be the set of two by two invertible matrices of real
numbers. That is,

G =
{(

a b

c d

)
| a, b, c, d ∈ R, ad− bc ̸= 0

}
We saw in Chapter 11 that G is a group with matrix multiplication.

This group has many subgroups, but consider just two: H1 =
{(

a 0
0 a

)∣∣∣∣ a ̸= 0
}

and H2 =
{(

a 0
0 d

)∣∣∣∣ ad ̸= 0
}

. It is fairly simple to apply one of the condi-

tions we have observed for normallity that H1 a normal subgroup of G, while
H2 is not normal in G. □

15.4.2 Homomorphisms
Think of the word isomorphism. Chances are, one of the first images that comes
to mind is an equation something like

θ(x ∗ y) = θ(x) ⋄ θ(y)

An isomorphism must be a bijection, but the equation above is the algebraic
property of an isomorphism. Here we will examine functions that satisfy
equations of this type.

Definition 15.4.12 Homomorphism. Let [G; ∗] and [G′; ⋄] be groups.
θ : G→ G′ is a homomorphism if θ(x ∗ y) = θ(x) ⋄ θ(y) for all x, y ∈ G. ♢

Many homomorphisms are useful since they point out similarities between
the two groups (or, on the universal level, two algebraic systems) involved.

Example 15.4.13 Decreasing modularity. Define α : Z6 → Z3 by
α(n) = n mod 3. Therefore, α(0) = 0, α(1) = 1, α(2) = 2, α(3) = 1 + 1 + 1 = 0,
α(4) = 1, and α(5) = 2. If n, m ∈ Z6. We could actually show that α is a
homomorphism by checking all 62 = 36 different cases for the formula

α(n +6 m) = α(n) +3 α(m) (15.4.1)

but we will use a line of reasoning that generalizes. We have already encountered
Sun Tzu’s Theorem, which implies that the function β : Z6 → Z3 × Z2 defined
by β(n) = (n mod 3, n mod 2). We need only observe that equating the first
coordinates of both sides of the equation

β(n +6 m) = β(n) + β(m) (15.4.2)

gives us precisely the homomorphism property. □

Theorem 15.4.14 Group Homomorphism Properties. If θ : G→ G′ is
a homomorphism, then:

(a) θ(e) = θ(the identity of G) = the identity of G′ = e′.

CHAPTER 15. GROUP THEORY AND APPLICATIONS 415

(b) θ
(
a−1) = θ(a)−1 for all a ∈ G.

(c) If H ≤ G, then θ(H) = {θ(h)|h ∈ H} ≤ G′.
Proof.

(a) Let a be any element of G. Then θ(a) ∈ G′.

θ(a) ⋄ e′ = θ(a) by the definition of e′

= θ(a ∗ e) by the definition of e

= θ(a) ⋄ θ(e) by the fact that θ is a homomorphism

By cancellation, e′ = θ(e).

(b) Again, let a ∈ G. e′ = θ(e) = θ
(
a ∗ a−1) = θ(a) ⋄ θ

(
a−1). Hence, by the

uniqueness of inverses, θ(a)−1 = θ
(
a−1).

(c) Let b1, b2 ∈ θ(H). Then there exists a1, a2 ∈ H such that θ (a1) = b1,
θ (a2) = b2. Recall that a compact necessary and sufficient condition for
H ≤ G is that x ∗ y−1 ∈ H for all x, y ∈ H. Now we apply the same
condition in G′:

b1 ⋄ b2
−1 = θ (a1) ⋄ θ (a2) −1

= θ (a1) ⋄ θ
(
a2

−1)
= θ

(
a1 ∗ a2

−1) ∈ θ(H)

since a1 ∗ a2
−1 ∈ H, and so we can conclude that θ(H) ≤ G′.

■

Corollary 15.4.15 Since a homomorphism need not be a surjection and part
(c) of Theorem 15.4.14 is true for the case of H = G, the range of θ, θ(G), is
a subgroup of G′

Example 15.4.16 If we define π : Z→ Z/4Z by π(n) = n + 4Z, then π is a
homomorphism. The image of the subgroup 4Z is the single coset 0 + 4Z, the
identity of the factor group. Homomorphisms of this type are called natural
homomorphisms. The following theorems will verify that π is a homomorphism
and also show the connection between homomorphisms and normal subgroups.
The reader can find more detail and proofs in most abstract algebra texts. □

Theorem 15.4.17 If H ◁ G, then the function π : G → G/H defined by
π(a) = aH is a homomorphism.
Proof. We leave the proof of this theorem to the reader. ■

Definition 15.4.18 Natural Homomorphism. If H ◁ G, then the function
π : G→ G/H defined by π(a) = aH is called the natural homomorphism. ♢

Based on Theorem 15.4.17, every normal subgroup gives us a homomorphism.
Next, we see that the converse is true.

Definition 15.4.19 Kernel of a homomorphism. Let θ : G → G′ be a
homomorphism, and let e and e′ be the identities of G and G′, respectively.
The kernel of θ is the set ker θ = {a ∈ G | θ(a) = e′} ♢

Theorem 15.4.20 Let θ : G→ G′ be a homomorphism from G into G′ . The
kernel of θ is a normal subgroup of G.
Proof. Let K = ker θ. We can see that K is a subgroup of G by letting a, b ∈ K
and verify that a∗b−1 ∈ K by computing θ(a∗b−1) = θ(a)∗θ(b)−1 = e′∗e′−1 = e′.
To prove normality, we let g be any element of G and k ∈ K. We compute

CHAPTER 15. GROUP THEORY AND APPLICATIONS 416

θ(g ∗ k ∗ g−1) to verify that g ∗ k ∗ g−1 ∈ K.

θ(g ∗ k ∗ g−1) = θ(g) ∗ θ(k) ∗ θ(g−1)
= θ(g) ∗ θ(k) ∗ θ(g)−1

= θ(g) ∗ e′ ∗ θ(g)−1

= θ(g) ∗ θ(g)−1

= e′

■
Based on this most recent theorem, every homomorphism gives us a normal

subgroup.

Theorem 15.4.21 Fundamental Theorem of Group Homomorphisms.
Let θ : G→ G′ be a homomorphism. Then θ(G) is isomorphic to G/ ker θ.

Example 15.4.22 Define θ : Z→ Z10 by θ(n) = n mod 10. The three previous
theorems imply the following:

• π : Z→ Z/10Z defined by π(n) = n + 10Z is a homomorphism.

• {n ∈ Z|θ(n) = 0} = {10n | n ∈ Z} = 10Z ◁ Z.

• Z/10Z is isomorphic to Z10.

□

Example 15.4.23 Let G be the same group of two by two invertible real
matrices as in Example 15.4.11. Define Φ : G → G by Φ(A) = A√

|det A|
. We

will let the reader verify that Φ is a homomorphism. The theorems above imply
the following.

• ker Φ = {A ∈ G|Φ(A) = I} =
{(

a 0
0 a

)
| a ∈ R, a ̸= 0

}
◁ G. This

verifies our statement in Example 15.4.11. As in that example, let ker Φ =
H1.

• G /H1 is isomorphic to {A ∈ G | det A = 1}.

• π : G→ G /H1 defined, naturally, by π(A) = AH1 is a homomorphism.

□
For the remainder of this section, we will be examining certain kinds of ho-

momorphisms that will play a part in our major application to homomorphisms,
coding theory.

Example 15.4.24 Consider Φ : Z2
2 → Z2

3 defined by Φ(a, b) = (a, b, a +2 b).
If (a1, b1) , (a2, b2) ∈ Z2

2,

Φ ((a1, b1) + (a2, b2)) = Φ (a1 +2 a2, b1 +2 b2)
= (a1 +2 a2, b1 +2 b2, a1 +2 a2 +2 b1 +2 b2)
= (a1, b1, a1 +2 b1) + (a2, b2, a2 +2 b2)
= Φ (a1, b1) + Φ (a2, b2)

Since Φ(a, b)=(0, 0, 0) implies that a = 0 and b = 0, the kernel of Φ is
{(0, 0)}. By previous theorems, Φ

(
Z2

2) = {(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0)}
is isomorphic to Z2

2. □
We can generalize the previous example as follows: If n, m ≥ 1 and A is an

CHAPTER 15. GROUP THEORY AND APPLICATIONS 417

m× n matrix of 0’s and 1’s (elements of Z2), then Φ : Z2
m → Z2

n defined by

Φ (a1, a2, ..., am) = (a1, a2, ..., am) A

is a homomorphism. This is true because matrix multiplication is distributive
over addition. The only new idea here is that computation is done in Z2. If
a = (a1, a2, ..., am) and b = (b1, b2, ..., bm), (a + b)A = aA + bA is true by basic
matrix laws. Therefore, Φ(a + b) = Φ(a) + Φ(b).

15.4.3 Exercises
1. Which of the following functions are homomorphisms? What are the

kernels of those functions that are homomorphisms?
(a) θ1 : R∗ → R+ defined by θ1(a) = |a|.

(b) θ2 : Z5 → Z2 where θ2(n) =
{

0 if n is even
1 if n is odd .

(c) θ3 : R× R→ R, where θ3(a, b) = a + b.

(d) θ4 : S4 → S4 defined by θ4(f) = f ◦ f = f2.
2. Which of the following functions are homomorphisms? What are the

kernels of those functions that are homomorphisms?
(a) α1 : M2×2(R)→ R, defined by α1(A) = A11A22 + A12A21.

(b) α2 : (R∗)2 → R∗ defined by α2(a, b) = ab.

(c) α3 : {A ∈M2×2(R)|det A ̸= 0} → R∗, where α3(A) = det A.

(d) α4 : S4 → S4 defined by α4(f) = f−1.
3. Show that D4 has one proper normal subgroup, but that ⟨(1, 4)(2, 3)⟩ is

not normal.
4. Prove that the function Φ in Example 15.4.23 is a homomorphism.
5. Define the two functions α : Z2

3 → Z2
4 and β : Z2

4 → Z2 by α (a1, a2, a3) =
(a1, a2, a3, a1 +2 a2 +2 a3), and β (b1, b2, b3, b4) = b1 + b2 + b3 + b4 Describe
the function β ◦ α. Is it a homomorphism?

6. Express Φ in Example 15.4.23 in matrix form.
7. Prove that if G is an abelian group, then q(x) = x2 defines a homomorphism

from G into G. Is q ever an isomorphism?
8. Prove that if θ : G→ G′ is a homomorphism, and H ◁ G, then θ(H) ◁ θ(G).

Is it also true that θ(H) ◁ G′?
9. Prove that if θ : G → G′ is a homomorphism, and H ′ ≤ θ(G), then

θ−1(H ′) = {a ∈ G|θ(a) ∈ H ′} ≤ G.
10. Following up on Example 15.4.10, prove that A5 is a simple group; i. e., it

has no proper normal subgroups.
(a) Make a list of the different cycle structures that occur in A5 and

how many elements have those structures.

(b) Within each set of permutations with different cycle structures,
identify which subsets are closed with respect to the conjugation
operation. With this you will have a partition of A5 into conjugate
classes where for each class, C, f, g ∈ C if and only if ∃ϕ ∈ A5 such
that ϕ−1 ◦ f ◦ ϕ = g.

CHAPTER 15. GROUP THEORY AND APPLICATIONS 418

(c) Use the fact that a normal subgroup of A5 needs to be a union of
conjugate classes and verify that no such union exists.

15.5 Coding Theory, Linear Codes
A Transmission Problem. In this section, we will introduce the basic ideas
involved in coding theory and consider solutions of a coding problem by means
of linear codes.

Imagine a situation in which information is being transmitted between two
points. The information takes the form of high and low pulses (for example,
radio waves or electric currents), which we will label 1 and 0, respectively.
As these pulses are sent and received, they are grouped together in blocks of
fixed length. The length determines how much information can be contained
in one block. If the length is r, there are 2r different values that a block can
have. If the information being sent takes the form of text, each block might
be a character. In that case, the length of a block may be seven, so that
27 = 128 block values can represent letters (both upper and lower case), digits,
punctuation, and so on. During the transmission of data, noise can alter the
signal so that what is received differs from what is sent. Figure 15.5.1 illustrates
the problem that can be encountered if information is transmitted between two
points.

Figure 15.5.1 A noisy transmission
Noise is a fact of life for anyone who tries to transmit information. Fortu-

nately, in most situations we could expect a high percentage of the pulses that
are sent to be received properly. However, when large numbers of pulses are
transmitted, there are usually some errors due to noise. For the remainder of
the discussion, we will make assumptions about the nature of the noise and the
message that we want to send. Henceforth, we will refer to the pulses as bits.

We will assume that our information is being sent along a binary sym-
metric channel. By this, we mean that any single bit that is transmitted will
be received improperly with a certain fixed probability, p, independent of the
bit value. The magnitude of p is usually quite small. To illustrate the process,
we will assume that p = 0.001, which, in the real world, would be considered
somewhat large. Since 1 − p = 0.999, we can expect 99.9% of all bits to be
properly received.

In addition to assuming p = 0.001 throughout, we will also suppose that our
message consists of 3,000 bits of information. Two factors will be considered
in evaluating a method of transmission. The first is the probability that the
message is received with no errors. The second is the number of bits that will
be transmitted in order to send the message. This quantity is called the rate of
transmission:

Rate = Message length
Number of bits transmitted

As you might expect, as we devise methods to improve the probability of success,
the rate will decrease.

Suppose that we ignore the noise and transmit the message without any
coding. The probability of success is 0.9993000 = 0.0497124. Therefore we only
successfully receive the message in a totally correct form less than 5% of the
time. The rate of 3000

3000 = 1 certainly doesn’t offset this poor probability.

CHAPTER 15. GROUP THEORY AND APPLICATIONS 419

Our strategy for improving our chances of success will be to send an encoded
message. The encoding will be done in such a way that small errors can be
identified and corrected. This idea is illustrated in Figure 15.5.2.

Figure 15.5.2 The Coding Process
In all of our examples, the functions that will correspond to our encoding

devices will involve multiplication of messages by matrices using mod 2 arith-
metic. First we will introduce some geometric ideas to make the process more
intuitive.

15.5.1 Introduction
Although we’ll be using algebra to help improve communications, the basic
solution can be imagined from a geometric point of view. For any positive
integer n, we define a distance function on the elements of the group Z2

n. This
distance is called the Hamming Distance.

Definition 15.5.3 Hamming Distance. Given two elements of Z2
n, a and

b, the Hamming Distance, dH(a, b) between them is the number of positions in
which they differ. ♢

For example, dH((1, 1, 0, 0), (1, 1, 0, 1)) = 1 since these two elements of
Z2

4 differ in just the last position; and dH((1, 1, 0, 0), (1, 1, 0, 0)) = 0. Notice
that we can compute the distance between two bit strings by adding them
coordinatewise in the Cartesian product and counting the number 1’s that
appear in the sum. For example (1, 1, 0, 0) + (1, 0, 0, 1) = (0, 1, 0, 1). The sum
has two 1’s, so the distance between (1, 1, 0, 0) and (1, 0, 0, 1) is 2. In addition,
the location of the 1’s in the sum tell us where the two bit strings differ.

When we look at groups like Z2
4 from a point of view, we refer to these

sets as metric spaces or simply spaces. In the case of Z2
4, there are just

24 = 16 points in the space and the maximum distance between the points
is 4. More generally Z2

n has 2n points and the maximum distance between
points in that space is n. Looking at the group Z2

n from this geometric point
of view is essentially the same as the n-cube 9.4.17 we considered in discussing
Hamiltonian graphs. In this section we will use n-tuples such as (1, 1, 0, 1)
interchangeably with strings of bits such as 1101.

For any distance r in a space, the ball of radius r centered at a point a,
denoted Br(a), is the set of all points whose distance from a is r or less. For
example, in the space Z2

4,

B1((1, 1, 0, 0)) = {(1, 1, 0, 0), (0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 1, 0), (1, 1, 0, 1)}.

The ultimate goal of our encoding will be to take a set of possible messages,
the message space, and distribute them in a larger space, the code space, in

CHAPTER 15. GROUP THEORY AND APPLICATIONS 420

such a way that the encoded message, called a code word is at least a certain
distance away from any other code word. The minimum distance between the
code words will determine whether we can correct errors or just detect them.
Now let’s turn to some examples.

15.5.2 Error Detection
Suppose that each block of three bits a = (a1, a2, a3) is encoded with the
function e : Z2

3 → Z2
4, where

e(a) = (a1, a2, a3, a1 +2 a2 +2 a3)

The fourth bit of e(a) is called the parity-check bit. When the encoded
block is received, the four bits will probably all be correct (they are correct
approximately 99.6% of the time under our assumed parameters), but the
added bit that is sent will make it possible to detect single bit errors in the
block. Note that when e(a) is transmitted, the sum of its components is
a1 +2 a2 +2 a3 +2 (a1 +2 a2 +2 a3) = 0, since ai + ai = 0 in Z2.

If any single bit is garbled by noise, the sum of the received bits will be 1.
A parity error occurs if the sum of the received bits is 1. Since more than one
error is unlikely when p is small, a high percentage of all errors can be detected.

At the receiving end, the decoding function acts on the four-bit block
b = (b1, b2, b3, b4) with the function d : Z2

4 → Z4
2, where

d(b) = (b1, b2, b3, b1 +2 b2 +2 b3 +2 b4)

Notice that the fourth bit of d(b) is an indicator of whether there is a parity
error - 0 if no error, and 1 if an error. If no parity error occurs, the first three
bits are recorded as part of the message. If a parity error occurs, we will assume
that a retransmission of that block can be requested. This request can take
the form of automatically having the parity-check bit of d(b) sent back to the
source. If 1 is received, the previous block is retransmitted; if 0 is received, the
next block is sent. This assumption of two-way communication is significant,
but it is desirable to make this coding system useful. For our calculations, it is
reasonable to expect that the probability of a transmission error in the opposite
direction is also 0.001. Without going into the details, we will report that the
probability of success in sending 3000 bits is approximately 0.990 and the rate
is approximately 3/5. The rate includes the transmission of the parity-check bit
to the source and is only approximate because the resent blocks will decrease
the rate below 3/5 somewhat.

CHAPTER 15. GROUP THEORY AND APPLICATIONS 421

Figure 15.5.4 The 4-cube with code words displayed as larger vertices
Let’s consider the geometry of this code. If we examine the 4-cube in

Figure 15.5.4, the code words are the strings of four bits with an even number
of ones. These vertices are the larger ones. Notice that the ball of radius 1
centered around any of the code words consists of that code word and the
smaller vertices that are connected to the code word with an edge of the 4-cube.
Since there are no other code-words in the ball, a single bit error produces a
non-code word and so an error can be detected.

15.5.3 Error Correction
Next, we will consider coding functions that allow us to correct errors at the
receiving end so that only one-way communication is needed. Before we begin,
recall that every element of Z2

n, n ≥ 1, is its own inverse; that is, −b = b.
Therefore, a− b = a + b.

Example 15.5.5 The Triple Repetition Code. Suppose we take each
individual bit in our message and encode it by repeating it three times. In other
words, if a is a single bit, e(a) = (a, a, a). The code words for this code are
(0, 0, 0) and (1, 1, 1). Let’s look at the geometry behind this code. The message
space has just two points, but the code space is Z2

3, which has 8 points, the
vertices of the 3-cube, which appears in Figure 15.5.6.

Figure 15.5.6 The 3-cube with code words displayed as circular vertices

CHAPTER 15. GROUP THEORY AND APPLICATIONS 422

In the figure for this code, the code words are circular vertices. If we identify
the balls of radius 1 centered around the two code words, you might notice
that the two balls do not intersect. Each has a different vertex with triangular,
square and pentagonal shapes. From a geometric point of view, this is why we
can correct a single bit error. If any string of three bits in the code space is
received it is in one of the two balls and the code word in that ball had to have
been the one that was transmitted.

Regarding the actual correction process, the shapes have a meaning, as
outlined in the following list.

• Circle: No correction needed

• Pentagon: Correct the first bit

• Square: Correct the second bit

• Triangle: Correct the third bit

Of course, once the correction is made, only the first bit is extracted from
the code word since all bits will be equal. The simplicity of the final result
masks an important property of all error correcting codes we consider. All of
the possible points in the code space can be partitioned in such a way that each
block in the partition corresponds with a specific correction that we can make
to recover the correct code word.

If you have read about cosets, you will see that the partition we refer to is
the set of left cosets of the set of code words. □

Triple repetition is effective, but not very efficient since its rate is quite
low, 1/3. Next we consider a slightly more efficient error correcting code based
on matrix multiplication. Any such code that is computed with a matrix
multiplication is called a linear code. We should point out that both the
parity check code and the triple repetition code are linear codes. For the parity
check code, the encoding function can be thought of as acting on a 1× 3 row
vector a = (a1, a2, a3) by multiplying times a 3× 4 matrix:

e(a) = (a1, a2, a3)

 1 0 0 1
0 1 0 1
0 0 1 1

 = (a1, a2, a3, a1 +2 a2 +2 a3)

For triple repetition, the encoding function can be thought of as acting on a
1× 1 matrix a by multiplying times a 1× 3 matrix:

e(a) = (a)
(

1 1 1
)

=
(

a a a
)

Example 15.5.7 A Somewhat More Efficient Linear Code. The encoding
that we will consider here takes a block a = (a1, a2, a3) and produces a code
word of length 6. As in the triple repetition code, each code word will differ
from each other code word by at least three bits. As a result, any single error
will not push a code word close enough to another code word to cause confusion.
Now for the details.

Let

G =

 1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 .

We call G the generator matrix for the code, and let a = (a1, a2, a3) be our
message. Define e : Z2

3 → Z2
6 by

e(a) = aG = (a1, a2, a3, a4, a5, a6)

CHAPTER 15. GROUP THEORY AND APPLICATIONS 423

where
a4=a1 +2 a2
a5=a1 +2 a3
a6= a2 +2 a3

Notice that since matrix multiplication is distributive over addition, we have

e(a + b) = (a + b)G = aG + bG = e(a) + e(b)

for all a, b ∈ Z2
3. This equality, may look familiar from the definition of an

isomorphism, but in this case the function e is not onto. If you’ve read about
homomorphisms, this is indeed an example of one.

One way to see that any two distinct code words have a distance from one
another of at least 3 is to consider the images of any two distinct messages. If
a and b are distinct elements of Z2

3, then c = a + b has at least one coordinate
equal to 1. Now consider the difference between e(a) and e(b):

e(a) + e(b) = e(a + b)
= e(c)

Whether c has 1, 2, or 3 ones, e(c) must have at least three ones. This can be
seen by considering the three cases separately. For example, if c has a single
one, two of the parity bits are also 1. Therefore, e(a) and e(b) differ in at least
three bits. By the same logic as with triple repetition, a single bit error in any
code word produces an element of the code space that is contained in on of the
balls of radius 1 centered about a code word.

Now consider the problem of decoding received transmissions. Imagine that
a code word, e(a), is transmitted, and b = (b1, b2, b3, b4, b5, b6) is received. At
the receiving end, we know the formula for e(a), and if no error has occurred in
transmission,

b1 = a1
b2 = a2
b3 = a3

b4 = a1 +2 a2
b5 = a1 +2 a3
b6 = a2 +2 a3

⇒
b1+2b2 +2b4 = 0
b1 +2b3 +2b5 = 0

b2+2b3 +2b6= 0

The three equations on the right are called parity-check equations. If any of
them are not true, an error has occurred. This error checking can be described
in matrix form.

Let

H =

1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1

The matrix H is called the parity-check matrix for this code. Now define

p : Z2
6 → Z2

3 by p(b) = bH. We call p(b) the syndrome of the received block.
For example, p(0, 1, 0, 1, 0, 1) = (0, 0, 0) and p(1, 1, 1, 1, 0, 0) = (1, 0, 0)

Note that p has a similar property as e, that p(b1 + b2) = p(b1) + p(b2). If
the syndrome of a block is (0, 0, 0), we can be almost certain that the message
block is (b1, b2, b3).

CHAPTER 15. GROUP THEORY AND APPLICATIONS 424

Next we turn to the method of correcting errors. Despite the fact that there
are only eight code words, one for each three-bit block value, the set of possible
received blocks is Z2

6, with 64 elements. Suppose that b is not a code word,
but that it differs from a code word by exactly one bit. In other words, it is the
result of a single error in transmission. Suppose that w is the code word that b
is closest to and that they differ in the first bit. Then b + w = (1, 0, 0, 0, 0, 0)
and

p(b) = p(b) + p(w) since p(w) = (0, 0, 0)
= bH + wH

= (b + w)H by the distributive property
= p(b + w)
= p(1, 0, 0, 0, 0, 0)
= (1, 1, 0)

This is the first row of H!
Note that we haven’t specified b or w, only that they differ in the first bit.

Therefore, if b is received, there was probably an error in the first bit and
p(b) = (1, 1, 0), the transmitted code word was probably b + (1, 0, 0, 0, 0, 0) and
the message block was (b1 +2 1, b2, b3). The same analysis can be done if b and
w differ in any of the other five bits.

In general, if the syndrome of a received string of bits is the kth row of the
parity check matrix, the error has occurred in the kth bit. □

Probability Epilog. For the two error correction examples we’ve looked
at, we can compare their probabilities of successfully receiving all 3000 bits
correctly over a binary symmetric channel with p = 0.001.

For the triple repetition code, the probability is(
0.9993 + 3 · 0.9992 · 0.001

)3000 = 0.991,

and the rate of this code is 1
3 which means we need to transmit 9000 bits.

For the second code, the probability of success is(
0.9996 + 6 · 0.9995 · 0.001

)1000 = 0.985,

and rate for this code is 1
2 , which means we need to transmit 6000 bits.

Clearly, there is a trade-off between accuracy and speed.

Example 15.5.8 Another Linear Code. Consider the linear code with
generator matrix

G =

 1 1 0 1 0
0 1 1 0 0
0 0 0 1 1

 .

Since G is 3 × 5, this code encodes three bits into five bits. The natural
question to ask is what detection or correction does it afford? We can answer
this question by constructing the parity check matrix. We observe that if
a = (a1, a2, a3) the encoding function is

e(a) = aG = (a1, a1 + a2, a2, a1 + a3, a3)

where addition is mod 2 addition. If we receive five bits (c1, c2, c3, c4, c5) and
no error has occurred, the following two equations would be true.

c1 + c2 + c3 = 0 (15.5.1)
c1 + c4 + c5 = 0 (15.5.2)

CHAPTER 15. GROUP THEORY AND APPLICATIONS 425

Notice that in general, the number of parity check equations is equal to the
number of extra bits that are added by the encoding function. These equations
are equivalent to the single matrix equation (c1, c2, c3, c4, c5)H = 0, where

H =

1 1
1 0
1 0
0 1
0 1

At a glance, we can see that this code will not correct most single bit errors.

Suppose an error e = (e1, e2, e3, e4, e5) is added in the transmission of the five
bits. Specifically, suppose that 1 is added (mod 2) in position j, where 1 ≤ j ≤ 5
and the other coordinates of e are 0. Then when we compute the syndrome of
our received transmission, we see that

cH = (aG + e)H = (aG)H + eH = eH.

But eH is the jth row of H. If the syndrome is (1, 1) we know that the error
occurred in position 1 and we can correct it. However, if the error is in any
other position we can’t pinpoint its location. If the syndrome is (1, 0), then the
error could have occurred in either position 2 or position 3. This code does
detect all single bit errors but only corrects one fifth of them. □

15.5.4 Exercises
1. If the error-detecting code is being used, how would you act on the following

received blocks?
(a) (1, 0, 1, 1)

(b) (1, 1, 1, 1)

(c) (0, 0, 0, 0)
2. Determine the parity check matrix for the triple repetition code.
3. If the error-correcting code from this section is being used, how would you

decode the following blocks? Expect an error that cannot be fixed with
one of these.

(a) (1, 0, 0, 0, 1, 1)

(b) (1, 0, 1, 0, 1, 1)

(c) (0, 1, 1, 1, 1, 0)

(d) (0, 0, 0, 1, 1, 0)

(e) (1, 0, 0, 0, 0, 1)

(f) (1, 0, 0, 1, 0, 0)
4. Suppose that the code words of a coding function have the property that

any two of them have a Hamming distance of at least 5. How many bit
errors could be corrected with such a code?

5. Consider the linear code defined by the generator matrix

G =
(

1 0 1 0
0 1 1 1

)

CHAPTER 15. GROUP THEORY AND APPLICATIONS 426

(a) What size blocks does this code encode and what is the length of
the code words?

(b) What are the code words for this code?

(c) With this code, can you detect single bit errors? Can you correct all,
some, or no single bit errors?

6. Rectangular codes. To build a rectangular code, you partition your
message into blocks of length m and then factor m into k1 · k2 and arrange
the bits in a k1 × k2 rectangular array as in the figure below. Then you
add parity bits along the right side and bottom of the rows and columns.
The code word is then read row by row.

■ ■ ■ · · · ■ □
■ ■ ■ · · · ■ □
...

...
...

...
...

■ ■ ■ · · · ■ □
□ □ □ · · · □

■ = message bit
□ = parity bit

For example, if m is 4, then our only choice is a 2 by 2 array. The
message 1101 would be encoded as

1 1 0
0 1 1
1 0

and the code word is the string 11001110.

(a) Suppose that you were sent four bit messages using this code and you
received the following strings. What were the messages, assuming
no more than one error in the transmission of coded data?

(i) 11011000 (ii) 01110010 (iii) 10001111

(b) If you encoded n2 bits in this manner, what would be the rate of the
code?

(c) Rectangular codes are linear codes. For the 2 by 2 rectangular code,
what are the generator and parity check matrices?

7. Suppose that the code in Example 15.5.8 is expanded to add the column 0
1
1

to the generator matrix G, can all single bit errors be corrected? Explain
your answer.

CHAPTER 15. GROUP THEORY AND APPLICATIONS 427

8. Suppose that a linear code has parity check matrix

H =

1 1 1
1 1 0
1 0 1
0 1 1
1 0 0
0 1 0
0 0 1

Determine the generator matrix, G, and in so doing, identify the number
of bits in each message block and the number of parity bits.
Hint. There is a parity check equation for each parity bit.

9. A code with minimum distance d is called perfect if every string of bits is
within Hamming distance r = d−1

2 of some code word. For such a code,
the spheres of radius r around the code words partition the set of all
strings. This is analogous to packing objects into a box with no wasted
space. Using just the number of bit strings of length n and the number of
strings in a sphere of radius 1, for what values of n is it possible to find a
perfect code of distance 3? You don’t have to actually find the codes.

Chapter 16

An Introduction to Rings and
Fields

field extension

Field extensions are simple. Let’s say
That field L is a subfield of K,
Then it goes without mention,

Field K’s an extension
Of L — like a shell, in a way.

zqms, The Omnificent English Dictionary In Limerick Form

In our early elementary school days we began the study of mathematics by
learning addition and multiplication on the set of positive integers. We then
extended this to operations on the set of all integers. Subtraction and division
are defined in terms of addition and multiplication. Later we investigated the
set of real numbers under the operations of addition and multiplication. Hence,
it is quite natural to investigate those structures on which we can define these
two fundamental operations, or operations similar to them. The structures
similar to the set of integers are called rings, and those similar to the set of
real numbers are called fields.

In coding theory, highly structured codes are needed for speed and accuracy.
The theory of finite fields is essential in the development of many structured
codes. We will discuss basic facts about finite fields and introduce the reader
to polynomial algebra.

16.1 Rings, Basic Definitions and Concepts

16.1.1 Basic Definitions
We would like to investigate algebraic systems whose structure imitates that of
the integers.

Definition 16.1.1 Ring. A ring is a set R together with two binary operations,
addition and multiplication, denoted by the symbols + and · such that the
following axioms are satisfied:

(1) [R; +] is an abelian group.

(2) Multiplication is associative on R.

428

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 429

(3) Multiplication is distributive over addition; that is, for all a, b, c ∈ R, the
left distributive law, a · (b + c) = a · b + a · c, and the right distributive
law, (b + c) · a = b · a + c · a.

♢

Note 16.1.2
(1) A ring is denoted [R; +, ·] or as just plain R if the operations are under-

stood.

(2) The symbols + and · stand for arbitrary operations, not just “regular”
addition and multiplication. These symbols are referred to by the usual
names. For simplicity, we may write ab instead of a·b if it is not ambiguous.

(3) For the abelian group [R; +], we use additive notation. In particular, the
group identity is designated by 0 rather than by e and is customarily
called the “zero” of the ring. The group inverse is also written in additive
notation: −a rather than a−1.

We now look at some examples of rings. Certainly all the additive abelian
groups of Chapter 11 are likely candidates for rings.

Example 16.1.3 The ring of integers. [Z; +, ·] is a ring, where + and
· stand for regular addition and multiplication on Z. From Chapter 11, we
already know that [Z; +] is an abelian group, so we need only check parts 2
and 3 of the definition of a ring. From elementary algebra, we know that the
associative law under multiplication and the distributive laws are true for Z.
This is our main example of an infinite ring. □

Example 16.1.4 The ring of integers modulo n. [Zn; +n,×n] is a ring.
The properties of modular arithmetic on Zn were described in Section 11.4, and
they give us the information we need to convince ourselves that [Zn; +n,×n] is
a ring. This example is our main example of finite rings of different orders. □

Definition 16.1.5 Commutative Ring. A ring in which multiplication is a
commutative operation is called a commutative ring. ♢

It is common practice to use the word “abelian” when referring to the
commutative law under addition and the word “commutative” when referring
to the commutative law under the operation of multiplication.

Definition 16.1.6 Unity of a Ring. A ring [R; +, ·] that has a multiplicative
identity is called a ring with unity. The multiplicative identity itself is called
the unity of the ring. More formally, if there exists an element 1 ∈ R, such that
for all x ∈ R, x · 1 = 1 · x = x, then R is called a ring with unity. ♢

Example 16.1.7 The rings in our first two examples were commutative rings
with unity, the unity in both cases being the number 1. The ring [M2×2(R); +, ·]
is a noncommutative ring with unity, the unity being the two by two identity
matrix.

An example of a ring that is not a ring with unity is the ring of even integers,
[2Z; +, ·]. □

16.1.2 Direct Products of Rings
Products of rings are analogous to products of groups or products of Boolean
algebras.

Let [Ri; +i, ·i], i = 1, 2, . . . , n be rings. Let P =
n
×

i=1
Ri and a = (a1, a2, . . . , an), b =

(b1, b2, . . . , bn) ∈ P .

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 430

From Chapter 11 we know that P is an abelian group under the operation
of componentwise addition:

a + b = (a1 +1 b1, a2 +2 b2, ..., an +n bn)

We also define multiplication on P componentwise:

a · b = (a1 ·1 b1, a2 ·2 b2, ..., an ·n bn)

To show that P is a ring under the above operations, we need only show
that the (multiplicative) associative law and the distributive laws hold. This is
indeed the case, and we leave it as an exercise. If each of the Ri is commutative,
then P is commutative, and if each contains a unity, then P is a ring with unity,
which is the n-tuple consisting of the unities of each of the Ri’s.

Example 16.1.8 Since [Z4; +4,×4] and [Z3; +3,×3] are rings, then Z4 × Z3 is
a ring, where, for example,

(2, 1) + (2, 2) = (2 +4 2, 1 +3 2) = (0, 0)
and

(3, 2) · (2, 2) = (3×4 2, 2×3 2) = (2, 1)
.

To determine the unity in the ring Z4 × Z3, we look for the element (m, n)
such that for all elements (a, b) ∈ Z4×Z3, (a, b) = (a, b) · (m, n) = (m, n) · (a, b),
or, equivalently,

(a×4 m, b×3 n) = (m×4 a, n×3 b) = (a, b)

So we want m such that a×4 m = m×4 a = a in the ring Z4. The only element
m in Z4 that satisfies this equation is m = 1. Similarly, we obtain value of 1
for n. So the unity of Z4 × Z3, which is unique by Exercise 15 of this section,
is (1, 1). We leave to the reader to verify that this ring is commutative. □

16.1.3 Multiplicative Inverses in Rings
We now consider the extremely important concept of multiplicative inverses.
Certainly many basic equations in elementary algebra (e.g., 2x = 3) are solved
with this concept.

Example 16.1.9 The equation 2x = 3 has a solution in the ring [Q; +, ·] but
does not have a solution in [Z; +, ·] since, to solve this equation, we multiply
both sides of the equation 2x = 3 by the multiplicative inverse of 2. This
number, 2−1 exists in Q but does not exist in Z. We formalize this important
idea in a definition which by now should be quite familiar to you. □

Definition 16.1.10 Multiplicative Inverses. Let [R; +, ·] be a ring with
unity, 1. If u ∈ R and there exists an element v ∈ R such that u · v = v · u = 1,
then u is said to have a multiplicative inverse, v. A ring element that possesses
a multiplicative inverse is a unit of the ring. The set of all units of a ring R is
denoted by U(R). ♢

By Theorem 11.3.3, the multiplicative inverse of a ring element is unique, if
it exists. For this reason, we can use the notation u−1 for the multiplicative
inverse of u, if it exists.

Example 16.1.11 In the rings [R; +, ·] and [Q; +, ·] every nonzero element has
a multiplicative inverse. The only elements in [Z; +, ·] that have multiplicative
inverses are -1 and 1. That is, U(R) = R∗, U(Q) = Q∗, and U(Z) = {−1, 1}.

□

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 431

Example 16.1.12 Let us find the multiplicative inverses, when they exist, of
each element of the ring [Z6; +6,×6]. If u = 3, we want an element v such that
u×6 v = 1. We do not have to check whether v×6 u = 1 since Z6 is commutative.
If we try each of the six elements, 0, 1, 2, 3, 4, and 5, of Z6, we find that none
of them satisfies the above equation, so 3 does not have a multiplicative inverse
in Z6. However, since 5 ×6 5 = 1, 5 does have a multiplicative inverse in Z6,
namely itself: 5−1 = 5. The following table summarizes all results for Z6.

u u−1

0 does not exist
1 1
2 does not exist
3 does not exist
4 does not exist
5 5

It shouldn’t be a surprise that the zero of a ring is never going to have a
multiplicative inverse. □

16.1.4 More universal concepts, isomorphisms and subrings
Isomorphism is a universal concept that is important in every algebraic structure.
Two rings are isomorphic as rings if and only if they have the same cardinality
and if they behave exactly the same under corresponding operations. They
are essentially the same ring. For this to be true, they must behave the same
as groups (under +) and they must behave the same under the operation of
multiplication.

Definition 16.1.13 Ring Isomorphism. Let [R; +, ·] and [R′; +′, ·′] be rings.
Then R is isomorphic to R′ if and only if there exists a function, f : R→ R′,
called a ring isomorphism, such that

(1) f is a bijection

(2) f(a + b) = f(a) +′ f(b) for all a, b ∈ R

(3) f(a · b) = f(a) ·′ f(b) for all a, b ∈ R.

♢
Conditions 1 and 2 tell us that f is a group isomorphism.
This leads us to the problem of how to show that two rings are not isomorphic.

This is a universal concept. It is true for any algebraic structure and was
discussed in Chapter 11. To show that two rings are not isomorphic, we must
demonstrate that they behave differently under one of the operations. We
illustrate through several examples.

Example 16.1.14 Consider the rings [Z; +, ·] and [2Z; +, ·]. In Chapter 11 we
showed that as groups, the two sets Z and 2Z with addition were isomorphic.
The group isomorphism that proved this was the function f : Z→ 2Z, defined
by f(n) = 2n. Is f a ring isomorphism? We need only check whether f(m ·n) =
f(m) · f(n) for all m, n ∈ Z. In fact, this condition is not satisfied:

f(m · n) = 2 ·m · n and f(m) · f(n) = 2m · 2n = 4 ·m · n

Therefore, f is not a ring isomorphism. This does not necessarily mean that the
two rings Z and 2Z are not isomorphic, but simply that f doesn’t satisfy the
conditions. We could imagine that some other function does. We could try to
find another function that is a ring isomorphism, or we could try to show that

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 432

Z and 2Z are not isomorphic as rings. To do the latter, we must find something
different about the ring structure of Z and 2Z.

We already know that they behave identically under addition, so if they are
different as rings, it must have something to do with how they behave under
the operation of multiplication. Let’s begin to develop a checklist of how the
two rings could differ:

(1) Do they have the same cardinality? Yes, they are both countable.

(2) Are they both commutative? Yes.

(3) Are they both rings with unity? No.

Z is a ring with unity, namely the number 1. 2Z is not a ring with unity, 1 /∈ 2Z.
Hence, they are not isomorphic as rings. □

Example 16.1.15 Next consider whether [2Z; +, ·] and [3Z; +, ·] are isomorphic.
Because of the previous example, we might guess that they are not. However,
checklist items 1 through 3 above do not help us. Why? We add another
checklist item:

4. Find an equation that makes sense in both rings, which is solvable in one
and not the other.

The equation x + x = x · x, or 2x = x2, makes sense in both rings. However,
this equation has a nonzero solution, x = 2, in 2Z, but does not have a nonzero
solution in 3Z. Thus we have an equation solvable in one ring that cannot be
solved in the other, so they cannot be isomorphic. □

Another universal concept that applies to the theory of rings is that of a
subsystem. A subring of a ring [R; +, ·] is any nonempty subset S of R that is
a ring under the operations of R. First, for S to be a subring of the ring R, S
must be a subgroup of the group [R; +]. Also, S must be closed under ·, satisfy
the associative law under ·, and satisfy the distributive laws. But since R is
a ring, the associative and distributive laws are true for every element in R,
and, in particular, for all elements in S, since S ⊆ R. We have just proven the
following theorem:

Theorem 16.1.16 A nonempty subset S of a ring [R; +, ·] is a subring of R if
and only if:

(1) [S; +] is a subgroup of the group [R; +]

(2) S is closed under multiplication: if a, b ∈ S, then a · b ∈ S.

Example 16.1.17 The set of even integers, 2Z, is a subring of the ring [Z; +, ·]
since [2Z; +] is a subgroup of the group [Z; +] and since it is also closed with
respect to multiplication:

2m, 2n ∈ 2Z⇒ (2m) · (2n) = 2(2 ·m · n) ∈ 2Z

□
Several of the basic facts that we are familiar with are true for any ring.

The following theorem lists a few of the elementary properties of rings.

Theorem 16.1.18 Some Basic Properties. Let [R; +, ·] be a ring, with
a, b ∈ R. Then

(1) a · 0 = 0 · a = 0

(2) a · (−b) = (−a) · b = −(a · b)

(3) (−a) · (−b) = a · b

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 433

Proof.
(1) a ·0 = a · (0+0) = a ·0+a ·0, the last equality valid by the left distributive

axiom. Hence if we add −(a · 0) to both sides of the equality above, we
obtain a · 0 = 0. Similarly, we can prove that 0 · a = 0.

(2) Before we begin the proof of this part, recall that the inverse of each
element of the group [R; +] is unique. Hence the inverse of the element
a · b is unique and it is denoted −(a · b). Therefore, to prove that
a · (−b) = −(a · b), we need only show that a · (−b) inverts a · b.

a · (−b) + a · b = a · (−b + b) by the left distributive axiom
= a · 0 since − b inverts b

= 0 by part 1 of this theorem

Similarly, it can be shown that(−a) · b = −(a · b).

(3) We leave the proof of part 3 to the reader as an exercise.

■

Example 16.1.19 We will compute 2·(−2) in the ring [Z6; +6,×6]. 2×6 (−2) =
− (2×6 2) = −4 = 2, since the additive inverse of 4 (mod 6) is 2. Of course, we
could have done the calculation directly as 2×6 (−2) = 2×6 4 = 2 □

16.1.5 Integral Domains and Zero Divisors
As the example above illustrates, Theorem 16.1.18 is a modest beginning in the
study of which algebraic manipulations are possible when working with rings.
A fact in elementary algebra that is used frequently in problem solving is the
cancellation law. We know that the cancellation laws are true under addition
for any ring, based on group theory. Are the cancellation laws true under
multiplication, where the group axioms can’t be counted on? More specifically,
let [R; +, ·] be a ring and let a, b, c ∈ R with a ̸= 0. When can we cancel the a’s
in the equation a · b = a · c? We can do so if a−1 exists, but we cannot assume
that a has a multiplicative inverse. The answer to this question is found with
the following definition and the theorem that follows.

Definition 16.1.20 Zero Divisor. Let [R; +, ·] be a ring. If a and b are two
nonzero elements of R such that a · b = 0, then a and b are called zero divisors.

♢

Example 16.1.21
(a) In the ring [Z8; +8,×8], the numbers 4 and 2 are zero divisors since

4×8 2 = 0. In addition, 6 is a zero divisor because 6×8 4 = 0.

(b) In the ring [M2×2(R); +, ·] the matrices A =
(

0 0
0 1

)
and B =

(
0 1
0 0

)
are zero divisors since AB = 0.

(c) [Z; +, ·] has no zero divisors.

□
Now, here is why zero divisors are related to cancellation.

Theorem 16.1.22 Multiplicative Cancellation. The multiplicative cancel-
lation laws hold in a ring [R; +, ·] if and only if R has no zero divisors.

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 434

Proof. We prove the theorem using the left cancellation axiom, namely that if
a ̸= 0 and a · b = a · c, then b = c for all a, b, c ∈ R. The proof using the right
cancellation axiom is its mirror image.

(⇒) Assume the left cancellation law holds in R and assume that a and b are
two elements in R such that a · b = 0. We must show that either a = 0 or b = 0.
To do this, assume that a ̸= 0 and show that b must be 0.

a · b = 0⇒ a · b = a · 0
⇒ b = 0 by the left cancellation law

.

(⇐) Conversely, assume that R has no zero divisors and we will prove that the
left cancellation law must hold. To do this, assume that a, b, c ∈ R, a ̸= 0, such
that a · b = a · c and show that b = c.

a · b = a · c⇒ a · b− a · c = 0
⇒ a · (b− c) = 0
⇒ b− c = 0 since there are no zero divisors
⇒ b = c

■
Hence, the only time that the cancellation laws hold in a ring is when

there are no zero divisors. The commutative rings with unity in which the two
conditions are true are given a special name.

Definition 16.1.23 Integral Domain. A commutative ring with unity
containing no zero divisors is called an integral domain. ♢

In this chapter, Integral domains will be denoted generically by the letter
D. We state the following two useful facts without proof.

Theorem 16.1.24 If m ∈ Zn, m ≠ 0, then m is a zero divisor if and only if
m and n are not relatively prime; i.e., gcd(m, n) > 1.
Corollary 16.1.25 If p is a prime, then Zp has no zero divisors.

Example 16.1.26 [Z; +, ·], [Zp; +p,×p] with p a prime, [Q; +, ·], [R; +, ·], and
[C; +, ·] are all integral domains. The key example of an infinite integral domain
is [Z; +, ·]. In fact, it is from Z that the term integral domain is derived. Our
main example of a finite integral domain is [Zp; +p,×p], when p is prime. □

We close this section with the verification of an observation that was made
in Chapter 11, namely that the product of two algebraic systems may not be
an algebraic system of the same type.

Example 16.1.27 Both [Z2; +2,×2] and [Z3; +3,×3] are integral domains.
Consider the direct product Z2 × Z3. It’s true that Z2 × Z3 is a commutative
ring with unity (see Exercise 13). However, (1, 0) · (0, 2) = (0, 0), so Z2 × Z3
has zero divisors and is therefore not an integral domain. □

16.1.6 Exercises
1. Review the definition of rings to show that the following are rings. The

operations involved are the usual operations defined on the sets. Which of
these rings are commutative? Which are rings with unity? For the rings
with unity, determine the unity and all units.

(a) [Z; +, ·]

(b) [C; +, ·]

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 435

(c) [Q; +, ·]

(d) [M2×2(R); +, ·]

(e) [Z2; +2,×2]
2. Follow the instructions for Exercise 1 and the following rings:

(a) [Z6; +6,×6]

(b) [Z5; +5,×5]

(c)
[
Z2

3; +, ·
]

(d) [Z8; +8,×8]

(e) [Z× Z; +, ·]

(f)
[
R2; +, ·

]
3. Show that the following pairs of rings are not isomorphic:

(a) [Z; +, ·] and [M2×2(Z); +, ·]

(b) [3Z; +, ·] and [4Z; +, ·].
4. Show that the following pairs of rings are not isomorphic:

(a) [R; +, ·] and [Q; +, ·].

(b) [Z2 × Z2; +, ·]and [Z4; +, ·].
5.

(a) Show that 3Z is a subring of the ring [Z; +, ·]

(b) Find all subrings of Z8.

(c) Find all subrings of Z2 × Z2.
6. Verify the validity of Theorem 16.1.22 by finding examples of elements a,

b, and c, a ̸= 0 in the following rings, where a · b = a · c and yet b ̸= c:
(a) Z8

(b) M2×2(R)

(c) Z2
2

7.
(a) Determine all solutions of the equation x2−5x+6 = 0 in Z. Can there

be any more than two solutions to this equation (or any quadratic
equation) in Z?

(b) Find all solutions of the equation in part a in Z12. Why are there
more than two solutions?

8. Solve the equation x2 + 4x + 4 = 0 in the following rings. Interpret 4 as
1 + 1 + 1 + 1, where 1 is the unity of the ring.

(a) in Z8

(b) in M2×2(R)

(c) in Z

(d) in Z3

9. The relation “is isomorphic to” on rings is an equivalence relation. Explain
the meaning of this statement.

10.
(a) Let R1, R2, . . ., Rn be rings. Prove the multiplicative, associative,

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 436

and distributive laws for the ring

R =
n
×

i=1
Ri

(b) If each of the Ri is commutative, is R commutative?

(c) Under what conditions will R be a ring with unity?

(d) What will the units of R be when it has a unity?
11.

(a) Prove that the ring Z2 × Z3 is commutative and has unity.

(b) Determine all zero divisors for the ring Z2 × Z3.

(c) Give another example illustrating the fact that the product of two
integral domains may not be an integral domain. Is there an example
where the product is an integral domain?

12. Boolean Rings. Let U be a nonempty set.
(a) Verify that [P(U);⊕,∩] is a commutative ring with unity.

(b) What are the units of this ring?
13.

(a) For any ring [R; +, ·], expand (a + b)(c + d) for a, b, c, d ∈ R.

(b) If R is commutative, prove that (a + b)2 = a2 + 2ab + b2 for all
a, b ∈ R.

14.
(a) Let R be a commutative ring with unity. Prove by induction that

for n ≥ 1, (a + b)n =
∑n

k=0
(

n
k

)
akbn−k

(b) Simplify (a + b)5 in Z5 .

(c) Simplify (a + b)10 in Z10.
15. Prove part 3 of Theorem 16.1.18.
16. Let U be a finite set. Prove that the Boolean ring [P(U);⊕,∩] is isomorphic

to the ring [Z2
n; +, ·]. where n = |U |.

16.2 Fields
Although the algebraic structures of rings and integral domains are widely used
and play an important part in the applications of mathematics, we still cannot
solve the simple equation ax = b, a ̸= 0 in all rings or all integral domains, for
that matter. Yet this is one of the first equations we learn to solve in elementary
algebra and its solubility is basic to innumerable questions. If we wish to solve
a wide range of problems in a system we need at least all of the laws true for
rings and the cancellation laws together with the ability to solve the equation
ax = b, a ̸= 0. We summarize the above in a definition and list theorems that
will place this concept in the context of the previous section.

Definition 16.2.1 Field. A field is a commutative ring with unity such that
each nonzero element has a multiplicative inverse. ♢

In this chapter, we denote a field generically by the letter F . The letters k,
K and L are also conventionally used for fields.

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 437

Example 16.2.2 Some common fields. The most common infinite fields
are [Q; +, ·], [R; +, ·], and [C; +, ·]. □

Remark 16.2.3 Since every field is a ring, all facts and concepts that are true
for rings are true for any field.
Theorem 16.2.4 Field ⇒ Integral Domain. Every field is an integral
domain.
Proof. The proof is fairly easy and a good exercise, so we provide a hint.
Starting with the assumption that a · b = 0 if we assume that a ̸= 0 then the
existence of a−1 makes it possible to infer that b = 0. ■

Of course the converse of Theorem 16.2.4 is not true. Consider [Z; +, ·].
However, the next theorem proves the converse in finite fields.

Theorem 16.2.5 Finite Integral Domain ⇒ Field. Every finite integral
domain is a field.
Proof. We leave the details to the reader, but observe that if D is a finite
integral domain, we can list all elements as a1, a2, . . . , an, where a1 = 1. Now,
to show that any ai has a multiplicative inverse, consider the n products
ai · a1, ai · a2, . . . , ai · an. What can you say about these products? ■

If p is a prime, p | (a · b)⇒ p | a or p | b. An immediate implication of this
fact is the following corollary.

Corollary 16.2.6 If p is a prime, then Zp is a field.

Example 16.2.7 A field of order 4. Corollary 16.2.6 gives us a large
number of finite fields, but we must be cautious. This does not tell us that all
finite fields are of the form Zp , p a prime. To see this, let’s try to construct a
field of order 4.

First the field must contain the additive and multiplicative identities, 0 and
1, so, without loss of generality, we can assume that the field we are looking
for is of the form F = {0, 1, a, b}. Since there are only two nonisomorphic
groups of order 4, we have only two choices for the group table for [F ; +]. If
the additive group is isomorphic to Z4 then two of the nonzero elements of F
would not be their own additive inverse (as are 1 and 3 in Z4). Let’s assume
β ∈ F is one of those elements and β + β = γ ̸= 0. An isomorphism between
the additive groups F and Z4 would require that γ in F correspond with 2 in
Z4. We could continue our argument and infer that γ · γ = 0, producing a zero
divisor, which we need to avoid if F is to be a field. We leave the remainder of
the argument to the reader. We can thus complete the addition table so that
[F ; +] is isomorphic to Z2

2:

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1
b b a 1 0

Next, since 1 is the unity of F , the partial multiplication table must look
like:

· 0 1 a b

0 0 0 0 0
1 0 1 a b

a 0 a − −
b 0 b − −

Hence, to complete the table, we have only four entries to find, and, since
F must be commutative, this reduces our task to filling in three entries. Next,

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 438

each nonzero element of F must have a unique multiplicative inverse. The
inverse of a must be either a itself or b. If a−1 = a, then b−1 = b. (Why?) But
a−1 = a ⇒ a · a = 1. And if a · a = 1, then a · b is equal to a or b. In either
case, by the cancellation law, we obtain a = 1 or b = 1, which is impossible.
Therefore we are forced to conclude that a−1 = b and b−1 = a. To determine
the final two products of the table, simply note that, a · a ̸= a because the
equation x2 = x has only two solutions, 0 and 1 in any field. We also know that
a · a cannot be 1 because a doesn’t invert itself and cannot be 0 because a can’t
be a zero divisor. This leaves us with one possible conclusion, that a · a = b
and similarly b · b = a. Hence, our multiplication table for F is:

· 0 1 a b

0 0 0 0 0
1 0 1 a b

a 0 a b 1
b 0 b 1 a

We leave it to the reader to verify that [F ; +, ·], as described above, is a
field. Hence, we have produced a field of order 4. This construction would be
difficult to repeat for larger fields. In section 16.4 we will introduce a different
approach to constructing fields that will be far more efficient. □

Even though not all finite fields are isomorphic to Zp for some prime p, it
can be shown that every field F must have either:

• a subfield isomorphic to Zp for some prime p, or

• a subfield isomorphic to Q.

One can think of all fields as being constructed from either Zp or Q.

Example 16.2.8 [R; +, ·] is a field, and it contains a subfield isomorphic to
[Q; +, ·], namely Q itself. □

Example 16.2.9 The field F that we constructed in Example 16.2.7 has a
subfield isomorphic to Zp for some prime p. From the tables, we note that the
subset {0, 1} of {0, 1, a, b} under the given operations of F behaves exactly like
[Z2; +2,×2]. Hence, F has a subfield isomorphic to Z2. □

We close this section with a brief discussion of isomorphic fields. Again,
since a field is a ring, the definition of isomorphism of fields is the same as that
of rings. It can be shown that if f is a field isomorphism, then f

(
a−1) = f(a)−1;

that is, inverses are mapped onto inverses under any field isomorphism. A major
question to try to solve is: How many different non-isomorphic finite fields are
there of any given order? If p is a prime, it seems clear from our discussions
that all fields of order p are isomorphic to Zp. But how many nonisomorphic
fields are there, if any, of order 4, 6, 8, 9, etc? The answer is given in the
following theorem, whose proof is beyond the scope of this text.

Theorem 16.2.10
(1) Any finite field F has order pn for a prime p and a positive integer n.

(2) For any prime p and any positive integer n there is a field of order pn .

(3) Any two fields of order pn are isomorphic.
Galois. The field of order pn is frequently referred to as the Galois field of
order pn and it is denoted by GF (pn). Evariste Galois (1811-32) was a pioneer
in the field of abstract algebra.

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 439

Figure 16.2.11 French stamp honoring Evariste Galois
This theorem tells us that there is a field of order 22 = 4, and there is

only one such field up to isomorphism. That is, all such fields of order 4 are
isomorphic to F , which we constructed in the example above.

Exercises
1. Write out the addition, multiplication, and “inverse” tables for each of the

following fields’.
(a) [Z2; +2,×2]

(b) [Z3; +3,×3]

(c) [Z5; +5,×5]
2. Show that the set of units of the fields in Exercise 1 form a group under

the operation of the multiplication of the given field. Recall that a unit is
an element which has a multiplicative inverse.

3. Complete the proof of Theorem 16.2.5 that every finite integral domain is
a field.

4. Write out the operation tables for Z2
2. Is Z2

2 a ring? An integral domain?
A field? Explain.

5. Determine all values x from the given field that satisfy the given equation:
(a) x + 1 = −1 in Z2 , Z3 and Z5

(b) 2x + 1 = 2 in Z3 and Z5

(c) 3x + 1 = 2 in Z5

6.
(a) Prove that if p and q are prime, then Zp × Zq is never a field.

(b) Can Zp
n be a field for any prime p and any positive integer n ≥ 2?

7. Determine all solutions to the following equations over Z2. That is, find
all elements of Z2 that satisfy the equations.

(a) x2 + x = 0

(b) x2 + 1 = 0

(c) x3 + x2 + x + 1 = 0

(d) x3 + x + 1 = 0
8. Determine the number of different fields, if any, of all orders 2 through 15.

Wherever possible, describe these fields via a known field.
9. Let Q

(√
2
)

=
{

a + b
√

2
∣∣ a, b ∈ Q

}
.

(a) Prove that
[
Q
(√

2
)

; +, ·
]

is a field.

(b) Show that Q is a subfield of Q
(√

2
)
. For this reason, Q

(√
2
)

is

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 440

called an extension field of Q.

(c) Show that all the roots of the equation x2 − 4x + 7
2 = 0 lie in the

extension field Q
(√

2
)
.

(d) Do the roots of the equation x2−4x+3 = 0 lie in this field? Explain.

16.3 Polynomial Rings
In the previous sections we examined the solutions of a few equations over
different rings and fields. To solve the equation x2 − 2 = 0 over the field of
the real numbers means to find all solutions of this equation that are in this
particular field R. This statement can be replaced as follows: Determine all
a ∈ R such that the polynomial f(x) = x2 − 2 is equal to zero when evaluated
at x = a. In this section, we will concentrate on the theory of polynomials. We
will develop concepts using the general setting of polynomials over rings since
results proven over rings are true for fields (and integral domains). The reader
should keep in mind that in most cases we are just formalizing concepts that
he or she learned in high school algebra over the field of reals.

Definition 16.3.1 Polynomial over a Ring. Let [R; +, ·] be a ring. A
polynomial, f(x), over R is an expression of the form

f(x) =
n∑

i=0
aix

i = a0 + a1x + a2x2 + · · ·+ anxn

where n ≥ 0, and a0, a1, a2, . . . , an ∈ R. If an ̸= 0, then the degree of f(x) is n.
If f(x) = 0, then the degree of f(x) is undefined, but for convenience we say
that deg 0 = −∞. If the degree of f(x) is n, we write deg f(x) = n. The set
of all polynomials in the indeterminate x with coefficients in R is denoted by
R[x]. ♢

Note 16.3.2
• The symbol x is an object called an indeterminate, which is not an

element of the ring R.

• Note that R ⊆ R[x]. The elements of R are called constant polynomials,
with the nonzero elements of R being the polynomials of degree 0.

• R is called the ground, or base, ring for R[x].

• In the definition above, we have written the terms in increasing degree
starting with the constant. The ordering of terms can be reversed without
changing the polynomial. For example, 1 + 2x− 3x4 and −3x4 + 2x + 1
are the same polynomial.

• A term of the form xk in a polynomial is understood to be 1xk.

• It is understood that if deg f(x) = n, then coefficients of powers of x
higher than n are equal to the zero of the base ring.

Definition 16.3.3 Polynomial Addition. Let f(x) = a0 + a1x + a2x2 +
· · · + amxm and g(x) = b0 + b1x + b2x2 + · · · + bnxn be elements in R[x] so
that ai ∈ R and bi ∈ R for all i. Let k be the maximum of m and n. Then
f(x)+g(x) = c0 +c1x+c2x2 + · · ·+ckxk, where ci = ai +bi for i = 0, 1, 2, . . . , k.

♢

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 441

Definition 16.3.4 Polynomial Multiplication. Let f(x) = a0 + a1x +
a2x2 + · · ·+ amxm and g(x) = b0 + b1x + b2x2 + · · ·+ bnxn. Then

f(x) · g(x) = d0 + d1x + d2x2 + · · ·+ dpxp where p = m + n and
ds =

∑s
i=0 aibs−i = a0bs + a1bs−1 + a2bs−2 + · · ·+ as−1b1 + asb0

for 0 ≤ s ≤ p

♢
The important fact to keep in mind is that addition and multiplication in

R[x] depends on addition and multiplication in R. The powers of x merely
serve the purpose of “place holders.” All computations involving coefficients are
done over the given ring. Powers of the indeterminate are computed formally
applying the rule of adding exponents when multiplying powers.

Example 16.3.5 f(x) = 3, g(x) = 2 − 4x + 7x2 , and h(x) = 2 + x4 are all
polynomials in Z[x]. Their degrees are 0, 2, and 4, respectively. □

Addition and multiplication of polynomials are performed as in high school
algebra. However, we must do our computations in the ground ring of the
polynomials.

Example 16.3.6 In Z3[x], if f(x) = 1 + x and g(x) = 2 + x, then

f(x) + g(x) = (1 + x) + (2 + x)
= (1 +3 2) + (1 +3 1) x

= 0 + 2x

= 2x

and

f(x)g(x) = (1 + x) · (2 + x)
= 1×3 2 + (1×3 1 +3 1×3 2)x + (1×3 1)x2

= 2 + 0x + x2

= 2 + x2

However, for the same polynomials as above, f(x) and g(x) in the more familiar
setting of Z[x], we have

f(x) + g(x) = (1 + x) + (2 + x) = (1 + 2) + (1 + 1)x = 3 + 2x

and

f(x)g(x) = (1 + x) · (2 + x)
= 1 · 2 + (1 · 1 + 1 · 2)x + (1 · 1)x2

= 2 + 3x + x2

□

Example 16.3.7 Let f(x) = 2 + x2 and g(x) = −1 + 4x + 3x2. We will
compute f(x) · g(x) in Z[x]. Of course this product can be obtained by the
usual methods of high school algebra. We will, for illustrative purposes, use the
above definition. Using the notation of the above definition, a0 = 2, a1 = 0,
a2 = 1, b0 = −1, b1 = 4, and b2 = 3. We want to compute the coefficients d0,
d1, d2, d3, and d4 . We will compute d3 , the coefficient of the x3 term of the
product, and leave the remainder to the reader (see Exercise 2 of this section).

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 442

Since the degrees of both factors is 2, ai = bi = 0 for i ≥ 3. The coefficient of
x3 is

d3 = a0b3 + a1b2 + a2b1 + a3b0 = 2 · 0 + 0 · 3 + 1 · 4 + 0 · (−1) = 4

□
The proofs of the following theorem are not difficult but rather long, so we

omit them.
Theorem 16.3.8 Properties of Polynomial Rings. Let [R; +, ·] be a ring.
Then:

(1) R[x] is a ring under the operations of polynomial addition and multiplica-
tion.

(2) If R is a commutative ring, then R[x] is a commutative ring.

(3) If R is a ring with unity, 1, then R[x] is a ring with unity (the unity in
R[x] is 1 + 0x + 0x2 + · · ·).

(4) If R is an integral domain, then R[x] is an integral domain.

(5) If F is a field, then F [x] is not a field. However, F [x] is an integral
domain.

Next we turn to division of polynomials, which is not an operation since the
result is a pair of polynomials, not a single one. From high school algebra we
all learned the standard procedure for dividing a polynomial f(x) by a second
polynomial g(x). This process of polynomial long division is referred to as the
division property for polynomials. Under this scheme we continue to divide
until the result is a quotient q(x) and a remainder r(x) whose degree is strictly
less than that of the divisor g(x). This property is valid over any field. Before
giving a formal description, we consider some examples.

Example 16.3.9 Polynomial Division. Let f(x) = 1 + x + x3 and
g(x) = 1 + x be two polynomials in Z2[x]. Let us divide f(x) by g(x). Keep in
mind that we are in Z2[x] and that, in particular, −1 = 1 in Z2 . This is a case
where reordering the terms in decreasing degree is preferred.

Figure 16.3.10
Therefore,

x3 + x + 1
x + 1 = x2 + x + 1

x + 1
or equivalently,

x3 + x + 2 =
(
x2 + x

)
· (x + 1) + 1

That is, f(x) = g(x) · q(x) + r(x) where q(x) = x2 + x and r(x) = 1. Notice
that deg(r(x)) = 0, which is strictly less than deg(g(x)) = 1. □

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 443

Example 16.3.11 Let f(x) = 1 + x4 and g(x) = 1 + x be polynomials in Z2[x].
Let us divide f(x) by g(x):

Figure 16.3.12
Thus x4 + 1 =

(
x3 + x2 + x + 1

)
(x + 1). Since we have 0 as a remainder,

x + 1 must be a factor of x4 + 1. Also, since x + 1 is a factor of x4 + 1, 1 is a
zero (or root) of x4 + 1. Of course we could have determined that 1 is a root of
f(x) simply by computing f(1) = 14 +2 1 = 1 +2 1 = 0. □

Before we summarize the main results suggested by the previous examples,
we should probably consider what could have happened if we had attempted to
perform divisions of polynomials in the ring Z[x] rather than in the polynomials
over the field Z2. For example, f(x) = x2 − 1 and g(x) = 2x − 1 are both
elements of the ring Z[x], yet x2 − 1 = (1

2 x + 1
2)(2x − 1) − 3

4 The quotient
and remainder are not a polynomials over Z but polynomials over the field of
rational numbers. For this reason it would be wise to describe all results over a
field F rather than over an arbitrary ring R so that we don’t have to expand
our possible set of coefficients.

Theorem 16.3.13 Division Property for Polynomials. Let [F ; +, ·] be a
field and let f(x) and g(x) be two elements of F [x] with g(x) ̸= 0. Then there
exist unique polynomials q(x) and r(x) in F [x] such that f(x) = g(x)q(x)+r(x),
where deg r(x) < deg g(x).
Proof. This theorem can be proven by induction on deg f(x). ■

Theorem 16.3.14 The Factor Theorem. Let [F ; +, ·] be a field. An element
a ∈ F is a zero of f(x) ∈ F [x] if and only if x− a is a factor of f(x) in F [x].
Proof.

(⇒) Assume that a ∈ F is a zero of f(x) ∈ F [x]. We wish to show that x−a is
a factor of f(x). To do so, apply the division property to f(x) and g(x) = x−a.
Hence, there exist unique polynomials q(x) and r(x) from F [x] such that
f(x) = (x− a) · q(x) + r(x) and the deg r(x) < deg(x− a) = 1, so r(x) = c ∈ F ,
that is, r(x) is a constant. Also, the fact that a is a zero of f(x) means that
f(a) = 0. So f(x) = (x − a) · q(x) + c becomes 0 = f(a) = (a − a)q(a) + c.
Hence c = 0, so f(x) = (x− a) · q(x), and x− a is a factor of f(x). The reader
should note that a critical point of the proof of this half of the theorem was the
part of the division property that stated that deg r(x) < deg g(x).

(⇐) We leave this half to the reader as an exercise. ■

Theorem 16.3.15 A nonzero polynomial f(x) ∈ F [x] of degree n can have at
most n zeros.
Proof. Let a ∈ F be a zero of f(x). Then f(x) = (x−a) ·q1(x), q1(x) ∈ F [x], by
the Factor Theorem. If b ∈ F is a zero of q1(x), then again by Factor Theorem,

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 444

f(x) = (x − a)(x − b)q2(x), q2(x) ∈ F [x]. Continue this process, which must
terminate in at most n steps since the degree of qk(x) would be n− k. ■

From The Factor Theorem, we can get yet another insight into the problems
associated with solving polynomial equations; that is, finding the zeros of a
polynomial. The initial important idea here is that the zero a is from the
ground field F . Second, a is a zero only if (x− a) is a factor of f(x) in F [x];
that is, only when f(x) can be factored (or reduced) to the product of (x− a)
times some other polynomial in F [x].

Example 16.3.16 Consider the polynomial f(x) = x2 − 2 taken as being in
Q[x]. From high school algebra we know that f(x) has two zeros (or roots),
namely ±

√
2, and x2 − 2 can be factored as

(
x−
√

2
) (

x +
√

2
)
. However, we

are working in Q[x], these two factors are not in the set of polynomials over
the rational numbers, Q since

√
2 /∈ Q . Therefore, x2 − 2 does not have a zero

in Q since it cannot be factored over Q. When this happens, we say that the
polynomial is irreducible over Q. □

The problem of factoring polynomials is tied hand-in-hand with that of the
reducibility of polynomials. We give a precise definition of this concept.

Definition 16.3.17 Reducibility over a Field. Let [F ; +, ·] be a field and
let f(x) ∈ F [x] be a nonconstant polynomial. f(x) is reducible over F if and
only if it can be factored as a product of two nonconstant polynomials in F [x].
A polynomial is irreducible over F if it is not reducible over F . ♢

Example 16.3.18 The polynomial f(x) = x4 + 1 is reducible over Z2 since
x4 + 1 = (x + 1)

(
x3 + x2 + x− 1

)
. □

Example 16.3.19 Is the polynomial f(x) = x3 + x + 1 reducible over Z2?
Since a factorization of a cubic polynomial can only be as a product of linear
and quadratic factors, or as a product of three linear factors, f(x) is reducible
if and only if it has at least one linear factor. From the Factor Theorem, x− a
is a factor of x3 + x + 1 over Z2 if and only if a ∈ Z2 is a zero of x3 + x + 1. So
x3 + x + 1 is reducible over Z2 if and only if it has a zero in Z2 . Since Z2 has
only two elements, 0 and 1, this is easy enough to check. f(0) = 03 +2 0+2 1 = 1
and f(1) = 13 +2 1 +2 1 = 1, so neither 0 nor 1 is a zero of f(x) over Z2. Hence,
x3 + x + 1 is irreducible over Z2. □

From high school algebra we know that x3 + x + 1 has three zeros from
some field. Can we find this field? To be more precise, can we construct the
field that contains Z2 and all zeros of x3 + x + 1? We will consider this task in
the next section.

We close this section with a final analogy. Prime numbers play an important
role in mathematics. The concept of irreducible polynomials (over a field) is
analogous to that of a prime number. Just think of the definition of a prime
number. A useful fact concerning primes is: If p is a prime and if p | ab, then
p | a or p | b. We leave it to the reader to think about the veracity of the
following: If p(x) is an irreducible polynomial over F , a(x), b(x) ∈ F [x] and
p(x) | a(x)b(x), then p(x) | a(x) or p(x) | b(x).

Exercises
1. Let f(x) = 1 + x and g(x) = 1 + x + x2. Compute the following sums and

products in the indicated rings.
(a) f(x) + g(x) and f(x) · g(x) in Z[x]

(b) f(x) + g(x) and f(x) · g(x) in Z2[x]

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 445

(c) (f(x) · g(x)) · f(x) in Q[x]

(d) (f(x) · g(x)) · f(x) in Z2[x]

(e) f(x) · f(x) + f(x) · g(x) in Z2[x]
2. Complete the calculations started in Example 16.3.7.
3. Prove that:

(a) The ring R is a subring of the ring R[x].

(b) The ring Z[x] is a subring of the Q[x].

(c) The ring Q[x] is a subring of the ring R[x].
4.

(a) Find all zeros of x4 + 1 in Z3.

(b) Find all zeros of x5 + 1 in Z5.
5. Determine which of the following are reducible over Z2. Explain.

(a) f(x) = x3 + 1

(b) g(x) = x3 + x2 + x.

(c) h(x) = x3 + x2 + 1.

(d) k(x) = x4 + x2 + 1. (Be careful.)
6. Prove the second half of The Factor Theorem.
7. Give an example of the contention made in the last paragraph of this

section.
8. Determine all zeros of x4 + 3x3 + 2x + 4 in Z5[x].
9. Show that x2 − 3 is irreducible over Q but reducible over the field of real

numbers.
10. The definition of a vector space given in Chapter 13 holds over any field

F , not just over the field of real numbers, where the elements of F are
called scalars.

(a) Show that F [x] is a vector space over F .

(b) Find a basis for F [x] over F .

(c) What is the dimension of F [x] over F?
11. Prove Theorem 16.3.13, the Division Property for Polynomials
12.

(a) Show that the field R of real numbers is a vector space over R. Find
a basis for this vector space. What is dim R over R?

(b) Repeat part a for an arbitrary field F.

(c) Show that R is a vector space over Q.

16.4 Field Extensions
From high school algebra we realize that to solve a polynomial equation means
to find its roots (or, equivalently, to find the zeros of the polynomials). From
Example 16.3.16 and Example 16.3.19 we know that the zeros may not lie in the
given ground field. Hence, to solve a polynomial really involves two steps: first,

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 446

find the zeros, and second, find the field in which the zeros lie. For economy’s
sake we would like this field to be the smallest field that contains all the zeros of
the given polynomial. To illustrate this concept, let us reconsider the examples
from the previous section..

Example 16.4.1 Extending the Rational Numbers. Let f(x) = x2 − 2 ∈
Q[x]. It is important to remember that we are considering x2 − 2 over Q, no
other field. We would like to find all zeros of f(x) and the smallest field, call it
S for now, that contains them. The zeros are x = ±

√
2, neither of which is an

element of Q. The set S we are looking for must satisfy the conditions:
(1) S must be a field.

(2) S must contain Q as a subfield,

(3) S must contain all zeros of f(x) = x2 − 2

By the last condition
√

2 must be an element of S, and, if S is to be a
field, the sum, product, difference, and quotient of elements in S must be in
S. So operations involving this number, such as

√
2,
(√

2
)2,
(√

2
)3,
√

2 +
√

2,√
2−
√

2, and 1√
2 must all be elements of S. Further, since S contains Q as a

subset, any element of Q combined with
√

2 under any field operation must be
an element of S. Hence, every element of the form a + b

√
2, where a and b can

be any elements in Q, is an element of S. We leave to the reader to show that
S = {a + b

√
2 | a, b ∈ Q} is a field (see Exercise 1 of this section). We note that

the second zero of x2 − 2, namely −
√

2, is an element of this set. To see this,
simply take a = 0 and b = −1. The field S is frequently denoted as Q

(√
2
)
,

and it is referred to as an extension field of Q. Note that the polynomial
x2 − 2 =

(
x−
√

2
) (

x +
√

2
)

factors into linear factors, or splits, in Q
(√

2
)

[x];
that is, all coefficients of both factors are elements of the field Q

(√
2
)
. □

Example 16.4.2 Extending Z2. Consider the polynomial g(x) = x2 +x+1 ∈
Z2[x]. Let’s repeat the steps from the previous example to factor g(x). First,
g(0) = 1 and g(1) = 1, so none of the elements of Z2 are zeros of g(x). Hence,
the zeros of g(x) must lie in an extension field of Z2. By Theorem 16.3.15,
g(x) = x2 + x + 1 can have at most two zeros. Let a be a zero of g(x). Then
the extension field S of Z2 must contain, besides a, a · a = a2, a3, a + a, a + 1,
and so on. But, since g(a) = 0, we have a2 + a + 1 = 0, or equivalently,
a2 = −(a + 1) = a + 1 (remember, we are working in an extension of Z2). We
can use this recurrence relation to reduce powers of a. So far our extension field,
S, of Z2 must contain the set {0, 1, a, a+1}, and we claim that this the complete
extension. For S to be a field, all possible sums, products, and differences of
elements in S must be in S. Let’s try a few: a + a = a (1 +2 1) = a · 0 = 0 ∈ S
Since a + a = 0, −a = a, which is in S. Adding three a’s together doesn’t give
us anything new: a + a + a = a ∈ S In fact, na is in S for all possible positive
integers n. Next,

a3 = a2 · a
= (a + 1) · a
= a2 + a

= (a + 1) + a

= 1

Therefore, a−1 = a + 1 = a2 and (a + 1)−1 = a.
It is not difficult to see that an is in S for all positive n. Does S contain all

zeros of x2 + x + 1? Remember, g(x) can have at most two distinct zeros and

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 447

we called one of them a, so if there is a second, it must be a + 1. To see if a + 1
is indeed a zero of g(x), simply compute f(a + 1):

f(a + 1) = (a + 1)2 + (a + 1) + 1
= a2 + 1 + a + 1 + 1
= a2 + a + 1
= 0

Therefore, a + 1 is also a zero of x2 + x + 1. Hence, S = {0, 1, a, a + 1} is
the smallest field that contains Z2 = {0, 1} as a subfield and contains all zeros
of x2 + x + 1. This extension field is denoted by Z2(a). Note that x2 + x + 1
splits in Z2(a); that is, it factors into linear factors in Z2(a). We also observe
that Z2(a) is a field containing exactly four elements. By Theorem 16.2.10,
we expected that Z2(a) would be of order p2 for some prime p and positive
integer n. Also recall that all fields of order pn are isomorphic. Hence, we have
described all fields of order 22 = 4 by finding the extension field of a polynomial
that is irreducible over Z2. □

The reader might feel somewhat uncomfortable with the results obtained
in Example 16.4.2. In particular, what is a? Can we describe it through a
known quantity? All we know about a is that it is a zero of g(x) and that
a2 = a + 1. We could also say that a(a + 1) = 1, but we really expected more.
However, should we expect more? In Example 16.4.1,

√
2 is a number we are

more comfortable with, but all we really know about it is that α =
√

2 is the
number such that α2 = 2. Similarly, the zero that the reader will obtain in
Exercise 2 of this section is the imaginary number i. Here again, this is simply
a symbol, and all we know about it is that i2 = −1. Hence, the result obtained
in Example 16.4.2 is not really that strange.

The reader should be aware that we have just scratched the surface in the
development of topics in polynomial rings. One area of significant applications
is in coding theory.

Example 16.4.3 An Error Correcting Polynomial Code. An important
observation regarding the previous example is that the nonzero elements of
GF (4) can be represented two ways. First as a linear combination of 1 and
a. There are four such linear combinations, one of which is zero. Second, as
powers of a. There are three distinct powers and the each match up with a
nonzero linear combination:

a0 = 1 · 1 + 0 · a
a1 = 0 · 1 + 1 · a
a2 = 1 · 1 + 1 · a

Next, we briefly describe the field GF (8) and how an error correcting code
can be build on a the same observation about that field.

First, we start with the irreducible polynomial p(x) = x3 + x + 1 over Z2.
There is another such cubic polynomial, but its choice produces essentially the
same result. Just as we did in the previous example, we assume we have a zero
of p(x) and call it β. Since we have assumed that p(β) = β3 + β + 1 = 0, we
get the recurrence relation for powers β3 = β + 1 that lets us reduce the seven
powers βk, 0 ≤ k ≤ 6, to linear combinations of 1, β, and β2. Higher powers
will reduce to these seven, which make up the elements of a field with 23 = 8
elements when we add zero to the set. We leave as an exercise for you to set up
a table relating powers of β with the linear combinations.

With this information we are now in a position to take blocks of four bits and
encode them with three parity bits to create an error correcting code. If the bits

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 448

are b3b4b5b6, then we reduce the expression Bm = b3 ·β3 +b4 ·β4 +b5 ·β5 +b6 ·β6

using the recurrence relation to an expression Bp = b0 · 1 + b1 ·β + b2 ·β2. Since
we are equating equals within GF (8), we have Bp = Bm, or Bp + Bm = 0.
The encoded message is b0b1b2b3b4b5b6, which is a representation of 0 in GF (8).
If the transmitted sequence of bits is received as c0c1c2c3c4c5c6 we reduce
C = c0 · 1 + c1 ·β + c2 ·β2 + c3 ·β3 + c4 ·β4 + c5 ·β5 + c6 ·β6 using the recurrence.
If there was no transmission error, the result is zero. If the reduced result is
zero it is most likely that the original message was c3c4c5c6. If bit k is switched
in the transmission, then

C = Bp + Bm + βk = βk

Therefore if we reduce C with the recurrence, we get the linear combination of
1, β, and β2 that is equal to βk and so we can identify the location of the error
and correct it. □

Exercises
1.

(a) Use the definition of a field to show that Q(
√

2) is a field.

(b) Use the definition of vector space to show that Q
(√

2
)

is a vector
space over Q.

(c) Prove that
{

1,
√

2
}

is a basis for the vector space Q
(√

2
)

over Q,
and, therefore, the dimension of Q(

√
2) over Q is 2.

2.
(a) Determine the splitting field of f(x) = x2 + 1 over R. This means

consider the polynomial f(x) = x2 + 1 ∈ R[x] and find the smallest
field that contains R and all the zeros of f(x). Denote this field by
R(i).

(b) R(i) is more commonly referred to by a different name. What is it?

(c) Show that {1, i} is a basis for the vector space R(i) over R. What is
the dimension of this vector space (over R)?

3. Determine the splitting field of x4 − 5x2 + 6 over Q.
4.

(a) Factor x2 + x + 1 into linear factors in Z2(a).

(b) Write out the field tables for the field Z2(a) and compare the results
to the tables of Example 16.2.7.

(c) Cite a theorem and use it to show why the results of part b were to
be expected.

5.
(a) Show that x3 + x + 1 is irreducible over Z2.

(b) Determine the splitting field of x3 + x + 1 over Z2.

(c) By Theorem 16.2.10, you have described all fields of order 23.
6.

(a) List all polynomials of degree 1, 2, 3, and 4 over Z2 = GF (2).

(b) From your list in part a, identify all irreducible polynomials of degree

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 449

1, 2, 3, and 4.

(c) Determine the splitting fields of each of the polynomials in part b.

(d) What is the order of each of the splitting fields obtained in part c?
Explain your results using Theorem 16.2.10.

7. Is the polynomial code described in this section a linear code?

16.5 Power Series

16.5.1 Definition
Earlier in this chapter, we found that a polynomial of degree n over a ring R is
an expression of the form

f(x) =
n∑

i=0
aix

i = a0 + a1x + a2x2 + · · ·+ anxn

where n ≥ 0, each of the ai are elements of R and an ̸= 0. In Section 8.5 we
defined a generating function of a sequence s with terms s0, s1, s2, . . . as the
infinite sum

G(s, z) =
∞∑

i=0
siz

i = s0 + s1z + s2z2 + · · ·

The main difference between these two expressions, disregarding notation, is
that the latter is an infinite expression and the former is a finite expression. In
this section we will extend the algebra of polynomials to the algebra of infinite
expressions like G(s, z), which are called power series.

Definition 16.5.1 Power Series. Let [R; +, ·] be a ring. A power series over
R is an expression of the form

f(x) =
∞∑

i=0
aix

i = a0 + a1x + a2x2 + · · ·

where a1, a2, a3, . . . ∈ R. The set of all such expressions is denoted by R[[x]].
♢

Our first observation in our comparison of R[x] and R[[x]] is that every
polynomial is a power series and so R[x] ⊆ R[[x]]. This is true because a
polynomial a0 + a1x + a2x2 + · · ·+ anxn of degree n in R[x], can be thought of
as an infinite expression where ai = 0 for i > n. In addition, we will see that
R[[x]] is a ring with subring R[x].

R[[x]] is given a ring structure by defining addition and multiplication on
power series as we did in R[x], with the modification that, since we are dealing
with infinite expressions, the sums and products will remain infinite expressions
that we can determine term by term, as was done in with polynomials.

Definition 16.5.2 Power Series Addition. Given power series

f(x) =
∑∞

i=0 aix
i = a0 + a1x + a2x2 + · · · and

g(x) =
∑∞

i=0 bix
i = b0 + b1x + b2x2 + · · ·

their sum is

f(x) + g(x) =
∞∑

i=0
(ai + bi) xi

= (a0 + b0) + (a1 + b1)x + (a2 + b2)x2 + (a3 + b3)x3 + · · ·
.

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 450

♢

Definition 16.5.3 Power Series Multiplication. Given power series

f(x) =
∑∞

i=0 aix
i = a0 + a1x + a2x2 + · · · and

g(x) =
∑∞

i=0 bix
i = b0 + b1x + b2x2 + · · ·

their product is

f(x) · g(x) =
∞∑

i=0
dix

i where di =
i∑

j=0
ajbi−j

= (a0 · b0) + (a0 · b1 + a1 · b0)x + (a0 · b2 + a1 · b1 + a2 · b0)x2 + · · ·

.

♢

Example 16.5.4 Some Power Series Calcuations. Let

f(x) =
∑∞

i=0 ixi = 0 + 1x + 2x2 + 3x3 + · · · and
g(x) =

∑∞
i=0 2ixi = 1 + 2x + 4x2 + 8x3 + · · ·

be elements in Z[[x]]. Let us compute f(x) + g(x) and f(x) · g(x). First the
sum:

f(x) + g(x) =
∞∑

i=0
ixi +

∞∑
i=0

2ixi

=
∞∑

i=0

(
i + 2i

)
xi

= 1 + 3x + 6x2 + 11x3 + · · ·

The product is a bit more involved:

f(x) · g(x) =
(∞∑

i=0
ixi

)
·

(∞∑
i=0

2ixi

)
=
(
0 + 1x + 2x2 + 3x3 + · · ·

)
·
(
1 + 2x + 4x2 + 8x3 + · · ·

)
= 0 · 1 + (0 · 2 + 1 · 1)x + (0 · 4 + 1 · 2 + 2 · 1)x2 + · · ·
= x + 4x2 + 11x3 + · · ·

=
∞∑

i=0
dix

i where di =
i∑

j=0
j2i−j

We can compute any value of di, with the amount of time/work required
increasing as i increases.

def d(i):
s=0
for j in range(1,i+1):

s+=j*2^(i-j)
return s

d(20)

2097130

A closed-form expression for di would be desirable. Using techniques from
Chapter 8, the formula is di = 2i+1 − i− 2, which we leave it to the reader to
derive. Hence, f(x) · g(x) =

∑∞
i=0(2i+1 − i− 2)xi □

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 451

16.5.2 Properties, Units
We have seen that addition and multiplication in R[[x]] is virtually identical to
that in R[x]. The following theorem parallels Theorem 16.3.8, establishing the
ring properties of R[[x]].

Theorem 16.5.5 Properties of Power Series. Let [R; +, ·] be a ring. Then:
(1) R[[x]] is a ring under the operations of power series addition and multi-

plication, which depend on the operations in R.

(2) If R is a commutative ring, then R[[x]] is a commutative ring.

(3) If R is a ring with unity, 1, then R[[x]] is a ring with unity (the unity in
R[x] is 1 + 0x + 0x2 + · · ·).

(4) If R is an integral domain, then R[[x]] is an integral domain.

(5) If F is a field, then F [[x]] is not a field. However, F [[x]] is an integral
domain.

We are most interested in the situation when the set of coefficients is a
field. The theorem above indicates that when F is a field, F [[x]] is an integral
domain. A reason that F [[x]] is not a field is the same as one that we can cite
for F [x], namely that x does not have multiplicative inverse in F [[x]].

With all of these similarities, one might wonder if the rings of polynomials
and power series over a field are isomorphic. It turns out that they are not.
The difference between F [x] and F [[x]] becomes apparent when one studies
which elements are units in each. First we prove that the only units in F [x]
are the nonzero constants; that is, the nonzero elements of F .

Theorem 16.5.6 Polynomial Units. Let [F ; +, ·] be a field. Polynomial
f(x) is a unit in F [x] if and only if it is a nonzero constant polynomial.
Proof.

(⇒) Let f(x) be a unit in F [x]. Then f(x) has a multiplicative inverse, call it
g(x), such that f(x) · g(x) = 1. Hence, the deg(f(x) · g(x)) = deg(1) = 0. But
deg(f(x) · g(x)) = deg f(x) + deg g(x). So deg f(x) + deg g(x) = 0, and since
the degree of a polynomial is always nonnegative, this can only happen when
the deg f(x) = deg g(x) = 0. Hence, f(x) is a constant, an element of F , which
is a unit if and only if it is nonzero.

(⇐) If f(x) is a nonzero element of F , then it is a unit since F is a field. Thus
it has an inverse, which is also in F [x] and so f(x) is a unit of F [x]. ■

Before we proceed to categorize the units in F [[x]], we remind the reader
that two power series a0 + a1x + a2x2 + · · · and b0 + b1x + b2x2 + · · · are equal
if and only if corresponding coefficients are equal, ai = bi for all i ≥ 0.

Theorem 16.5.7 Power Series Units. Let [F ; +, ·] be a field. Then
f(x) =

∑∞
i=0 aix

i is a unit of F [[x]] if and only if a0 ̸= 0.
Proof.
(⇒) If f(x) is a unit of F [[x]], then there exists g(x) =

∑∞
i=0 bix

i in F [[x]]
such that

f(x) · g(x) =
(
a0 + a1x + a2x2 + · · ·

)
·
(
b0 + b1x + b2x2 + · · ·

)
= 1
= 1 + 0x + 0x2 + · · ·

.

Since corresponding coefficients in the equation above must be equal, a0 ·b0 =
1, which implies that a0 ̸= 0.

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 452

(⇐) Assume that a0 ≠ 0. To prove that f(x) is a unit of F [[x]] we need to find
g(x) =

∑∞
i=0 bix

i in F [[x]] such that f(x) · g(x) =
∑∞

i=0 dix
i = 1. If we use the

formula for the coefficients f(x) · g(x) and equate coefficients, we get

d0 = a0 · b0 = 1 ⇒ b0 = a0
−1

d1 = a0 · b1 + a1 · b0 = 0 ⇒ b1 = −a0
−1 · (a1 · b0)

d2 = a0b2 + a1b1 + a2b0 = 0 ⇒ b2 = −a0
−1 · (a1 · b1 + a2 · b0)

...
...

...
ds = a0 · bs + a1 · bs−1 + · · ·+ as · b0 = 0 ⇒ bs = −a0

−1 · (a1 · bs−1 + a2 · bs−2 + · · ·+ as · b0)

.

Therefore the powers series
∑∞

i=0 bix
i is an expression whose coefficients

lie in F and that satisfies the statement f(x) · g(x) = 1. Hence, g(x) is the
multiplicative inverse of f(x) and f(x) is a unit. ■

Example 16.5.8 Let f(x) = 1 + 2x + 3x2 + 4x3 + · · · =
∑∞

i=0(i + 1)xi be
an element of Q[[x]]. Then, by Theorem 16.5.7, since a0 = 1 ̸= 0, f(x) is a
unit and has an inverse, call it g(x). To compute g(x), we follow the procedure
outlined in the above theorem. Using the formulas for the b′

is, we obtain

b0 = 1
b1 = −1(2 · 1) = −2

b2 = −1(2 · (−2) + 3 · 1) = 1
b3 = −1(2 · 1 + 3 · (−2) + 4 · 1) = 0

b4 = −1(2 · 0 + 3 · 1 + 4 · (−2) + 5 · 1) = 0
b5 = −1(2 · 0 + 3 · 0 + 4 · (1) + 5 · (−2) + 6 · 1) = 0

...

For s ≥ 3, we have

bs = −1(2 · 0 + 3 · 0 + · · · (s− 2) · 0 + (s− 1) · 1 + s · (−2) + (s + 1) · 1) = 0

Hence, g(x) = 1− 2x + x2 is the multiplicative inverse of f(x). □

Certainly F [[x]] contains a wider variety of units than F [x]. Yet F [[x]] is
not a field, since x ∈ F [[x]] is not a unit. So concerning the algebraic structure
of F [[x]], we know that it is an integral domain that contains F [x]. If we allow
our power series to take on negative exponents; that is, consider expressions
of the form f(x) =

∑∞
i=−∞ aix

i where all but a finite number of terms with a
negative index equal zero. These expressions are called extended power series.
The set of all such expressions is a field, call it E. This set does contain, for
example, the inverse of x, which is x−1. It can be shown that each nonzero
element of E is a unit.

16.5.3 Exercises
1. Let f(x) =

∑∞
i=0 aix

i and g(x) =
∑∞

i=0 bix
i be elements of R[[x]]. Let

f(x)·g(x) =
∑∞

i=0 dix
i = 1. Apply basic algebra to

(
a0 + a1x + a2x2 + · · ·

)
·(

b0 + b1x + b2x2 + · · ·
)

to derive the formula ds =
∑s

i=0 aibs−i for the coef-
ficients of f(x)·g(x). Hence, to show that f(x)·g(x) =

∑∞
s=0 (

∑s
i=0 aibs−i) xs

2.
(a) Prove that for any integral domain D, the following can be proven:

f(x) =
∑∞

i=0 aix
i is a unit of D[[x]] if and only if a0 is a unit in D.

(b) Compare the statement in part a to that in Theorem 16.5.7.

CHAPTER 16. AN INTRODUCTION TO RINGS AND FIELDS 453

(c) Give an example of the statement in part a in Z[[x]].
3. Use the formula for the product to verify that the expression g(x) of

Example 16.5.8 is indeed the inverse of f(x).
4.

(a) Determine the inverse of f(x) = 1 + x + x2 + · · · =
∑∞

i=0 xiin Q[[x]].

(b) Repeat part a with f(x) taken in Z2[[x]].

(c) Use the method outlined in Chapter 8 to show that the power series
f(x) =

∑∞
i=0 xi is the rational generating function 1

1−x . What is the
inverse of this function? Compare your results with those in part a.

5.
(a) Determine the inverse of h(x) =

∑∞
i=0 2ixi in Q[[x]].

(b) Use the procedures in Chapter 8 to find a rational generating function
for h(x) in part a. Find the multiplicative inverse of this function.

6. Let a(x) = 1 + 3x + 9x2 + 27x3 + · · · =
∑∞

i=0 3ixi and b(x) = 1 + x + x2 +
x3 + · · · =

∑∞
i=0 xi both in R[[x]].

(a) What are the first four terms (counting the constant term as the 0 th

term) of a(x) + b(x)?

(b) Find a closed form expression for a(x).

(c) What are the first four terms of a(x)b(x)?
7. Write as an extended power series:

(a)
(
x4 − x5)−1

(b)
(
x2 − 2x3 + x4)−1

8. Derive the closed form expression di = 2i+1 − i− 2 for the coefficients of
the product f(x) · g(x) in Example 16.5.4.

Appendix A

Algorithms

algorithm

Using step-by-step math operations,
It performs with exact calculations.
An algorithm’s job
Is to work out a "prob"
With repeated precise computations.

Jesse Frankovich, The Omnificent English Dictionary In Limerick Form

Computer programs, bicycle assembly instructions, knitting instructions, and
recipes all have several things in common. They all tell us how to do something;
and the usual format is as a list of steps or instructions. In addition, they are
usually prefaced with a description of the raw materials that are needed (the
input) to produce the end result (the output). We use the term algorithm to
describe such lists of instructions. We assume that the reader may be unfamiliar
with algorithms, so the first section of this appendix will introduce some of the
components of the algorithms that appear in this book. Since we would like
our algorithms to become computer programs in many cases, the notation will
resemble a computer language such as Python or Sage; but our notation will
be slightly less formal. In some cases we will also translate the pseudocode to
Sage. Our goal will be to give mathematically correct descriptions of how to
accomplish certain tasks. To this end, the second section of this appendix is
an introduction to the Invariant Relation Theorem, which is a mechanism for
algorithm verification that is related to Mathematical Induction

A.1 An Introduction to Algorithms
Most of the algorithms in this book will contain a combination of three kinds
of steps: the assignment step, the conditional step, and the loop.

A.1.1 Assignments
In order to assign a value to a variable, we use an assignment step, which takes
the form:

Variable = Expression to be computed
The equals sign in most languages is used for assignment but some languages
may use variations such as := or a left pointing arrow. Logical equality, which

454

APPENDIX A. ALGORITHMS 455

produces a boolean result and would be used in conditional or looping steps, is
most commonly expressed with a double-equals, ==.

An example of an assignment is k = n - 1 which tells us to subtract 1 from
the value of n and assign that value to variable k. During the execution of an
algorithm, a variable may take on only one value at a time. Another example
of an assignment is k = k - 1. This is an instruction to subtract one from the
value of k and then reassign that value to k.

A.1.2 Conditional steps
Frequently there are steps that must be performed in an algorithm if and only if
a certain condition is met. The conditional or "if ... then" step is then employed.
For example, suppose that in step 2 of an algorithm we want to assure that
the values of variables x and y satisfy the condition x <= y. The following step
would accomplish this objective.

2. If x > y:
2.1 t = x
2.2 x = y
2.3 y = t

Listing A.1.1
Steps 2.1 through 2.3 would be bypassed if the condition x > y were false

before step 2.
One slight variation is the "if ... then ... else" step, which allows us to

prescribe a step to be taken if the condition is false. For example, if you wanted
to exercise today, you might look out the window and execute the following
algorithm.

1. If it is cold or raining:
exercise indoors

else:
go outside and run

2. Rest

Listing A.1.2

A.1.3 Loops
The conditional step tells us to do something once if a logical condition is true.
A loop tells us to repeat one or more steps, called the body of the loop, while
the logical condition is true. Before every execution of the body, the condition
is tested. The following flow diagram serves to illustrate the steps in a While
loop.

APPENDIX A. ALGORITHMS 456

Figure A.1.3 Flow diagram for a while loop
Suppose you wanted to solve the equation f(x) = 0. The following initial

assignment and loop could be employed.

1. c = your first guess
2. While f(c) != 0:

c = another guess

Listing A.1.4
Caution: One must always guard against the possibility that the condition

of a While loop will never become false. Such "infinite loops" are the bane of
beginning programmers. The loop above could very well be such a situation,
particularly if the equation has no solution, or if the variable takes on real
values

In cases where consecutive integer values are to be assigned to a variable, a
different loop construction, a For loop, is often employed. For example, suppose
we wanted to assign variable k each of the integer values from m to n and for
each of these values perform some undefined steps. We could accomplish this
with a While loop:

1. k := m
2. While k <= n:

2.1 execute some steps
2.2 k = k + l

Listing A.1.5
Alternatively, we can perform these steps with a For loop.

APPENDIX A. ALGORITHMS 457

For k = m to n:
execute some steps

Listing A.1.6
For loops such as this one have the advantage of being shorter than the

equivalent While loop. The While loop construction has the advantage of being
able to handle more different situations than the For loop.

A.1.4 Exercises
1. What are the inputs and outputs of the algorithms listed in the first

sentence of this section?
2. What is wrong with this algorithm?

Input: a and b, integers
Output: the value of c will be a - b
(1) c = 0
(2) While a > b:

(2.1) a := a - l
(2.2) c := c + l

Listing A.1.7
3. Describe, in words, what the following algorithm does:

Input: k, a positive integer
Output: s = ?
(1) s = 0
(2) While k > 0:

(2.1) s = s + k
(2.2) k = k - 1

Listing A.1.8
4. Write While loops to replace the For loops in the following partial algo-

rithms:
(a) (1) S = 0

(2) for k = 1 to 5: S = S + k^2

(b) The floor of a number is the greatest integer less than or equal to
that number.

(1) m = a positive integer greater than 1
(2) B = floor(sqrt(m))
(3) for i = 2 to B: if i divides evenly into m, jump to step 5
(4) print "m is a prime" and exit
(5) print "m is composite" and exit

5. Describe in words what the following algorithm does:
Input: n, a positive integer
Output: k?
(1) f= 0
(2) k=n
(3) While k is even:

(3.1) f = f+ 1
(3.2) k = k div 2

Listing A.1.9
6. Fix the algorithm in Exercise 2.

APPENDIX A. ALGORITHMS 458

A.2 The Invariant Relation Theorem

A.2.1 Two Exponentiation Algorithms
Consider the following algorithm implemented in Sage to compute ammod n,
given an arbitrary integer a, non-negative exponent m, and a modulus n, n ≥ 0.
The default sample evaluation computes 25 mod 7 = 32 mod 7 = 4, but you can
edit the final line for other inputs.

def slow_exp(a,m,n):
b=1
k=m
while k>0:

b=(b*a)%n # % is integer remainder (mod) operation
k-=1

return b
slow_exp (2,5,7)

4

It should be fairly clear that this algorithm will successfully compute
am(mod n) since it mimics the basic definition of exponentiation. However, this
algorithm is highly inefficient. The algorithm that is most commonly used for
the task of exponentiation is the following one, also implemented in Sage.

def fast_exp(a,m,n):
t=a
b=1
k=m
while k>0:

if k%2==1: b=(b*t)%n
t=(t^2)%n
k=k//2 # // is the integer quotient operation

return b
fast_exp (2,5,7)

The only difficulty with the "fast algorithm" is that it might not be so
obvious that it always works. When implemented, it can be verified by example,
but an even more rigorous verification can be done using the Invariant Relation
Theorem. Before stating the theorem, we define some terminology.

A.2.2 Proving the correctness of the fast algorithm
Definition A.2.1 Pre and Post Values. Given a variable x, the pre value
of x, denoted x̀, is the value before an iteration of a loop. The post value,
denoted x́, is the value after the iteration. ♢

Example A.2.2 Pre and post values in the fast exponentiation algo-
rithm. In the fast exponentiation algorithm, the relationships between the pre
and post values of the three variables are as follows.

b́ ≡ b̀t̀k̀mod 2(mod n)

t́ ≡ t̀2(mod n)

ḱ = k̀//2

□

APPENDIX A. ALGORITHMS 459

Definition A.2.3 Invariant Relation. Given an algorithm’s inputs and a
set of variables that are used in the algorithm, an invariant relation is a set of
one or more equations that are true prior to entering a loop and remain true in
every iteration of the loop. ♢

Example A.2.4 Invariant Relation for Fast Exponentiation. We claim
that the invariant relation in the fast algorithm is btk = am(mod n). We will
prove that this is indeed true below. □

Theorem A.2.5 The Invariant Relation Theorem. Given a loop within
an algorithm, if R is a relation with the properties

(a) R is true before entering the loop

(b) the truth of R is maintained in any iteration of the loop

(c) the condition for exiting the loop will always be reached in a finite number
of iterations.

then R will be true upon exiting the loop.
Proof. The condition that the loop ends in a finite number of iterations lets us
apply mathematical induction with the induction variable being the number of
iterations. We leave the details to the reader. ■

We can verify the correctness of the fast exponentiation algorithm using
the Invariant Relation Theorem. First we note that prior to entering the loop,
btk = 1am = am(mod n). Assuming the relation is true at the start of any
iteration, that is b̀t̀k̀ = am(mod n), then

b́t́ḱ ≡ (b̀t̀k̀ mod 2)(t̀2)k̀//2(mod n)

≡ b̀t̀2(k̀//2)+k̀ mod 2(mod n)

≡ b̀t̀k̀(mod n)
≡ am(mod n)

Finally, the value of k will decrease to zero in a finite number of steps because
the number of binary digits of k decreases by one with each iteration. At the
end of the loop,

b = bt0 = btk ≡ am(mod n)

which verifies the correctness of the algorithm.

A.2.3 Exercises
1. How are the pre and post values in the slow exponentiation algorithm

related? What is the invariant relation between the variables in the slow
algorithm?

2. Verify the correctness of the following algorithm to compute the greatest
common divisor of two integers that are not both zero.

def gcd(a,b):
r0=a
r1=b
while r1 !=0:

t= r0 % r1
r0=r1
r1=t

return r0
gcd (1001 ,154) #test

APPENDIX A. ALGORITHMS 460

77

Hint. The invariant of this algorithm is gcd(r0, r1) = gcd(a, b).
3. Verify the correctness of the Binary Conversion Algorithm in Chapter 1.
4. A dragon has 100 heads. A knight can cut off 15, 17, 20, or 5 heads,

respectively, with one blow of his sword. In each of these cases 24, 2, 14,
or 17 new heads grow on its shoulders, respectively. If all heads are blown
off, the dragon dies. Can the dragon ever die? (problem attributed to
Biswaroop Roy)

Appendix B

Python and SageMath

SageMath (originally Sage) is a computer algebra system that is built on
top of Python, which is a popular general-purpose programming language.
In this appendix we highlight a few features of Python through a series of
SageMath cells. Pure Python code can generally be evaluated in these cells and
most of what you see here is just Python. There are exceptions. For example,
SageMath has enhanced capabilities to work with sets. In Python, the expression
set([0,1,2,3]) is a set of four integers, and certain basic set operations can be
performed on these types of expressions. This is a valid expression in SageMath
too, but a different SageMath expression, Set([0,1,2,3]), with a capital S,
has enhanced properties. For example, we can create the power set of the
SageMath expression, which we do in the discussion of iterators.

B.1 Python Iterators
All programming languages allow for looping. A common form of loop is one in
which a series of instructions are executed for each value of some index variable,
commonly for values between two integers. Python allows a bit more generality
by having structures called “iterators” over which looping can be done. An
iterator can be as simple as a list, such as [0,1,2,3], but also can be a power
set of a finite set, as we see below, or the keys in a dictionary, which is described
in the next section.

B.1.1 Counting Subsets
Suppose we want to count the number of subsets of {0, 1, 2, ..., 9} that contain
no adjacent elements. First, we will define our universe and its power set. The
plan will be to define a function that determines whether a subset is "valid" in
the sense that it contains no adjacent elements. Then we will iterate over the
subsets, counting the valid ones. We know that the number of all subsets will
be 2 raised to the number of elements in U , which would be 210 = 1024, but
let’s check.

U=Set(range (10))
power_set=U.subsets ()
len(power_set)

1024

461

APPENDIX B. PYTHON AND SAGEMATH 462

The validity check in this case is very simple. For each element, k, of a set,
B, we ask whether its successor, k + 1, is also in the set. If we never get an
answer of "True" then we consider the set valid. This function could be edited
to define validity in other ways to answer different counting questions. It’s
always a good idea to test your functions, so we try two tests, one with a valid
set and one with an invalid one.

def valid(B):
v=true
for k in B:

if k+1 in B:
v=false
break

return v
[valid(Set([1,3,5,9])),valid(Set([1,2,4,9]))]

[True , False]

Finally we do the counting over our power set, incrementing the count
variable with each valid set.

count=0
for B in power_set:

if valid(B):
count +=1

count

144

B.2 Dictionaries

B.2.1 Colors of Fruits
In Python and SageMath, a dictionary is a convenient data structure for
establishing a relationship between sets of data. From the point of view of this
text, we can think of a dictionary as a concrete realization of a relation between
two sets or on a single set. A dictionary resembles a function in that there is a
set of data values called the keys, and for each key, there is a value. The value
associated with a key can be almost anything, but it is most commonly a list.

To illustrate the use of dictionaries, we will define a relationship between
colors and fruits. The keys will be a set of colors and values associated with each
color will be a list of fruits that can take on that color. We will demonstrate
how to initialize the dictionary and how to add to it. The following series of
assignments have no output, so we add a print statement to verify that this
cell is completely evaluated.

fruit_color ={}
fruit_color['Red']=['apple ','pomegranate ','blood␣orange ']
fruit_color['Yellow ']=['banana ','apple ','lemon ']
fruit_color['Green ']=['apple ','pear','grape ','lime']
fruit_color['Purple ']=['plum','grape ']
fruit_color['Orange ']=['orange ','pineapple ']
print('done')

done

APPENDIX B. PYTHON AND SAGEMATH 463

We distinguish a color from a fruit by capitalizing colors but not fruit. The
keys of this dictionary are the colors. The keys() method returns an interator;
so to get a list of keys we wrap the result with list().

list(fruit_color.keys())

['Purple ', 'Orange ', 'Green ', 'Yellow ', 'Red']

As an afterthought, we might add the information that a raspberry is red as
follows. You have to be careful in that if ’Red’ isn’t already in the dictionary,
it doesn’t have a value. This is why we need an if statement.

if 'Red' in fruit_color:
fruit_color['Red']= fruit_color['Red']+['raspberry ']

else:
fruit_color['Red']=['raspberry ']

fruit_color['Red']

['apple ', 'pomegranate ', 'blood␣orange ', 'raspberry ']

A dictionary is iterable, with an iterator taking on values that are the keys.
Here we iterate over our dictionary to output lists consisting of a color followed
by a list of fruits that come in that color.

for color in fruit_color:
print ([color ,fruit_color[color]])

['Purple ', ['plum', 'grape ']]
['Orange ', ['orange ', 'pineapple ']]
['Green ', ['apple ', 'pear', 'grape ', 'lime']]
['Yellow ', ['banana ', 'apple ', 'lemon ']]
['Red', ['apple ', 'pomegranate ', 'blood␣

orange ','raspberry ']]

We can view a graph of this relation between colors and fruits, but the
default view is a bit unconventional.

DiGraph(fruit_color).plot()

With a some additional coding we can line up the colors and fruits in
their own column. First we set the positions of colors on the left with all
x-coordinates equal to -5 using another dictionary called vertex_pos.

vertex_pos ={}
k=0
for c in fruit_color.keys():

vertex_pos[c]=(-5,k)
k+=1

vertex_pos

{'Purple ': (-5, 0), 'Orange ': (-5, 1), 'Green ': (-5, 2),
'Red': (-5, 4), 'Yellow ': (-5, 3)}

Next, we place the fruit vertices in another column with x-coordinates all
equal to 5. In order to do this, we first collect all the fruit values into one set
we call fruits.

fruits=Set([])
for v in fruit_color.values ():

APPENDIX B. PYTHON AND SAGEMATH 464

fruits=fruits.union(Set(v))
k=0
for f in fruits:

vertex_pos[f]=(5,k)
k+=1

vertex_pos

{'blood␣orange ': (5, 0), 'grape ': (5, 1), 'apple ': (5, 2),
'Purple ': (-5, 0), 'plum': (5, 10), 'pomegranate ': (5,
3), 'pear': (5, 4), 'Yellow ': (-5, 3), 'orange ': (5, 7),
'Green ': (-5, 2), 'pineapple ': (5, 6), 'Orange ': (-5,
1), 'lemon ': (5, 8), 'raspberry ': (5, 9), 'banana ': (5,
5), 'Red': (-5, 4), 'lime': (5, 11)}

Now the graph looks like a conventional graph for a relation between two
different sets. Notice that it’s not a function.

DiGraph(fruit_color).plot(pos=vertex_pos ,vertex_size =1)

Graphics object consisting of 33 graphics primitives

Appendix C

Determinants

In Chapter 5 we defined the determinant of a 2× 2 matrix for the sole purpose
of providing some hands-on experience in the computation of inverses of 2× 2
matrices. In this appendix we will define the determinant of any square matrix,
and summarize the main properties of determinants.

C.1 Definition
Associated with every square matrix is a number called its determinant. The
most important information it provides us with is whether the matrix is in-
vertible. A matrix has an inverse if and only if its determinant is nonzero. If
A is a square matrix, then the determinant of A is commonly denoted either
det(A) or |A|. Strictly speaking, we only need to define the determinant of a
1× 1 matrix here and then define the higher ordered ones recursively, but for
convenience we also recall the definition of the determinant of a 2× 2 matrix.
Definition C.1.1 Determinant of 1× 1 and a 2× 2 matrices.

• If A is a 1× 1 matrix, then |A| = A1,1

• If A is a 2× 2 matrix, then |A| = A1,1A2,2 −A1,2A2,1

♢
We now proceed to define the determinant of an n× n matrix where n > 2.

This definition requires two preliminary definitions those of minors and cofactors.

Definition C.1.2 Matrix Minor. Let A be an n× n matrix, n ≥ 2. The
determinant of the (n− 1)× (n− 1) matrix formed by removing the ith row
and jth column of A is the minor denoted by M(A)i,j . ♢

Example C.1.3 Let A =

3 4 1
1 3 4
4 1 3

 then A has nine minors, one of which is

M(A)1,1 =
∣∣∣∣3 4
1 3

∣∣∣∣ = 3 · 3− 4 · 1 = 5

For our purposes in computing |A|, we only need minors corresponding
to any one row or column. Completing the minors in the first row we have
M(A)1,2 = −13 and M(A)1,3 = −11 □

465

APPENDIX C. DETERMINANTS 466

Definition C.1.4 Cofactor. Let A be an n× n matrix, n ≥ 2. The ith row,
jth column cofactor of A, denoted C(A)i,j , is defined by

C(A)i,j = (−1)i+jM(A)i,j

♢

Example C.1.5 Using the values of minors computed in Example 3, we
have C(A)1,1 = (−1)2M(A)1,1 = 5, C(A)1,2 = (−1)3M(A)1,2 = 13, and
C(A)1,3 = (−1)4M(A)1,3 = −11. □

Finally, we will define the determinant of a square matrix. Our definition
is practical in that you can apply it easily to any matrix. It isn’t the most
general, nor is it the best definiton for the purposes of proving properties of
determinants. The more general definition is beyond our current scope, but
can be easily stated with background in permutation groups.

Definition C.1.6 Determinant of a Square Matrix. Let A be an n× n
matrix, n ≥ 2. The determinant of A is equal to

n∑
j=1

A1,j · C(A)1,j

♢
Our definition of a determinant involves what is called expansion along

the first row of the matrix A. It is certainly not obvious, but it is true, that
the determinant of a matrix can be found by expanding along any row or any
column.

Example C.1.7 We have computed the cofactors for row 1 of A =

3 4 1
1 3 4
4 1 3

above and so the determinant is only a few operations away.

|A| = A1,1 · C(A)1,1 + A1,2 · C(A)1,2 + A1,3 · C(A)1,3

= 3 · 5 + 4 · 13 + 1 · (−11)
= 56

□

Example C.1.8 Associated with any square matrix, A, is a characteristic
polynomial which is defined to be the |A−λI|. The roots of this polynomial are
the eigenvalues of the matrix. Here, we compute the characteristic polynomial

of A =

3 4 1
1 3 4
4 1 3

.

To compute the determinant we expand along the first row.

det (A− λI) =

∣∣∣∣∣∣
3− λ 4 1

1 3− λ 4
4 1 3− λ

∣∣∣∣∣∣
= (3− λ) ·

∣∣∣∣3− λ 4
1 3− λ

∣∣∣∣+ 4 · (−1) ·
∣∣∣∣1 4
4 3− λ

∣∣∣∣+ 1 ·
∣∣∣∣1 3− λ

4 1

∣∣∣∣
= (3− λ)((3− λ)2 − 4)− 4((3− λ)− 16) + (1− 4(3− λ))
= −λ3 + 9λ2 − 15λ + 56

□

APPENDIX C. DETERMINANTS 467

C.2 Computation
Our definition of determinant can be applied to estimate the worst case for
the time to evaluate an n × n determinant. Let M(n) be the number of
multiplications to evaluate an n× n determinant. Then we have M(2) = 2. To
determine the value of M(3) we observe that this requires the computation
of three minors, each a two by two matrix, and then a multiplication of each
of them by the entries in row 1. Therefore, M(3) = 3M(2) + 3 = 9. Using
the same logic in general, we have M(n) = nM(n − 1) + n. The formula
can be derived to be M(n) = n!

∑n
k=1

1
k! . For large n this is approximately

e ·n!. Fortunately, there are ways to reduce the number of multiplications using
properties of determinants, which we list here without proof.

Theorem C.2.1 Properties of Determinants. Let A and B be n × n
matrices, where n ≥ 2.

1. |A| can be found by expanding along any row or any column.

2. If two rows (or columns) of A are interchanged, |A| changes sign.

3. The value of a determinant is unchanged if a multiple of one row (or
column) of A is added to another row (or column) of A .

4. If one row (or column) of a matrix A is multiplied by a constant c, then
the value of |A| is multiplied by c.

5. |AB| = |A| · |B|.

6. |I| = 1 where I is the n× n identity matrix.
Based on these properties, here are a few corollaries.

Corollary C.2.2 Further Properties. Let A and B be n × n matrices,
where n ≥ 2.

1. If a row (or column) of A consists entirely of zeros, then |A| = 0.

2. If a matrix A has two equal rows (or columns) then |A| = 0.

3. If any row (or column) of A is a scalar multiple of any other row (or
column) of A, then |A| = 0.

4. |A−1| = 1
|A| , if A−1 exists.

Example C.2.3 Computatation of a determinant by row reduction.
We will apply some of these properties, most notably the first and third of
Theorem 1, to compute a four by four determinant without doing as many
multiplications as expected. We will use SageMath to do the calculations for
us. In SageMath, as in Python, numbering starts at zero, so we will describe

the process using that numbering system. Let A =

1 3 4 7
1 3 4 4
6 6 7 8
3 3 7 5

Our strategy will be to create a column that is mostly zero so that we can

expand along that column and only need to compute one cofactor. That will be
the 0th column. To do that we do the following row operations. We subtract row
0 from row 1, replacing row 1 with that result. Then we subtract six time row
0 from row 2, producing a new row 2. Finally, three times row 0 is subtracted
from row 3 to produce a new row 3. The SageMath code below accomplishes
this and produces a new matrix, B, which has the same determinant.

APPENDIX C. DETERMINANTS 468

A=matrix ([[1,3,4,7],[2,3,4,4],[5,6,7,4],[3,3,7,5]])
B=matrix ([A[0],A[1]-2*A[0],A[2]-5*A[0],A[3]-3*A[0]]);B

[1 3 4 7]
[0 -3 -4 -10]
[0 -9 -13 -31]
[0 -6 -5 -16]

Expanding this matrix along the column zero, we need only compute a single
three by three cofactor. We will go one step further and do row operations to
get a matrix with zeros in rows 2 and 3 of column 1. The SageMath code below
tells what we are doing.

C=matrix ([B[0],B[1],B[2]-3*B[1],B[3]-2*B[1]]);C

[1 3 4 7]
[0 -3 -4 -10]
[0 0 -1 -1]
[0 0 3 4]

We are at a point where we can do the final calculation very easily.

|A| = |C| = 1 · (−3 · (−1 · 4− 3 · (−1))) = 3

SageMath has a determinant function, det, that we can use to verify this
calculation:

A=matrix ([[1,3,4,7],[2,3,4,4],[5,6,7,4],[3,3,7,5]])
det(A)

3

□

Appendix D

Hints and Solutions to Se-
lected Exercises

For the most part, solutions are provided here for odd-numbered exercises.

1 · Set Theory
1.1 · Set Notation and Relations
1.1.3 · Exercises
1.1.3.1. Answer. These answers are not unique.

(a) 8, 15, 22, 29

(b) apple, pear, peach, plum

(c) 1/2, 1/3, 1/4, 1/5

(d) −8,−6,−4,−2

(e) 6, 10, 15, 21
1.1.3.3. Answer.

(a) {2k + 1 | k ∈ Z, 2 ⩽ k ⩽ 39}

(b) {x ∈ Q | −1 < x < 1}

(c) {2n | n ∈ Z}

(d) {9n | n ∈ Z,−2 ≤ n}

1.1.3.5. Answer.
(a) True

(b) False

(c) True

(d) True

(e) False

(f) True

(g) False

(h) True

1.2 · Basic Set Operations
1.2.4 · Exercises
1.2.4.1. Answer.

(a) {2, 3}

(b) {0, 2, 3}

(c) {0, 2, 3}

(d) {0, 1, 2, 3, 5, 9}

(e) {0}

(f) ∅

(g) {1, 4, 5, 6, 7, 8, 9}

(h) {0, 2, 3, 4, 6, 7, 8}

(i) ∅

(j) {0}

1.2.4.3. Answer. These are all true for any sets A, B, and C.

1.2.4.5. Answer.
(a) {1, 4} ⊆ A ⊆ {1, 2, 3, 4}

469

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES470

(b) {2} ⊆ A ⊆ {1, 2, 4, 5}

(c) A = {2, 4, 5}

1.2.4.7. Answer.

Figure D.0.1

1.3 · Cartesian Products and Power Sets
1.3.4 · Exercises
1.3.4.1. Answer.

(a) {(0, 2), (0, 3), (2, 2), (2, 3), (3, 2), (3, 3)}

(b) {(2, 0), (2, 2), (2, 3), (3, 0), (3, 2), (3, 3)}

(c) {(0, 2, 1), (0, 2, 4), (0, 3, 1), (0, 3, 4), (2, 2, 1), (2, 2, 4),
(2, 3, 1), (2, 3, 4), (3, 2, 1), (3, 2, 4), (3, 3, 1), (3, 3, 4)}

(d) ∅

(e) {(0, 1), (0, 4), (2, 1), (2, 4), (3, 1), (3, 4)}

(f) {(2, 2), (2, 3), (3, 2), (3, 3)}

(g) {(2, 2, 2), (2, 2, 3), (2, 3, 2), (2, 3, 3), (3, 2, 2), (3, 2, 3), (3, 3, 2), (3, 3, 3)}

(h) {(2, ∅), (2, {2}), (2, {3}), (2, {2, 3}), (3, ∅), (3, {2}), (3, {3}), (3, {2, 3})}

1.3.4.3. Answer. {a, b}, {a, c}, {a, d}, {b, c}, {b, d} and {c, d}

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES471

1.3.4.5. Answer. There are n singleton subsets, one for each element.
1.3.4.7. Answer.

(a) {+00, +01, +10, +11,−00,−01,−10,−11}

(b) 16 and 512

1.3.4.9. Answer. They are equal when A = B.

1.4 · Binary Representation of Positive Integers
1.4.3 · Exercises
1.4.3.1. Answer.

(a) 11111

(b) 100000

(c) 1010

(d) 1100100
1.4.3.3. Answer.

(a) 18

(b) 19

(c) 42

(d) 1264
1.4.3.5. Answer. There is a bit for each power of 2 up to the largest one
needed to represent an integer, and you start counting with the zeroth power.
For example, 2017 is between 210 = 1024 and 211 = 2048, and so the largest
power needed is 210. Therefore there are 11 bits in binary 2017.

(a) 11

(b) 12

(c) 13

(d) 51
1.4.3.7. Answer. A number must be a multiple of four if its binary rep-
resentation ends in two zeros. If it ends in k zeros, it must be a multiple of
2k.

1.5 · Summation Notation and Generalizations
1.5.3 · Exercises
1.5.3.1. Answer.

(a) 24

(b) 6

(c) 3, 7, 15, 31

(d) 1, 4, 9, 16
1.5.3.3. Answer.

(a) 1
1(1 + 1) + 1

2(2 + 1) + 1
3(3 + 1) + · · ·+ 1

n(n + 1) = n

n + 1

(b) 1
1(2) + 1

2(3) + 1
3(4) = 1

2 + 1
6 + 1

12 = 3
4 = 3

3 + 1

(c) 1+23 +33 + · · ·+n3 =
(1

4
)

n2(n+1)2 1+8+27 = 36 =
(1

4
)

(3)2(3+1)2

1.5.3.5. Answer. (x + y)3 =
(3

0
)

x3 +
(3

1
)

x2y + (3
2
)

xy2 +
(3

3
)

y3

1.5.3.7. Answer.
(a) {x ∈ Q | 0 < x ≤ 5}

(b) {x ∈ Q | −5 < x < 5} = B5

(c) ∅

(d) {x ∈ Q | −1 < x < 1} = B1

1.5.3.9. Answer.
(a) 36 (b) 105

2 · Combinatorics
2.1 · Basic Counting Techniques - The Rule of
Products
2.1.3 · Exercises

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES472

2.1.3.1. Answer. If there are m horses in race 1 and n horses in race 2 then
there are m · n possible daily doubles.
2.1.3.3. Answer. 72 = 4 · 6 · 3
2.1.3.5. Answer. 720 = 6 · 5 · 4 · 3 · 2 · 1
2.1.3.7. Answer. If we always include the blazer in the outfit we would have
6 outfits. If we consider the blazer optional then there would be 12 outfits.
When we add a sweater we have the same type of choice. Considering the
sweater optional produces 24 outfits.
2.1.3.9. Answer.

(a) 28 = 256

(b) 24 = 16. Here we are concerned only with the first four bits, since the
last four must be the same.

(c) 27 = 128, you have no choice in the last bit.

2.1.3.11. Answer.
(a) 16 (b) 31

In the second part we can arrive at the answer by counting all subsets and
subtracting one since one of the sets (the whole set) is an improper subsets.

2.1.3.13. Answer.
(a) 3 (b) 6

2.1.3.15. Answer. 18
2.1.3.17. Answer.

Figure D.0.2 Solution to 17(a)

(a) See Figure D.0.2

(b) 56

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES473

2.1.3.19. Answer. 2n−1 − 1 and 2n − 2

2.2 · Permutations
2.2.2 · Exercises
2.2.2.1. Answer. P (1000, 3)

2.2.2.3. Answer. With repetition: 268 ≈ 2.0883× 1011

Without repetition: P (26, 8) ≈ 6.2991 1010

2.2.2.5. Answer. 15!
2.2.2.7. Answer.

(a) P (15, 5) = 360360

(b) 2 · 14 · 13 · 12 · 11 = 48048

2.2.2.9. Answer. 2 · P (3, 3) = 12

2.2.2.11. Answer.
(a) P (4, 2) = 12

(b) P (n; 2) = n(n− 1)

(c) Case 1: m > n. Since the coordinates must be different, this case is
impossible.
Case 2: m ⩽ n.P (n; m).

2.3 · Partitions of Sets and the Law of Addition
2.3.3 · Exercises
2.3.3.1. Answer. {{a}, {b}, {c}}, {{a, b}, {c}}, {{a, c}, {b}}, {{a}, {b, c}}, {{a, b, c}}

2.3.3.3. Answer. No. By this definition it is possible that an element of A
might belong to two of the subsets.

2.3.3.5. Answer. The first subset is all the even integers and the second is
all the odd integers. These two sets do not intersect and they cover the integers
completely.

2.3.3.7. Answer. Since 17 participated in both activities, 30 of the tennis
players only played tennis and 25 of the swimmers only swam. Therefore,
17 + 30 + 25 = 72 of those who were surveyed participated in an activity and so
18 did not.
2.3.3.9. Solution. We assume that |A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|.

|A1 ∪A2 ∪A3| = |(A1 ∪A2) ∪A3| Why?
= |A1 ∪A2|+ |A3| − |(A1 ∪A2) ∩A3| Why?
= |(A1 ∪A2|+ |A3| − |(A1 ∩A3) ∪ (A2 ∩A3)| Why?
= |A1|+ |A2| − |A1 ∩A2|+ |A3|
− (|A1 ∩A3|+ |A2 ∩A3| − |(A1 ∩A3) ∩ (A2 ∩A3)| Why?

= |A1|+ |A2|+ |A3| − |A1 ∩A2| − |A1 ∩A3|
− |A2 ∩A3|+ |A1 ∩A2 ∩A3| Why?

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES474

The law for four sets is

|A1 ∪A2 ∪A3 ∪A4| = |A1|+ |A2|+ |A3|+ |A4|
− |A1 ∩A2| − |A1 ∩A3| − |A1 ∩A4|
− |A2 ∩A3| − |A2 ∩A4| − |A3 ∩A4|

+ |A1 ∩A2 ∩A3|+ |A1 ∩A2 ∩A4|
+ |A1 ∩A3 ∩A4|+ |A2 ∩A3 ∩A4|

− |A1 ∩A2 ∩A3 ∩A4|

Derivation:

|A1 ∪A2 ∪A3 ∪A4| = |(A1 ∪A2 ∪A3) ∪A4|
= |(A1 ∪A2 ∪A3|+ |A4| − |(A1 ∪A2 ∪A3) ∩A4|
= |(A1 ∪A2 ∪A3|+ |A4|
− |(A1 ∩A4) ∪ (A2 ∩A4) ∪ (A3 ∩A4)|

= |A1|+ |A2|+ |A3| − |A1 ∩A2| − |A1 ∩A3|
− |A2 ∩A3|+ |A1 ∩A2 ∩A3|+ |A4| − |A1 ∩A4|
+ |A2 ∩A4|+ |A3 ∩A4| − |(A1 ∩A4) ∩ (A2 ∩A4)|
− |(A1 ∩A4) ∩ (A3 ∩A4)| − |(A2 ∩A4) ∩ (A3 ∩A4)|
+ |(A1 ∩A4) ∩ (A2 ∩A4) ∩ (A3 ∩A4)|

= |A1|+ |A2|+ |A3|+ |A4| − |A1 ∩A2| − |A1 ∩A3|
− |A2 ∩A3| − |A1 ∩A4| − |A2 ∩A4| − |A3 ∩A4|
+ |A1 ∩A2 ∩A3|+ |A1 ∩A2 ∩A4|
+ |A1 ∩A3 ∩A4|+ |A2 ∩A3 ∩A4|
− |A1 ∩A2 ∩A3 ∩A4|

2.3.3.11. Answer. Partition the set of fractions into blocks, where each
block contains fractions that are numerically equivalent. Describe how you
would determine whether two fractions belong to the same block. Redefine the
rational numbers to be this partition. Each rational number is a set of fractions.

2.4 · Combinations and the Binomial Theorem
2.4.4 · Exercises
2.4.4.1. Answer.

(10
3
)
·
(25

4
)

= 1, 518, 000

2.4.4.2. Hint. Think of the set of positions that contain a 1 to turn this is
into a question about sets.
Solution. (a)

(8
3
)

(b) 28 − (
(8

0
)

+
(8

1
)
)

2.4.4.3. Answer.
(10

7
)

+
(10

8
)

+
(10

9
)

+
(10

10
)

= 120 + 45 + 10 + 1 = 176

2.4.4.5. Hint. Think of each path as a sequence of instructions to go right
(R) and up (U).
Answer. Each path can be described as a sequence or R’s and U’s with
exactly six of each. The six positions in which R’s could be placed can be
selected from the twelve positions in the sequence

(12
6
)

ways. We can generalize
this logic and see that there are

(
m+n

m

)
paths from (0, 0) to (m, n).

2.4.4.7. Answer.
(a) C(52, 5) = 2, 598, 960

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES475

(b)
(

52
5

)
·
(

47
5

)
·
(

42
5

)
·
(

37
5

)
2.4.4.9. Answer.

(4
2
)
·
(48

3
)

= 6 · 17296 = 103776

2.4.4.11. Answer.
(12

3
)
·
(9

4
)
·
(5

5
)

2.4.4.13. Answer.

(a)
(

10
2

)
= 45

(b)
(

10
3

)
= 120

2.4.4.15. Answer. Assume |A| = n. If we let x = y = 1 in the Binomial
Theorem, we obtain 2n =

(
n
0
)

+
(

n
1
)

+ · · ·+
(

n
n

)
, with the right side of the equality

counting all subsets of A containing 0, 1, 2, . . . , n elements. Hence |P (A)| = 2|A|

2.4.4.17. Hint. 9998 = 10000− 2
Answer. 100003 − 3 · 2 · 100002 + 3 · 22 · 10000− 23 = 999, 400, 119, 992.

3 · Logic
3.1 · Propositions and Logical Operators
3.1.3 · Exercises
3.1.3.1. Answer.

(a) d ∧ c

(b) s ∨ ¬c

(c) ¬(d ∧ s)

(d) ¬s ∧ ¬c

3.1.3.3. Answer.
(a) 2 > 5 and 8 is an even integer. False.

(b) If 2 ⩽ 5 then 8 is an even integer. True.

(c) If 2 ⩽ 5 and 8 is an even integer then 11 is a prime number. True.

(d) If 2 ⩽ 5 then either 8 is an even integer or 11 is not a prime number.
True.

(e) If 2 ⩽ 5 then either 8 is an odd integer or 11 is not a prime number. False.

(f) If 8 is not an even integer then 2 > 5. True.

3.1.3.5. Answer. Only the converse of d is true.

3.2 · Truth Tables and Propositions Generated
by a Set
3.2.3 · Exercises
3.2.3.1. Answer.

(a)
p p ∨ p

0 0
1 1

(b)
p ¬p p ∧ (¬p)
0 1 0
1 0 0

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES476

(c)
p ¬p p ∨ (¬p)
0 1 1
1 0 1

(d)
p p ∧ p

0 0
1 1

3.2.3.3. Answer.
(a) ¬(p ∧ r) ∨ s

(b) (p ∨ q) ∧ (r ∨ q)

3.2.3.5. Answer. 24 = 16 rows.

3.3 · Equivalence and Implication
3.3.5 · Exercises
3.3.5.1. Answer. a⇔ e, d⇔ f, g ⇔ h

3.3.5.3. Solution. No. In symbolic form the question is: Is (p→ q)⇔ (q →

p)?

p q p→ q q → p (p→ q)↔ (q → p)
0 0 1 1 1
0 1 1 0 0
1 0 0 1 0
1 1 1 1 1

This table indicates that an implication is not always equivalent to its
converse.
3.3.5.5. Solution. Let x be any proposition generated by p and q. The truth
table for x has 4 rows and there are 2 choices for a truth value for x for each
row, so there are 2 · 2 · 2 · 2 = 24 possible propositions.

3.3.5.7. Answer. 0→ p and p→ 1 are tautologies.

3.3.5.9. Solution. Yes. In symbolic form the question is whether, if we have
a conditional proposition p→ q, is (q → p)⇔ (¬p→ ¬q)?

p q q → p ¬p→ ¬q (q → p)↔ (¬p→ ¬q)
0 0 1 1 1
0 1 0 0 1
1 0 1 1 1
1 1 1 1 1

This table indicates that an converse is always equivalent to the inverse.

3.4 · The Laws of Logic
3.4.2 · Exercises
3.4.2.1. Answer. Let s = I will study,t = I will learn. The argument is:
((s→ t) ∧ (¬t))→ (¬s), call the argument a.

s t s→ t (s→ t) ∧ (¬t) a

0 0 1 1 1
0 1 1 0 1
1 0 0 0 1
1 1 1 0 1

.

Since a is a tautology, the argument is valid.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES477

3.4.2.3. Answer. In any true statement S, replace; ∧ with ∨, ∨ with ∧,
0 with 1, 1 with 0, ⇐ with ⇒, and ⇒ with ⇐. Leave all other connectives
unchanged.

3.5 · Mathematical Systems and Proofs
3.5.4 · Exercises
3.5.4.1. Answer.

(a)
p q (p ∨ q) ∧ ¬q ((p ∨ q) ∧ ¬q)→ p

0 0 0 1
0 1 0 1
1 0 1 1
1 1 0 1

(b)
p q (p→ q) ∧ ¬q ¬p (p→ q) ∧ (¬q)
0 0 1 1 1
0 1 0 1 1
1 0 0 0 1
1 1 0 0 1

3.5.4.3. Answer.
(a) Direct proof:

(1) d→ (a ∨ c)
(2) d

(3) a ∨ c

(4) a→ b

(5) ¬a ∨ b

(6) c→ b

(7) ¬c ∨ b

(8) (¬a ∨ b) ∧ (¬c ∨ b)
(9) (¬a ∧ ¬c) ∨ b

(10) ¬(a ∨ c) ∨ b

(11) b □

Indirect proof:

(1) ¬b Negated conclusion
(2) a→ b Premise
(3) ¬a Indirect Reasoning (1), (2)
(4) c→ b Premise
(5) ¬c Indirect Reasoning (1), (4)
(6) (¬a ∧ ¬c) Conjunctive (3), (5)
(7) ¬(a ∨ c) DeMorgan’s law (6)
(8) d→ (a ∨ c) Premise
(9) ¬d Indirect Reasoning (7), (8)

(10) d Premise

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES478

(11) ⊬ (9), (10) □

(b) Direct proof:

(1) (p→ q) ∧ (r → s)
(2) p→ q

(3) (p→ t) ∧ (s→ u)
(4) q → t

(5) p→ t

(6) r → s

(7) s→ u

(8) r → u

(9) p→ r

(10) p→ u

(11) p→ (t ∧ u) Use (x→ y) ∧ (x→ z)⇔ x→ (y ∧ z)
(12) ¬(t ∧ u)→ ¬p

(13) ¬(t ∧ u)
(14) ¬p □

Indirect proof:

(1) p

(2) p→ q

(3) q

(4) q → t

(5) t

(6) ¬(t ∧ u)
(7) ¬t ∨ ¬u

(8) ¬u

(9) s→ u

(10) ¬s

(11) r → s

(12) ¬r

(13) p→ r

(14) r

(15) 0 □

(c) Direct proof:

(1) ¬s ∨ p Premise
(2) s Added premise (conditional conclusion)
(3) ¬(¬s) Involution (2)
(4) p Disjunctive simplification (1), (3)
(5) p→ (q → r) Premise
(6) q → r Detachment (4), (5)

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES479

(7) q Premise
(8) r Detachment (6), (7) □

Indirect proof:

(1) ¬(s→ r) Negated conclusion
(2) ¬(¬s ∨ r) Conditional equivalence (I)
(3) s ∧ ¬r DeMorgan (2)
(4) s Conjunctive simplification (3)
(5) ¬s ∨ p Premise
(6) s→ p Conditional equivalence (5)
(7) p Detachment (4), (6)
(8) p→ (q → r) Premise
(9) q → r Detachment (7), (8)

(10) q Premise
(11) r Detachment (9), (10)
(12) ¬r Conjunctive simplification (3)
(13) 0 Conjunction (11), (12) □

(d) Direct proof:

(1) p→ q

(2) q → r

(3) p→ r

(4) p ∨ r

(5) ¬p ∨ r

(6) (p ∨ r) ∧ (¬p ∨ r)
(7) (p ∧ ¬p) ∨ r

(8) 0 ∨ r

(9) r□

Indirect proof:

(1) ¬rv Negated conclusion
(2) p ∨ r Premise
(3) p (1), (2)
(4) p→ q Premise
(5) q Detachment (3), (4)
(6) q → r Premise
(7) r Detachment (5), (6)
(8) 0 (1), (7) □

3.5.4.5. Answer.
(a) Let W stand for “Wages will increase,” I stand for “there will be in-

flation,” and C stand for “cost of living will increase.” Therefore the
argument is: W → I, ¬I → ¬C, W ⇒ C. The argument is invalid.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES480

The easiest way to see this is through a truth table, which has one case,
the seventh, that this false. Let x be the conjunction of all premises.
W I C ¬I ¬C W → I ¬I → ¬C x x→ C

0 0 0 1 1 1 0 0 1
0 0 1 1 0 1 1 0 1
0 1 0 0 1 1 1 0 1
0 1 1 0 0 1 1 0 1
1 0 0 1 1 0 0 0 1
1 0 1 1 0 0 1 0 1
1 1 0 0 1 1 1 1 0
1 1 1 0 0 1 1 1 1

(b) Let r stand for “the races are fixed,” c stand for “casinos are crooked,” t
stand for “the tourist trade will decline,” and p stand for “the police will
be happy.” Therefore, the argument is:

(r ∨ c)→ t, t→ p,¬p→ ¬r.

The argument is valid. Proof:

(1) t→ p Premise
(2) ¬p Premise
(3) ¬t Indirect Reasoning (1), (2)
(4) (r ∨ c)→ t Premise
(5) ¬(r ∨ c) Indirect Reasoning (3), (4)
(6) (¬r) ∧ (¬c) DeMorgan (5)
(7) ¬r Conjunction simplification (6) □

3.5.4.7. Answer. p1 → pk and pk → pk+1 implies p1 → pk+1. It takes two
steps to get to p1 → pk+1 from p1 → pk This means it takes 2(100− 1) steps to
get to p1 → p100 (subtract 1 because p1 → p2 is stated as a premise). A final
step is needed to apply detachment to imply p100

3.6 · Propositions over a Universe
3.6.3 · Exercises
3.6.3.1. Answer.

(a) {{1}, {3}, {1, 3}, ∅}

(b) {{3}, {3, 4}, {3, 2}, {2, 3, 4}}

(c) {{1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}}

(d) {{2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}}

(e) {A ⊆ U : |A| = 2}

3.6.3.2. Solution.
(a) (i) Tp = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}

(ii) Tq = {1, 3, 9, 27, 81, . . . }
(iii) Tr = {1, 3, 9, 27}

(b) r ⇒ q

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES481

3.6.3.3. Answer. There are 23 = 8 subsets of U , allowing for the possibility
of 28 nonequivalent propositions over U .

3.6.3.5. Answer. Two possible answers: s is odd and (s − 1)(s − 3)(s −
5)(s− 7) = 0

3.6.3.7. Solution. b and c

3.7 · Mathematical Induction
3.7.4 · Exercises
3.7.4.1. Answer. We wish to prove that P (n) : 1+3+5+ · · ·+(2n−1) = n2

is true for n ⩾ 1. Recall that the nth odd positive integer is 2n− 1.
Basis: for n = 1, P (n) is 1 = 12, which is true
Induction: Assume that for some n ⩾ 1, P (n) is true. Then we infer that

P (n + 1) follows:

1 + 3 + · · ·+ (2(n + 1)− 1) = (1 + 3 + · · ·+ (2n− 1)) + (2(n + 1)− 1)
= n2 + (2n + 1) by P (n) and basic algebra
= (n + 1)2 ■

3.7.4.3. Answer. Proof:
• Basis: We note that the proposition is true when n = 1:

∑1
k=1 k2 = 1 =

1(2)(3)
6 .

• Induction: Assume that the proposition is true for some n ≥ 1. This is
the induction hypothesis.

n+1∑
k=1

k2 =
n∑

k=1
k2 + (n + 1)2

= n(n + 1)(2n + 1)
6 + (n + 1)2 by the induction hypothesis

= (n + 1)(2n2 + 7n + 6)
6

= (n + 1)(n + 2)(2n + 3)
6 ■

Therefore, the truth of the proposition for n implies the truth of the
proposition for n + 1.

3.7.4.5. Solution. Basis: For n = 1, we observe that 1
(1·2) = 1

(1+1)
Induction: Assume that for some n ⩾ 1, the formula is true.
Then:

1
(1 · 2) + · · ·+ 1

n(n + 1) + 1
(n + 1)(n + 2) = n

n + 1 + 1
(n + 1)(n + 2)

= (n + 2)n
(n + 1)(n + 2) + 1

(n + 1)(n + 2)

= (n + 1)2

(n + 1)(n + 2)

= n + 1
n + 2 ■

3.7.4.6. Solution. Basis: (n = 2) Proven with a truth table already.
Induction: Assume the generalized DeMorgan’s Law with n propositions is

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES482

true for some n ≥ 2.

¬ (p1 ∧ p2 ∧ · · · ∧ pn ∧ pn+1)⇔ ¬ ((p1 ∧ p2 ∧ · · · ∧ pn) ∧ pn+1)
⇔ ¬ (p1 ∧ p2 ∧ · · · ∧ pn) ∨ (¬pn+1)
⇔ ((¬p1) ∨ (¬p2) ∨ · · · ∨ (¬pn)) ∨ (¬pn+1)
⇔ (¬p1) ∨ (¬p2) ∨ · · · ∨ (¬pn) ∨ (¬pn+1)

3.7.4.7. Answer. Let An be the set of strings of zeros and ones of length
n (we assume that |An| = 2n is known). Let En be the set of the “even”
strings, and Ec

n = the odd strings. The problem is to prove that for n ⩾ 1,
|En| = 2n−1. Clearly, |E1| = 1, and, if for some n ⩾ 1, |En| = 2n−1, it follows
that |En+1| = 2n by the following reasoning.

We partition En+1 according to the first bit: En+1 = {1s | s ∈ Ec
n} ∪ {0s |

s ∈ En}
Since {1s | s ∈ Ec

n} and {0s | s ∈ En} are disjoint, we can apply the addition
law. Therefore,

|En+1| = |Ec
n|+ |En|

= 2n−1 + (2n − 2n−1) = 2n. ■

3.7.4.9. Solution. Assume that for n persons (n ⩾ 1), (n−1)n
2 handshakes

take place. If one more person enters the room, he or she will shake hands with
n people,

(n− 1)n
2 + n = n2 − n + 2n

2

= n2 + n

2 = n(n + 1)
2

= ((n + 1)− 1)(n + 1)
2

Also, for n = 1, there are no handshakes, which matches the conjectured
formula:

(1− 1)(1)
2 = 0 ■.

3.7.4.11. Solution. Let p(n) be “a1 + a2 + · · ·+ an has the same value no
matter how it is evaluated.”

Basis: a1 + a2 + a3 may be evaluated only two ways. Since + is associative,
(a1 + a2) + a3 = a1 + (a2 + a3). Hence, p(3) is true.

Induction: Assume that for some n ≥ 3, p(3), p(4), . . . , p(n) are all true.
Now consider the sum a1 + a2 + · · · + an + an+1. Any of the n additions in
this expression can be applied last. If the jth addition is applied last, we have
cj = (a1 + a2 + · · ·+ aj) + (aj+1 + · · ·+ an+1). No matter how the expression
to the left and right of the jth addition are evaluated, the result will always be
the same by the induction hypothesis, specifically p(j) and p(n + 1− j). We
now can prove that c1 = c2 = · · · = cn. If i < j,

ci = (a1 + a2 + · · ·+ ai) + (ai+1 + · · ·+ an+1)
= (a1 + a2 + · · ·+ ai) + ((ai+1 + · · ·+ aj) + (aj+1 + · · ·+ an+1)
= ((a1 + a2 + · · ·+ ai) + ((ai+1 + · · ·+ aj)) + (aj+1 + · · ·+ an+1)
= ((a1 + a2 + · · ·+ aj)) + (aj+1 + · · ·+ an+1)
= cj □

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES483

3.7.4.12. Hint. The number of times the rules are applied should be the
integer that you do the induction on.

3.7.4.13. Hint. Let p(m) be the proposition that xm+n = xmxn for all
n ≥ 1.
Solution. For m ⩾ 1, let p(m) be xn+m = xnxm for all n ⩾ 1. The basis for
this proof follows directly from the basis for the definition of exponentiation.

Induction: Assume that for some m ⩾ 1, p(m) is true. Then

xn+(m+1) = x(n+m)+1 by associativity of integer addition
= xn+mx1 by recursive definition
= xnxmx1 induction hypothesis
= xnxm+1 recursive definition □

3.8 · Quantifiers
3.8.5 · Exercises
3.8.5.1. Answer.

(a) (∀x)(F (x)→ C(x))

(b) There are objects in the sea which are not fish.

(c) Every fish lives in the sea.

3.8.5.3. Answer.
(a) There is a book with a cover that is not blue.

(b) Every mathematics book that is published in the United States has a blue
cover.

(c) There exists a mathematics book with a cover that is not blue.

(d) There exists a book that appears in the bibliography of every mathematics
book.

(e) (∀x)(B(x)→M(x))

(f) (∃x)(M(x) ∧ ¬U(x))

(g) (∃x)((∀y)(¬R(x, y))

3.8.5.5. Answer. The equation 4u2 − 9 = 0 has a solution in the integers.
(False)

3.8.5.6. Hint. Your answer will depend on your choice of a universe
3.8.5.7. Answer.

(a) Every subset of U has a cardinality different from its complement. (True)

(b) There is a pair of disjoint subsets of U both having cardinality 5. (False)

(c) A−B = Bc −Ac is a tautology. (True)

3.8.5.9. Answer. (∀a)Q(∀b)Q(a + b is a rational number.)

3.8.5.10. Hint. You will need three quantifiers.

3.8.5.11. Answer. Let I = {1, 2, 3, . . . , n}
(a) (∃x)I (x ∈ Ai)

(b) (∀x)I (x ∈ Ai)

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES484

3.9 · A Review of Methods of Proof
3.9.3 · Exercises
3.9.3.1. Answer. The given statement can be written in if . . . , then . . .
format as: If x and y are two odd positive integers, then x+y is an even integer.

Proof: Assume x and y are two positive odd integers. It can be shown that
x + y = 2 · (some positive integer).

x odd and positive ⇒ x = 2m + 1 for some m ≥ 0,
y odd and positive ⇒ y = 2n + 1 for some n ≥ 0.
Then,

x + y = (2m + 1) + (2n + 1) = 2((m + n) + 1) = 2 · (some positive integer)

Therefore, x + y is an even positive integer. □

3.9.3.3. Answer. Proof: (Indirect) Assume to the contrary, that
√

2 is a
rational number. Then there exists p, q ∈ Z, (q ̸= 0) where p

q =
√

2 and where
p
q is in lowest terms, that is, p and q have no common factor other than 1.

p

q
=
√

2⇒ p2

q2 = 2

⇒ p2 = 2q2

⇒ p2 is an even integer
⇒ p is an even integer (see Exercise 2)
⇒ 4 is a factor of p2

⇒ q2 is even
⇒ q is even

Hence both p and q have a common factor, namely 2, which is a contradiction.
□

3.9.3.5. Answer. Proof: (Indirect) Assume x, y ∈ R and x + y ⩽ 1. Assume
to the contrary that

(
x ⩽ 1

2 or y ⩽ 1
2
)

is false, which is equivalent to x >
1
2 and y > 1

2 . Hence x + y > 1
2 + 1

2 = 1. This contradicts the assumption that
x + y ⩽ 1. □

4 · More on Sets
4.1 · Methods of Proof for Sets
4.1.5 · Exercises
4.1.5.1. Answer.

(a) Assume that x ∈ A (condition of the conditional conclusion A ⊆ C).
Since A ⊆ B, x ∈ B by the definition of ⊆. B ⊆ C and x ∈ B implies
that x ∈ C. Therefore, if x ∈ A, then x ∈ C. □

(b) (Proof that A − B ⊆ A ∩ Bc) Let x be in A − B. Therefore, x is in A,
but it is not in B; that is, x ∈ A and x ∈ Bc ⇒ x ∈ A ∩Bc. □

(c) (⇒)Assume that A ⊆ B and A ⊆ C. Let x ∈ A. By the two premises,x ∈
B and x ∈ C. Therefore, by the definition of intersection, x ∈ B ∩ C. □

(d) (⇒)(Indirect) Assume that Bc is not a subset of Ac . Therefore, there
exists x ∈ Bc that does not belong to Ac. x /∈ Ac ⇒ x ∈ A. Therefore,
x ∈ A and x /∈ B, a contradiction to the assumption that A ⊆ B. □

(e) There are two cases to consider. The first is when C is empty. Then the
conclusion follows since both Cartesian products are empty.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES485

If C isn’t empty, we have two subcases, if A is empty, A× C = ∅, which
is a subset of every set. Finally, the interesting subcase is when A is not
empty. Now we pick any pair (a, c) ∈ A× C. This means that a is in A
and c is in C. Since A is a subset of B, a is in B and so (a, c) ∈ B × C.
Therefore A× C ⊆ B × C. □

4.1.5.3. Answer.
(a) If A = Z and B = ∅, A−B = ZZZ, while B −A = ∅.

(b) If A = {0} and B = {1}, (0, 1) ∈ A×B, but (0, 1) is not in B ×A.

(c) Let A = ∅, B = {0}, and C = {1}.

(d) If A = {1}, B = {1}, and C = ∅, then the left hand side of the identity
is {1} while the right hand side is the empty set. Another example is
A = {1, 2}, B = {1}, and C = {2}.

4.1.5.5. Solution. Proof: Let p(n) be

A ∩ (B1 ∪B2 ∪ · · · ∪Bn) = (A ∩B1) ∪ (A ∩B2) ∪ · · · ∪ (A ∩Bn).

Basis: We must show that p(2) : A ∩ (B1 ∪ B2) = (A ∩ B1) ∪ (A ∩ B2) is
true. This was done by several methods in section 4.1.

Induction: Assume for some n ≥ 2 that p(n) is true. Then

A ∩ (B1 ∪B2 ∪ · · · ∪Bn+1) = A ∩ ((B1 ∪B2 ∪ · · · ∪Bn) ∪Bn+1)
= (A ∩ (B1 ∪B2 ∪ · · · ∪Bn)) ∪ (A ∩Bn+1) by p(2)
= ((A ∩B1) ∪ · · · ∪ (A ∩Bn)) ∪ (A ∩Bn+1) by the induction hypothesis
= (A ∩B1) ∪ · · · ∪ (A ∩Bn) ∪ (A ∩Bn+1) □

4.1.5.6. Answer. The statement is false. The sets A = {1, 2}, B = {2, 3}
and C = {3, 4} provide a counterexample. Looking ahead to Chapter 6, we
would say that the relation of being non-disjoint is not transitive 6.3.3

4.2 · Laws of Set Theory
4.2.4 · Exercises
4.2.4.1. Answer.

(a)

(b)
A B Ac Bc A ∪B (A ∪B)c Ac ∩Bc

0 0 1 1 0 1 1
0 1 1 0 1 0 0
1 0 0 1 1 0 0
1 1 0 0 1 0 0

The last two columns are the same so the two sets must be equal.

(c)

x ∈ A ∪A⇒ (x ∈ A) ∨ (x ∈ A) by the definition of ∩
⇒ x ∈ A by the idempotent law of logic

Therefore, A ∪A ⊆ A.

x ∈ A⇒ (x ∈ A) ∨ (x ∈ A) by conjunctive addition
⇒ x ∈ A ∪A

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES486

Therefore, A ⊆ A ∪A and so we have A ∪A = A.

4.2.4.3. Answer. For all parts of this exercise, a reason should be supplied
for each step. We have supplied reasons only for part a and left them out of
the other parts to give you further practice.

(a)

A ∪ (B −A) = A ∪ (B ∩Ac) by Exercise 1 of Section 4.1
= (A ∪B) ∩ (A ∪Ac) by the distributive law
= (A ∪B) ∩ U by the null law
= (A ∪B) by the identity law □

.

(b)

A−B = A ∩Bc

= Bc ∩A

= Bc ∩ (Ac)c

= Bc −Ac

.

(c) Select any element, x ∈ A ∩ C. One such element exists since A ∩ C is
not empty.

x ∈ A ∩ C ⇒ x ∈ A ∧ x ∈ C

⇒ x ∈ B ∧ x ∈ C

⇒ x ∈ B ∩ C

⇒ B ∩ C ̸= ∅ □

.

(d)

A ∩ (B − C) = A ∩ (B ∩ Cc)
= (A ∩B ∩Ac) ∪ (A ∩B ∩ Cc)
= (A ∩B) ∩ (Ac ∪ Cc)
= (A ∩B) ∩ (A ∪ C)c

= (A−B) ∩ (A− C) □

.

(e)

A− (B ∪ C) = A ∩ (B ∪ C)c

= A ∩ (Bc ∩ Cc)
= (A ∩Bc) ∩ (A ∩ Cc)
= (A−B) ∩ (A− C) □

.

4.2.4.5. Hierarchy of Set Operations.
Answer.

(a) A ∪ ((Bc) ∩ C) (b) (A ∩B) ∪ (C ∩B) (c) (A ∪B) ∪ (Cc)

4.3 · Minsets
4.3.3 · Exercises
4.3.3.1. Answer.

(a) {1}, {2, 3, 4, 5}, {6}, {7, 8}, {9, 10}

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES487

(b) 25 , as compared with 210. {1, 2} is one of the 992 sets that can’t be
generated.

4.3.3.3. Answer. B1 = {00, 01, 10, 11} and B2 = {0, 00, 01} generate minsets
{00, 01}, {0}, {10, 11}, and {λ, 1}. Note: λ is the null string, which has length
zero.
4.3.3.5. Answer.

(a) B1 ∩B2 = ∅, B1 ∩Bc
2 = {0, 2, 4}, Bc

1 ∩B2 = {1, 5}, Bc
1 ∩Bc

2 = {3}

(b) 23, since there are 3 nonempty minsets.

4.3.3.7. Answer. Let a ∈ A. For each i, a ∈ Bi, or a ∈ Bi
c, since

Bi ∪ Bi
c = A by the complement law. Let Di = Bi if a ∈ Bi, and Di = Bi

c

otherwise. Since a is in each Di, it must be in the minset D1∩D2 · · ·∩Dn. Now
consider two different minsets M1 = D1∩D2 · · ·∩Dn, and M2 = G1∩G2 · · ·∩Gn,
where each Di and Gi is either Bi or Bi

c. Since these minsets are not equal,
Di ̸= Gi, for some i. Therefore, M1∩M2 = D1∩D2 · · ·∩Dn∩G1∩G2 · · ·∩Gn = ∅,
since two of the sets in the intersection are disjoint. Since every element of A is
in a minset and the minsets are disjoint, the nonempty minsets must form a
partition of A. □

4.4 · The Duality Principle
4.4.2 · Exercises
4.4.2.1. Answer.

(a) A ∩ (B ∪A) = A

(b) A ∩ ((Bc ∩A) ∪B)c = ∅

(c) (A ∩Bc)c ∪B = Ac ∪B

4.4.2.3. Answer.
(a) p ∧ ¬((¬q ∧ p) ∨ q)⇔ 0

(b) (¬(p ∨ (¬q)) ∧ q)⇔ ((¬p) ∧ q)

4.4.2.5. Answer. The maxsets are:
• B1 ∪B2 = {1, 2, 3, 5}

• B1 ∪B2
c = {1, 3, 4, 5, 6}

• B1
c ∪B2 = {1, 2, 3, 4, 6}

• B1
c ∪B2

c = {2, 4, 5, 6}

They do not form a partition of A since it is not true that the intersection
of any two of them is empty. A set is said to be in maxset normal form
when it is expressed as the intersection of distinct nonempty maxsets or it is
the universal set U .

5 · Introduction to Matrix Algebra
5.1 · Basic Definitions and Operations
5.1.4 · Exercises
5.1.4.1. Answer. For parts c, d and i of this exercise, only a verification
is needed. Here, we supply the result that will appear on both sides of the
equality.

(a) AB =
(
−3 6
9 −13

)
BA =

(
2 3
−7 −18

)

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES488

(b)
(

1 0
5 −2

)

(c)
(

3 0
15 −6

)

(d)
(

18 −15 15
−39 35 −35

)

(e)
(
−12 7 −7
21 −6 6

)
(f) B + 0 = B

(g)
(

0 0
0 0

)

(h)
(

0 0
0 0

)

(i)
(

5 −5
10 15

)

5.1.4.3. Answer.
(

1/2 0
0 1/3

)

5.1.4.5. Answer. A3 =

 1 0 0
0 8 0
0 0 27

 A15 =

 1 0 0
0 32768 0
0 0 14348907

5.1.4.7. Answer.

(a) Ax =
(

2x1 + 1x2
1x1 − 1x2

)
equals

(
3
1

)
if and only if both of the equalities

2x1 + x2 = 3 and x1 − x2 = 1 are true.

(b) (i) A =
(

2 −1
1 1

)
x =

(
x1
x2

)
B =

(
4
0

)

(c) A =

 1 1 2
1 2 −1
1 3 1

 x =

 x1
x2
x3

 B =

 1
−1
5

(d) A =

 1 1 0
0 1 0
1 0 3

 x =

 x1
x2
x3

 B =

 3
5
6

5.2 · Special Types of Matrices
5.2.3 · Exercises
5.2.3.1. Answer.

(a)
(
−1/5 3/5
2/5 −1/5

)
(b) No inverse exists.

(c)
(

1 3
0 1

)
(d) A−1 = A

(e)

 1/3 0 0
0 2 0
0 0 −1/5

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES489

5.2.3.3. Answer. Let A and B be n by n invertible matrices.

(
B−1A−1) (AB) =

(
B−1) (A−1(AB)

)
=
(
B−1) ((A−1A

)
B
)

= (
(
B−1) IB)

= B−1(B)
= I

Similarly, (AB)
(
B−1A−1) = I.

By Theorem 5.2.6, B−1A−1 is the only inverse of AB. If we tried to invert
AB with A−1B−1, we would be unsuccessful since we cannot rearrange the
order of the matrices.
5.2.3.5. Linearity of Determinants.
Answer. 1 = det I = det

(
AA−1) = det A det A−1. Now solve for det A−1.

5.2.3.7. Answer. Basis: (n = 1) : det A1 = det A = (det A)1

Induction: Assume det An = (det A)n for some n ≥ 1.

det An+1 = det (AnA) by the definition of exponents
= det (An) det(A) by exercise 5
= (detA)n(det A) by the induction hypothesis
= (det A)n+1

5.2.3.9. Answer.
(a) Assume A = BDB−1

Basis: (m = 1): A1 = A = BD1B−1 is given.
Induction: Assume that for some positive integer m, Am = BDmB−1

Am+1 = AmA

= (BDmB−1)(BDB−1) by the induction hypothesis
= (BDm(B−1B)(DB−1) by associativity
= BDmDB−1 by the definition of inverse
= BDm+1B−1 □

(b) A10 = BD10B−1 =
(
−9206 15345
−6138 10231

)
5.3 · Laws of Matrix Algebra
5.3.3 · Exercises
5.3.3.1. Answer.

(a) Let A and B be m by n matrices. Then A + B = B + A,

(b) Let A, B, and C be m by n matrices. Then A + (B + C) = (A + B) + C.

(c) Let A and B be m by n matrices, and let c ∈ R. Then c(A+B) = cA+cB,

(d) Let A be an m by n matrix, and let c1, c2 ∈ R. Then (c1 + c2) A =
c1A + c2A.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES490

(e) Let A be an m by n matrix, and let c1, c2 ∈ R. Then c1 (c2A) = (c1c2) A

(f) Let 000 be the zero matrix, of size m by n, and let A be a matrix of size
n by r. Then 000A = 000 = the m by r zero matrix.

(g) Let A be an m by n matrix, and 0 = the number zero. Then 0A = 0 =
the m by n zero matrix.

(h) Let A be an m by n matrix, and let 000 be the m by n zero matrix. Then
A + 000 = A.

(i) Let A be an m by n matrix. Then A + (−1)A = 000, where 000 is the m by n
zero matrix.

(j) Let A, B, and C be m by n, n by r, and n by r matrices respectively.
Then A(B + C) = AB + AC.

(k) Let A, B, and C be m by n, r by m, and r by m matrices respectively.
Then (B + C)A = BA + CA.

(l) Let A, B, and C be m by n, n by r, and r by p matrices respectively.
Then A(BC) = (AB)C.

(m) Let A be an m by n matrix, Im the m by m identity matrix, and In the
n by n identity matrix. Then ImA = AIn = A

(n) Let A be an n by n matrix. Then if A−1 exists,
(
A−1)−1 = A.

(o) Let A and B be n by n matrices. Then if A−1 and B−1 exist, (AB)−1 =
B−1A−1.

5.3.3.3. Answer.

(a) AB + AC =
(

21 5 22
−9 0 −6

)

(b) A−1 =
(

1 2
0 −1

)
= A

(c) A(B + C) = AB + BC, which is given in part (a).

(d)
(
A2)−1 = (AA)−1 = (A−1A) = I−1 = I by part c

5.4 · Matrix Oddities
5.4.2 · Exercises
5.4.2.1. Answer. In elementary algebra (the algebra of real numbers), each
of the given oddities does not exist.

• AB may be different from BA. Not so in elementary algebra, since ab = ba
by the commutative law of multiplication.

• There exist matrices A and B such that AB = 000, yet A ̸= 000and B ̸= 000. In
elementary algebra, the only way ab = 0 is if either a or b is zero. There
are no exceptions.

• There exist matrices A, A ̸= 000, yet A2 = 000. In elementary algebra,
a2 = 0⇔ a = 0.

• There exist matrices A2 = A. where A ≠ 000 and A ̸= I. In elementary
algebra, a2 = a⇔ a = 0 or 1.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES491

• There exist matrices A where A2 = I but A ̸= I and A ̸= −I. In
elementary algebra, a2 = 1⇔ a = 1 or − 1.

5.4.2.3. Answer.
(a) det A ≠ 0 ⇒ A−1 exists, and if you multiply the equation A2 = A on

both sides by A−1 , you obtain A = I.

(b) Counterexample: A =
(

1 0
0 −1

)
5.4.2.5. Answer.

(a) A−1 =
(

1/3 1/3
1/3 −2/3

)
x1 = 4/3, and x2 = 1/3

(b) A−1 =
(

1 −1
1 −2

)
x1 = 4, and x2 = 4

(c) A−1 =
(

1/3 1/3
1/3 −2/3

)
x1 = 2/3, and x2 = −1/3

(d) A−1 =
(

1/3 1/3
1/3 −2/3

)
x1 = 0, and x2 = 1

(e) The matrix of coefficients for this system has a zero determinant; therefore,
it has no inverse. The system cannot be solved by this method. In fact,
the system has no solution.

5.4.2.7. Solution. The power series expansion of ea is
∑∞

k=0
ak

k! . Therefore,
it is reasonable to define the matrix exponential eA to be

∑∞
k=0

Ak

k! , assuming
this sum converges.

If A =
(

1 1
0 0

)
, then we observe that Ak = A for all positive k. Therefore

eA = I+
∞∑

k=1

A

k! = I+
∞∑

k=1

(1
k!

1
k!

0 0

)
= I+

(∑∞
k=1

1
k! amp;

∑∞
k=1

1
k!

0 0

)
= I+

(
e− 1 e− 1

0 0

)
,

which agrees with the stated value in the problem. The value of eB is even
easier to derive since Bk is the zero matrix for k ≥ 2. Thus, eB = I + B, which
equals the matrix that is given in the problem.

We observe that eAeB ̸= eA+B. They disagree in the first row, second
column.

6 · Relations
6.1 · Basic Definitions
6.1.4 · Exercises
6.1.4.1. Answer.

(a) (2, 4), (2, 8)

(b) (2, 3), (2, 4), (5, 8)

(c) (1, 1), (2, 4)

6.1.4.3. Answer.
(a) r = {(1, 2), (2, 3), (3, 4), (4, 5)}

(b) r2 = {(1, 3), (2, 4), (3, 5)} = {(x, y) : y = x + 2, x, y ∈ A}

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES492

(c) r3 = {(1, 4), (2, 5)} = {(x, y) : y = x + 3, x, y ∈ A}

6.1.4.5. Answer.
(a) When n = 3, there are 27 pairs in the relation.

(b) Imagine building a pair of disjoint subsets of S. For each element of S
there are three places that it can go: into the first set of the ordered pair,
into the second set, or into neither set. Therefore the number of pairs in
the relation is 3n, by the product rule.

6.1.4.7. Solution. Assume (x, y) ∈ r1r3. This implies that there exist z ∈ A
such that (x, z) ∈ r1 and (z, y) ∈ r3. We are given that r1 ⊆ r2, which implies
that (x, z) ∈ r2. Combining this with (z, y) ∈ r3 implies that (x, y) ∈ r2r3,
which proves that r1r3 ⊆ r2r3.

6.2 · Graphs of Relations on a Set
6.2.2 · Exercises
6.2.2.1. Answer.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES493

Figure D.0.3

Figure D.0.4

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES494

6.2.2.3. Answer. See Figure D.0.5

Figure D.0.5 Digraph of the relation t

6.3 · Properties of Relations
6.3.4 · Exercises
6.3.4.1. Answer.

(a) “Divides” is reflexive because, if i is any positive integer, i · 1 = i and so
i | i

(b) “Divides” is antisymmetric. Suppose i and j are two distinct positive
integers. One of them has to be less than the other, so we will assume
i < j. If i | j, then for some positive integer k, where k ≥ 1 we have
i · k = j. But this means that j · 1

k = i and since 1
k is not a positive

integer, j ∤ i.

(c) “Divides” is transitive. If h, i and j are positive integers such that h | i
and i | j, there must be two positive integers k1 and k2 such that h ·k1 = i
and i · k2 = j. Combining these equalities we get h · (k1 · k2) = j and so
h | j.

6.3.4.2. Hint.

Figure D.0.6
See Figure D.0.6 and observe that the ordering diagrams are the same if we

disregard the names of the vertices.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES495

Here is a Hasse diagram for the subsets
of A = {1, 2, 3, 5, 6, 10, 15, 30}.

Figure D.0.7

6.3.4.3. Answer.Table D.0.8 Properties of relations defined by digraphs

Part reflexive? symmetric? antisymmetric? transitive?
i yes no no yes
ii yes no yes yes
iii no no no no
iv no yes yes yes
v yes yes no yes
vi yes no yes yes
vii no no no no

(i) See Table D.0.8

(ii) Graphs ii and vi show partial ordering relations. Graph v is of an
equivalence relation.

6.3.4.5. Answer.
(a) No, since | 1− 1 |= 0 ̸= 2, for example

(b) Yes, because | i− j |=| j − i |.

(c) No, since | 2− 4 |= 2 and | 4− 6 |= 2, but | 2− 6 |= 4 ̸= 2, for example.

(d) See Figure D.0.9

Figure D.0.9

6.3.4.7. Answer. Let a be any element of A. a ∈ [a] since r is reflexive,
so each element of A is in some equivalence class. Therefore, the union of all
equivalence classes equals A. Next we show that any two equivalence classes are
either identical or disjoint and we are done. Let [a] and [b] be two equivalence

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES496

classes, and assume that [a] ∩ [b] ̸= ∅. We want to show that [a] = [b]. To show
that [a] ⊆ [b], let x ∈ [a]. x ∈ [a]⇒ arx. Also, there exists an element, y, of A
that is in the intersection of [a] and [b] by our assumption. Therefore,

ary ∧ bry ⇒ ary ∧ yrb r is symmetric
⇒ arb transitivity of r

Next,

arx ∧ arb⇒ xra ∧ arb

⇒ xrb

⇒ brx

⇒ x ∈ [b]

Similarly, [b] ⊆ [a]. □

6.3.4.9. Answer.
(a) Equivalence Relation, [0] = {0}, [1] = {1}, [2] = {2, 3} = [3], [4] = {4, 5} =

[5], and [6] = {6, 7} = [7]

(b) Not an Equivalence Relation.

(c) Equivalence Relation, [0] = {0, 2, 4, 6} = [2] = [4] = [6] and [1] =
{1, 3, 5, 7} = [3] = [5] = [7]

6.3.4.11. Answer.
(a) The proof follows from the biconditional equivalence in Table 3.4.4.

(b) Apply the chain rule.

(c) See Figure D.0.10.

Figure D.0.10

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES497

6.4 · Matrices of Relations
6.4.3 · Exercises
6.4.3.1. Answer.

(a)

4 5 6
1
2
3
4

0 0 0
1 0 0
0 1 0
0 0 1

 and

6 7 8
4
5
6

 0 0 0
1 0 0
0 1 0

(b) r1r2 = {(3, 6), (4, 7)}

(c)

6 7 8
1
2
3
4

0 0 0
0 0 0
1 0 0
0 1 0

6.4.3.3. Answer.Table D.0.11

R : xry if and only if |x− y| = 1
S : xsy if and only if x is less than y.

6.4.3.5. Hint. Consider the possible matrices.
Answer. The diagonal entries of the matrix for such a relation must be 1.
When the three entries above the diagonal are determined, the entries below
are also determined. Therefore, there are 23 fitting the description.

6.4.3.7. Answer.

(a)

1 2 3 4
1
2
3
4

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 and

1 2 3 4
1
2
3
4

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

(b) PQ =

1 2 3 4
1
2
3
4

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 P 2 =

1 2 3 4
1
2
3
4

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 = Q2

6.4.3.9. Answer.
(a) Reflexive: Rij = Rij for all i, j, therefore Rij ≤ Rij

Antisymmetric: Assume Rij ≤ Sij and Sij ≤ Rij for all 1 ≤ i, j ≤ n.
Therefore, Rij = Sij for all 1 ≤ i, j ≤ n and so R = S

Transitive: Assume R, S, and T are matrices where Rij ≤ Sij and Sij ≤
Tij , for all 1 ≤ i, j ≤ n. Then Rij ≤ Tij for all 1 ≤ i, j ≤ n, and so
R ≤ T .

(b) (
R2)

ij
= Ri1R1j + Ri2R2j + · · ·+ RinRnj

≤ Si1S1j + Si2S2j + · · ·+ SinSnj

=
(
S2)

ij
⇒ R2 ≤ S2

.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES498

To verify that the converse is not true we need only one example. For
n = 2, let R12 = 1 and all other entries equal 0, and let S be the zero
matrix. Since R2 and S2 are both the zero matrix, R2 ≤ S2, but since
R12 > S12, R ≤ S is false.

(c) The matrices are defined on the same set A = {a1, a2, . . . , an}. Let
c (ai) , i = 1, 2, . . . , n be the equivalence classes defined by R and let d (ai)
be those defined by S. Claim: c (ai) ⊆ d (ai).

aj ∈ c (ai)⇒ airaj

⇒ Rij = 1⇒ Sij = 1
⇒ aisaj

⇒ aj ∈ d (ai)

6.5 · Closure Operations on Relations
6.5.3 · Exercises
6.5.3.3. Answer.

(a) See graphs below.

(b) For example, 0s+4 and using S one can go from 0 to 4 using a path of
length 3.

Figure D.0.12 Digraph of S Figure D.0.13 Digraph of S2

Figure D.0.14 Digraph of S3 Figure D.0.15 Digraph of S+

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES499

6.5.3.5. Answer. Definition: Reflexive Closure. Let r be a relation on A.
The reflexive closure of r is the smallest reflexive relation that contains r.

Theorem: The reflexive closure of r is the union of r with {(x, x) : x ∈ A}

6.5.3.7. Answer.
(a) By the definition of transitive closure, r+ is the smallest relation which

contains r; therefore, it is transitive. The transitive closure of r+, (r+)+ ,
is the smallest transitive relation that contains r+. Since r+ is transitive,
(r+)+ = r+.

(b) The transitive closure of a symmetric relation is symmetric, but it may
not be reflexive. If one element is not related to any elements, then the
transitive closure will not relate that element to others.

7 · Functions
7.1 · Definition and Notation
7.1.5 · Exercises
7.1.5.1. Answer.

(a) Yes

(b) Yes

(c) No

(d) No

(e) Yes

7.1.5.3. Answer.
(a) Range of f = f(A) =
{a, b, c, d} = B

(b) Range of g = g(A) = {a, b, d}

(c) h is not a function.

(d) k is not a function.

(e) Range of L = L(A) = {1}
7.1.5.5. Answer. For each of the |A| elements of A, there are |B| possible
images, so there are |B| · |B| · . . . · |B| =

∣∣B||A| functions from A into B.

7.2 · Properties of Functions
7.2.3 · Exercises
7.2.3.1. Answer. The only one-to-one function and the only onto function
is f .
7.2.3.3. Answer.

(a) f1 is onto but not one-to-one: f1(0) = f1(1).

(b) f2 is one-to-one and onto.

(c) f3 is one-to-one but not onto.

(d) f4 is onto but not one-to-one.

(e) f5 is one-to-one but not onto.

(f) f6 is one-to-one but not onto.

7.2.3.5. Answer. Let X = {socks selected} and Y = {pairs of socks} and
define f : X → Y where f(x) =the pair of socks that x belongs to . By the
Pigeonhole principle, there exist two socks that were selected from the same
pair.
7.2.3.7. Answer.

(a) f(n) = n, for example

(b) f(n) = 1, for example

(c) None exist.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES500

(d) None exist.

7.2.3.9. Answer.
(a) Use s : N→ P defined by s(x) = x + 1.

(b) Use the functionf : N → Z defined by f(x0 = x/2 if x is even and
f(x) = −(x + 1)/2 if x is odd.

(c) The proof is due to Georg Cantor (1845-1918), and involves listing the
rationals through a definite procedure so that none are omitted and
duplications are avoided. In the first row list all nonnegative rationals with
denominator 1, in the second all nonnegative rationals with denominator
2, etc. In this listing, of course, there are duplications, for example,
0/1 = 0/2 = 0, 1/1 = 3/3 = 1, 6/4 = 9/6 = 3/2, etc. To obtain a list
without duplications follow the arrows in Figure D.0.16, listing only the
circled numbers.
We obtain: 0, 1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, 4/1, . . . Each nonnegative ra-
tional appears in this list exactly once. We now must insert in this list
the negative rationals, and follow the same scheme to obtain:

0, 1,−1, 1/2,−1/2, 2,−2, 3,−3, 1/3,−1/3, . . .

which can be paired off with the elements of N.

Figure D.0.16 Enumeration of the rational numbers.

7.2.3.11. Answer. Let f be any function from A into B. By the Pigeonhole
principle with n = 1, there exists an element of B that is the image of at least
two elements of A. Therefore, f is not an injection.

7.2.3.13. Answer. The proof is indirect and follows a technique called the
Cantor diagonal process. Assume to the contrary that the set is countable, then
the elements can be listed: n1, n2, n3, . . . where each ni is an infinite sequence

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES501

of 0s and 1s. Consider the array:

n1 = n11n12n13 · · ·
n2 = n21n22n23 · · ·
n3 = n31n32n33 · · ·

...

We assume that this array contains all infinite sequences of 0s and 1s.

Consider the sequence s defined by si =
{

0 if nii = 1
1 if nii = 0

Notice that s differs from each ni in the ith position and so cannot be in
the list. This is a contradiction, which completes our proof.

7.3 · Function Composition
7.3.4 · Exercises
7.3.4.1. Answer.

(a) g ◦ f : A→ C is defined by (g ◦ f)(k) =
{

+ if k = 1 or k = 5
− otherwise

(b) No, since the domain of f is not equal to the codomain of g.

(c) No, since f is not surjective.

(d) No, since g is not injective.

7.3.4.3. Answer.
(a) The permutations of A are i, r1, r2, f1, f2, and f3, defined in Table 15.3.1.

(b)
g g−1 g2

i i i

r1 r2 r2
r2 r1 r1
f1 f1 i

f2 f2 i

f3 f3 i

(c) If f and g are permutations of A, then they are both injections and their
composition, f ◦ g, is a injection, by Theorem 7.3.6. By Theorem 7.3.7,
f ◦g is also a surjection; therefore, f ◦g is a bijection on A, a permutation.

(d) Proof by induction: Basis: (n = 1). The number of permutations of A is
one, the identity function, and 1! = 1.
Induction: Assume that the number of permutations on a set with n
elements, n ≥ 1, is n!. Furthermore, assume that |A| = n + 1 and that
A contains an element called σ. Let A′ = A− {σ}. We can reduce the
definition of a permutation, f , on A to two steps. First, we select any one
of the n! permutations on A′. (Note the use of the induction hypothesis.)
Call it g. This permutation almost completely defines a permutation on
A that we will call f . For all a in A′, we start by defining f(a) to be
g(a). We may be making some adjustments, but define it that way for
now. Next, we select the image of σ, which can be done n + 1 different
ways, allowing for any value in A. To keep our function bijective, we
must adjust f as follows: If we select f(σ) = y ̸= σ, then we must find

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES502

the element, z, of A such that g(z) = y, and redefine the image of z
to f(z) = σ. If we had selected f(σ) = σ, then there is no adjustment
needed. By the rule of products, the number of ways that we can define
f is n!(n + 1) = (n + 1)! □

7.3.4.5. Answer.
(a) f1 has an inverse. f−1

1 = f3
1 .

(b) f2 has an inverse. f−1
2 = f2.

(c) f3 does not have an inverse. One way to verify this is to note that f3 is
not one-to-one because f3(0000) = 0000 = f3(1111).

(d) f4 has an inverse. f−1
4 = f3

4 .

7.3.4.7. Answer.
(a) f ◦ g(n) = n + 3

(b) f3(n) = n + 15

(c) f ◦ h(n) = n2 + 5

7.3.4.9. Hint. You have seen a similar proof in matrix algebra.

7.3.4.11. Answer. If f : A→ B and f has an inverse, then that inverse is
unique.

Proof: Suppose that g and h are both inverses of f , both having domain B
and codomain A.

g = g ◦ iB

= g ◦ (f ◦ h)
= (g ◦ f) ◦ h

= iA ◦ h

= h ⇒ g = h □

7.3.4.12. Hint. See Exercise 3 of Section 5.4.
7.3.4.13. Answer. Let x, x′ be elements of A such that g ◦ f(x) = g ◦ f(x′);
that is, g(f(x)) = g(f(x′)). Since g is injective, f(x) = f(x′) and since f is
injective, x = x′. □

Let x be an element of C. We must show that there exists an element of A
whose image under g ◦ f is x. Since g is surjective, there exists an element of
B, y, such that g(y) = x. Also, since f is a surjection, there exists an element
of A, z, such that f(z) = y, g ◦ f(z) = g(f(z)) = g(y) = x.□

7.3.4.15. Answer. Basis: (n = 2): (f1 ◦ f2) −1 = f2
−1 ◦ f1

−2 by Exer-
cise 7.3.4.12.

Induction: Assume n ≥ 2 and

(f1 ◦ f2 ◦ · · · ◦ fn) −1 = fn
−1 ◦ · · · ◦ f2

−1 ◦ f1
−1

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES503

and consider (f1 ◦ f2 ◦ · · · ◦ fn+1)−1.

(f1 ◦ f2 ◦ · · · ◦ fn+1) −1 = ((f1 ◦ f2 ◦ · · · ◦ fn) ◦ fn+1) −1

= fn+1
−1 ◦ (f1 ◦ f2 ◦ · · · ◦ fn) −1

by the basis
= fn+1

−1 ◦
(
fn

−1 ◦ · · · ◦ f2
−1 ◦ f1

−1)
by the induction hypothesis

= fn+1
−1 ◦ · · · ◦ f2

−1 ◦ f1
−1 .□

8 · Recursion and Recurrence Relations
8.1 · The Many Faces of Recursion
8.1.8 · Exercises
8.1.8.1. Answer.(

7
2

)
=
(

6
2

)
+
(

6
1

)
=
(

5
2

)
+
(

5
1

)
+
(

5
1

)
+
(

5
0

)
=
(

5
2

)
+ 2
(

5
1

)
+ 1

=
(

4
2

)
+
(

4
1

)
+ 2(

(
4
1

)
+
(

4
0

)
) + 1

=
(

4
2

)
+ 3
(

4
1

)
+ 3

=
(

3
2

)
+
(

3
1

)
+ 3(

(
3
1

)
+
(

3
0

)
) + 3

=
(

3
2

)
+ 4
(

3
1

)
+ 6

=
(

2
2

)
+
(

2
1

)
+ 4(

(
2
1

)
+
(

2
0

)
) + 6

= 5
(

2
1

)
+ 11

= 5(
(

1
1

)
+
(

1
0

)
) + 11

= 21

8.1.8.3. Answer.
(a) p(x) in telescoping form: ((((x + 3)x− 15)x + 0)x + 1)x− 10

(b) p(3) = ((((3 + 3)3− 15)3− 0)3 + 1)3− 10 = 74

8.1.8.5. Answer. The basis is not reached in a finite number of steps if you
try to compute f(x) for a nonzero value of x.

8.2 · Sequences
8.2.3 · Exercises
8.2.3.1. Answer. Basis: B(0) = 3 · 0 + 2 = 2, as defined.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES504

Induction: Assume: B(k) = 3k + 2 for some k ≥ 0.

B(k + 1) = B(k) + 3
= (3k + 2) + 3 by the induction hypothesis
= (3k + 3) + 2
= 3(k + 1) + 2 as desired

8.2.3.3. Answer. Imagine drawing line k in one of the infinite regions that it
passes through. That infinite region is divided into two infinite regions by line
k. As line k is drawn through every one of the k − 1 previous lines, you enter
another region that line k divides. Therefore k regions are divided and the
number of regions is increased by k. From this observation we get P (5) = 16.

8.2.3.5. Answer. For n greater than zero, M(n) = M(n − 1) + 1, and
M(0) = 0.

8.3 · Recurrence Relations
8.3.5 · Exercises

8.3.5.1. Answer. S(k) = 2 + 9k

8.3.5.3. Answer. S(k) = 6(1/4)k

8.3.5.5. Answer. S(k) = k2 − 10k + 25

8.3.5.7. Answer. S(k) = (3 + k)5k

8.3.5.9. Answer. S(k) = (12 + 3k) +
(
k2 + 7k − 22

)
2k−1

8.3.5.11. Answer. P (k) = 4(−3)k + 2k − 5k+1

8.3.5.13. Answer.
(a) The characteristic equation is a2 − a − 1 = 0, which has solutions α =(

1 +
√

5
)/

2 and β =
(
1−
√

5
)/

2, It is useful to point out that α +β = 1
and α− β =

√
5. The general solution is F (k) = b1αk + b2βk. Using the

initial conditions, we obtain the system: b1 + b2 = 1 and b1α + b2β = 1.
The solution to this system is b1 = α/(α − β) =

(
5 +
√

5
)/

2
√

5 and
b2 = β/(α− β) =

(
5−
√

5
)/

2
√

5
Therefore the final solution is

F (n) = αn+1 − βn+1

α− β

=
((

1 +
√

5
)/

2
)n+1 −

((
1−
√

5
)/

2
)n+1

√
5

(b) Cr = F (r + 1)

8.3.5.15. Answer.
(a) For each two-block partition of {1, 2, . . . , n− 1}, there are two partitions

we can create when we add n, but there is one additional two-block
partition to count for which one block is {n}. Therefore, D(n) = 2D(n−
1) + 1 for n ≥ 2 and D(1) = 0.

(b) D(n) = 2n−1 − 1

8.4 · Some Common Recurrence Relations
8.4.5 · Exercises

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES505

8.4.5.1. Answer.
(a) S(n) = 1/n!

(b) U(k) = 1/k, an improvement.

(c) T (k) = (−3)kk!, no improvement.

8.4.5.3. Answer.
(a) T (n) = 3 (⌊log2 n⌋+ 1)

(b) T (n) = 2

(c) V (n) = ⌊log8 n⌋+ 1

8.4.5.4. Hint. Prove by induction on r.

8.4.5.5. Answer. The indicated substitution yields S(n) = S(n + 1). Since
S(0) = T (1)/T (0) = 6, S(n) = 6 for all n. Therefore T (n + 1) = 6T (n) ⇒
T (n) = 6n.

8.4.5.7. Answer.
(a) A good approximation to the solution of this recurrence relation is based

on the following observation: n is a power of a power of two; that is,
n is 2m, where m = 2k , then Q(n) = 1 + Q

(
2m/2). By applying this

recurrence relation k times we obtain Q(n) = k. Going back to the
original form of n, log2 n = 2k or log2 (log2 n) = k. We would expect that
in general, Q(n) is ⌊log2 (log2 n)⌋. We do not see any elementary method
for arriving at an exact solution.

(b) Suppose that n is a positive integer with 2k−1 ≤ n < 2k. Then n can
be written in binary form, (ak−1ak−2 · · · a2a1a0)two with ak−1 = 1 and

R(n) is equal to the sum
k−1
Σ

i=0
(ak−1ak−2 · · · ai)two. If 2k−1 ≤ n < 2k, then

we can estimate this sum to be between 2n − 1 and 2n + 1. Therefore,
R(n) ≈ 2n.

8.5 · Generating Functions
8.5.7 · Exercises
8.5.7.1. Answer.

(a) 1, 0, 0, 0, 0, . . .

(b) 5(1/2)k

(c) 1, 1, 0, 0, 0, . . .

(d) 3(−2)k + 3 · 3k

8.5.7.3. Answer.
(a) 1/(1− 9z)

(b) (2− 10z)
/(

1− 6z + 5z2)
(c) 1

/(
1− z − z2)

8.5.7.5. Answer.
(a) 3/(1− 2z) + 2/(1 + 2z), 3 · 2k + 2(−2)k

(b) 10/(1− z) + 12/(2− z), 10 + 6(1/2)k

(c) −1/(1− 5z) + 7/(1− 6z), 7 · 6k − 5k

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES506

8.5.7.7. Answer.
(a) 11k

(b) (5/3)k(k + 1)(2k + 1) + 5k(k + 1)

(c)
k

Σ
j=0

(j)(10(k−j)) = 10k
k

Σ
j=0

j−10
k

Σ
j=0

j2 = 5k2(k+1)−(5k(k+1)(2k+1)/6) =
(5/3)k(k + 1)(2k + 1)

(d) k(k + 1)(2k + 7)/12

8.5.7.9. Answer. Coefficients of z0 through z5 in (1 + 5z)(2 + 4z)(3 + 3z)(4 +
2z)(5 + z)

k Number of ways of getting a score of k

0 120
1 1044
2 2724
3 2724
4 1044
5 120

9 · Graph Theory
9.1 · Graphs - General Introduction
9.1.5 · Exercises
9.1.5.1. Answer. In Figure 9.1.8, computer b can communicate with all
other computers. In Figure 9.1.9, there are direct roads to and from city b to
all other cities.
9.1.5.3. Answer.

Figure D.0.17 Solution to exercise 3 of Section 9.1

9.1.5.5. Answer. The maximum number of edges would be
(8

2
)

= (7)(8)
2 = 28.

9.1.5.7. Answer.

(a)
(

n

2

)
= (n− 1)n

2

(b) n− 1, each vertex except the champion vertex has an indegree of 1 and
the champion vertex has an indegree of zero.

9.1.5.9. Answer.
(a) Not graphic - if the degree of a graph with seven vertices is 6, it is

connected to all other vertices and so there cannot be a vertex with degree
zero.

(b) Graphic. One graph with this degree sequence is a cycle of length 6.

(c) Not Graphic. The number of vertices with odd degree is odd, which is

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES507

impossible.

(d) Graphic. A "wheel graph" with one vertex connected to all other and the
others connected to one another in a cycle has this degree sequence.

(e) Graphic. Pairs of vertices connected only to one another.

(f) Not Graphic. With two vertices having maximal degree, 5, every vertex
would need to have a degree of 2 or more, so the 1 in this sequence makes
it non-graphic.

9.2 · Data Structures for Graphs
9.2.3 · Exercises
9.2.3.1. Answer.

(a) A rough estimate of the number of vertices in the “world airline graph”
would be the number of cities with population greater than or equal to
100,000. This is estimated to be around 4,100. There are many smaller
cities that have airports, but some of the metropolitan areas with clusters
of large cities are served by only a few airports. 4,000-5,000 is probably
a good guess. As for edges, that’s a bit more difficult to estimate. It’s
certainly not a complete graph. Looking at some medium sized airports
such as Manchester, NH, the average number of cities that you can go
to directly is in the 50-100 range. So a very rough estimate would be
75·4500

2 = 168, 750. This is far less than 4, 5002, so an edge list or dictionary
of some kind would be more efficient.

(b) The number of ASCII characters is 128. Each character would be con-
nected to

(8
2
)

= 28 others and so there are 128·28
2 = 3, 584 edges. Compar-

ing this to the 1282 = 16, 384, an array is probably the best choice.

(c) The Oxford English Dictionary as approximately a half-million words,
although many are obsolete. The number of edges is probably of the same
order of magnitude as the number of words, so an edge list or dictionary
is probably the best choice.

9.2.3.3. Answer. Each graph is isomorphic to itself. In addition, G2 and G4
are isomorphic; and G3, G5, and G6 are isomorphic to one another.

9.3 · Connectivity
9.3.6 · Exercises

9.3.6.1. Answer.

k 1 2 3 4 5 6
V [k].found T T T F F T

V [k].from 2 5 6 ∗ ∗ 5
DepthSet 2 1 2 ∗ ∗ 1

(* = undefined)

9.3.6.3. Answer. If the number of vertices is n, there can be (n−1)(n−2)
2

vertices with one vertex not connected to any of the others. One more edge
and connectivity is assured.

9.3.6.5. Answer.
(a) The eccentricity of each vertex is 2; and the diameter and radius are both

2 as well. All vertices are part of the center.

(b) The corners (1,3,10 and 10) have eccentricities 5. The two central vertices,
5 and 8, which are in the center of the graph have eccentricity 3. All
other vertices have eccentricity 4. The diameter is 5. The radius is 3.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES508

(c) Vertices 1, 2 and 5 have eccentricity 2 and make up the center of this
graph. Verticies 7 and 8 have eccentricity 4, and all other vertices have
eccentricity 3. The diameter is 4. The radius is 2.

(d) The eccentricity of each vertex is 4; and the diameter and radius are both
4 as well. All vertices are part of the center.

9.3.6.7. Answer. Basis: (k = 1) Is the relation r1, defined by vr1w if there
is a path of length 1 from v to w? Yes, since vrw if and only if an edge, which
is a path of length 1, connects v to w.

Induction: Assume that vrkw if and only if there is a path of length k from
v to w. We must show that vrk+1w if and only if there is a path of length k + 1
from v to w.

vrk+1w ⇒ vrky and yrw for some vertex y

By the induction hypothesis, there is a path of length k from v to y. And
by the basis, there is a path of length one from y to w. If we combine these two
paths, we obtain a path of length k +1 from v to w. Of course, if we start with a
path of length k+1 from v to w, we have a path of length k from v to some vertex
y and a path of length 1 from y to w. Therefore, vrky and yrw ⇒ vrk+1w.

9.4 · Traversals: Eulerian and Hamiltonian Graphs
9.4.3 · Exercises
9.4.3.1. Answer. Using a recent road map, it appears that an Eulerian
circuit exists in New York City, not including the small islands that belong to
the city. Lowell, Massachusetts, is located at the confluence of the Merrimack
and Concord rivers and has several canals flowing through it. No Eulerian path
exists for Lowell.
9.4.3.3. Answer. Gray Code for the 4-cube:

G4 =

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

9.4.3.5. Answer. Any bridge between two land masses will be sufficient. To
get an Eulerian circuit, you must add a second bridge that connects the two
land masses that were not connected by the first bridge.

9.4.3.7. Answer. Let G = (V, E) be a directed graph. G has an Eulerian
circuit if and only if G is connected and indeg(v) = outdeg(v) for all v ∈ V .
There exists an Eulerian path from v1 to v2 if and only if G is connected,
indeg(v1) = outdeg(v1) − 1, indeg(v2) = outdeg(v2) + 1, and for all other

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES509

vertices in V the indegree and outdegree are equal.

9.4.3.8. Hint. Prove by induction on the number of edges.

9.4.3.9. Answer. A round-robin tournament graph is rarely Eulerian. It will
be Eulerian if it has an odd number of vertices and each vertex (team) wins
exactly as many times as it loses. Every round-robin tournament graph has a
Hamiltonian path. This can be proven by induction on the number of vertices.

9.4.3.11. Solution. No, such a line does not exist. The dominoes with two
different numbers correspond with edges in a K6. See corresponding dominos
and edges in Figure D.0.18. Dominos with two equal numbers could be held
back and inserted into the line created with the other dominoes if such a line
exists. For example, if (2, 5), (5, 4) were part of the line, (5, 5) could be inserted
between those two dominoes. The line we want exists if and only if there exists
an Eulerian path in a K6. Since all six vertices of a K6 have odd degree no
such path exists.

Figure D.0.18 Correspondence between a line of dominos and a path in a K6

9.5 · Graph Optimization
9.5.5 · Exercises
9.5.5.1. Answer. The circuit would be Boston, Providence, Hartford, Con-
cord, Montpelier, Augusta, Boston. It does matter where you start. If you start
in Concord, for example, your mileage will be higher.

9.5.5.3. Answer.
(a) Optimal cost = 2

√
2. Phase 1 cost = 2.4

√
2. Phase 2 cost = 2.6

√
2.

(b) Optimal cost = 2.60. Phase 1 cost = 3.00. Phase 2 cost 2
√

2.

(c) A = (0.0, 0.5), B = (0.5, 0.0), C = (0.5, 1.0), D = (1.0, 0.5)
There are 4 points; so we will divide the unit square into two strips.

• Optimal Path: (B, A, C, D) Distance = 2
√

2
• Phase I Path: (B, A, C, D) Distance = 2

√
2

• Phase II Path: (A, C, B, D) Distance = 2 +
√

2

(d) A = (0, 0), B = (0.2, 0.6), C = (0.4, 0.1), D = (0.6, 0.8), E = (0.7, 0.5)
There are 5 points; so we will divide the unit square into three strips.

• Optimal Path: (A, B, D, E, C) Distance = 2.31
• Phase I Path: (A, C, B, C, E) Distance = 2.57
• Phase II Path: (A, B, D, E, C) Distance = 2.31

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES510

9.5.5.5. Answer.
(a) f(c, d) = 2, f(b, d) = 2, f(d, k) = 5, f(a, g) = 1, and f(g, k) = 1.

(b) There are three possible flow-augmenting paths. s, b, d, k with flow increase
of 1. s, a, d, k with flow increase of 1, and s, a, g, k with flow increase of 2.

(c) The new flow is never maximal, since another flow-augmenting path will
always exist. For example, if s, b, d, k is used above, the new flow can be
augmented by 2 units with s, a, g, k.

9.5.5.7. Answer.
(a) Value of maximal flow = 31.

(b) Value of maximal flow = 14.

(c) Value of maximal flow = 14. See Table D.0.19 for one way to got this
flow.

Table D.0.19

Step Flow-augmenting path Flow added
1 Source, A, Sink 2
2 Source, C, B, Sink 3
3 Source, E, D, Sink 4
4 Source, A, B, Sink 1
5 Source, C, D, Sink 2
6 Source, A, B, C, D, Sink 2

9.5.5.9. Hint. Count the number of comparisons of distances that must be
done.
Answer. To locate the closest neighbor among the list of k other points
on the unit square requires a time proportional to k. Therefore the time
required for the closest-neighbor algorithm with n points is proportional to
(n − 1) + (n − 2) + · · · + 2 + 1, which is proportional to n2. Since the strip
algorithm takes a time proportional to n(log n), it is much faster for large values
of n.

9.6 · Planarity and Colorings
9.6.3 · Exercises
9.6.3.1. Answer. Theorem 9.6.12 can be applied to infer that if n ⩾ 5, then
Kn is nonplanar. A K4 is the largest complete planar graph.

9.6.3.3. Answer.
(a) 4

(b) 3

(c) 3

(d) 3

(e) 2

(f) 4
9.6.3.5. Answer. The chromatic number is n since every vertex is connected
to every other vertex.

9.6.3.7. Answer. Suppose that G′ is not connected. Then G′ is made up of
2 components that are planar graphs with less than k edges, G1 and G2. For
i = 1, 2 let vi, ri, andei be the number of vertices, regions and edges in Gi. By
the induction hypothesis, vi + ri − ei = 2 for i = 1, 2.

One of the regions, the infinite one, is common to both graphs. Therefore,
when we add edge e back to the graph, we have r = r1 + r2 − 1, v = v1 + v2,

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES511

and e = e1 + e2 + 1.

v + r − e = (v1 + v2) + (r1 + r2 − 1)− (e1 + e2 + 1)
= (v1 + r1 − e1) + (v2 + r2 − e2)− 2
= 2 + 2− 2
= 2

9.6.3.9. Answer. Since |E| + |Ec| = n(n−1)
2 , either E or Ec has at least

n(n−1)
4 elements. Assume that it is E that is larger. Since n(n−1)

4 is greater
than 3n− 6 for n ⩾ 11, G would be nonplanar. Of course, if Ec is larger, then
G′ would be nonplanar by the same reasoning. Can you find a graph with ten
vertices such that it is planar and its complement is also planar?

9.6.3.11. Answer. Suppose that (V, E) is bipartite (with colors red and
blue), |E| is odd, and (v1, v2, . . . , v2n+1, v1) is a Hamiltonian circuit. If v1 is
red, then v2n+1 would also be red. But then {v2n+1, v1} would not be in E, a
contradiction.
9.6.3.13. Answer. Draw a graph with one vertex for each edge, If two edges
in the original graph meet at the same vertex, then draw an edge connecting
the corresponding vertices in the new graph.

10 · Trees
10.1 · What Is a Tree?
10.1.3 · Exercises
10.1.3.1. Answer. The number of trees are: (a) 1, (b) 3, and (c) 16. The
trees that connect Vc are:

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES512

Figure D.0.20

10.1.3.3. Hint. Use induction on |E|.

10.1.3.5. Answer.
(a) Assume that (V, E) is a tree with |V | ≥ 2, and all but possibly one vertex

in V has degree two or more.

2|E| =
∑
v∈V

deg(v) ≥ 2|V | − 1⇒ |E| ≥ |V | − 1
2

⇒ |E| ≥ |V |
⇒ (V, E) is not a tree.

(b) The proof of this part is similar to part a in that we can infer 2|E| ≥
2|V | − 1, using the fact that a non-chain tree has at least one vertex of
degree three or more.

10.2 · Spanning Trees
10.2.4 · Exercises
10.2.4.1. Answer. It might not be most economical with respect to Objective
1. You should be able to find an example to illustrate this claim. The new
system can always be made most economical with respect to Objective 2 if the
old system were designed with that objective in mind.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES513

10.2.4.3. Answer. In the figure below, {1, 2} is not a minimal bridge between
L = {1, 4} and R = {2, 3}, but it is part of the minimal spanning tree for this
graph.

Figure D.0.21

10.2.4.5. Answer.
(a) Edges in one solution are: {8, 7}, {8, 9}, {8, 13}, {7, 6}, {9, 4}, {13, 12}, {13, 14}, {6, 11}, {6, 1}, {1, 2}, {4, 3}, {4, 5}, {14, 15}, and {5, 10}

(b) Vertices 8 and 9 are centers of the graph. Starting from vertex 8, a mini-
mum diameter spanning tree is {{8, 3}, {8, 7}, {8, 13}, {8, 14}, {8, 9}, {3, 2}, {3, 4}, {7, 6}, {13, 12}, {13, 19}, {14, 15}, {9, 16}, {9, 10}, {6, 1}, {12, 18}, {16, 20}, {16, 17}, {10, 11}, {20, 21}, {11, 5}}.
The diameter of the tree is 7.

10.3 · Rooted Trees
10.3.4 · Exercises
10.3.4.1. Answer. Locate any simple path of length d and locate the vertex
in position ⌈d/2⌉ on the path. The tree rooted at that vertex will have a depth
of ⌈d/2⌉, which is minimal.

10.3.4.3. Answer.

Figure D.0.22

10.4 · Binary Trees

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES514

10.4.6 · Exercises
10.4.6.1. Answer.

Figure D.0.23

Figure D.0.24

10.4.6.3. Answer.

Preorder Inorder Postorder
(a) ·a + bc a · b + c abc + ·
(b) + · abc a · b + c ab · c+
(c) + · ab · ac a · b + a · c ab · ac ·+

10.4.6.5. Answer. There are 26 = 64 different possible answers to part (a).
The answer to (b) is unique.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES515

Figure D.0.25

10.4.6.7. Answer. Solution 1:
Basis: A binary tree consisting of a single vertex, which is a leaf, satisfies

the equation leaves = internal vertices + 1
Induction:Assume that for some k ≥ 1, all full binary trees with k or fewer

vertices have one more leaf than internal vertices. Now consider any full binary
tree with k + 1 vertices. Let TA and TB be the left and right subtrees of the
tree which, by the definition of a full binary tree, must both be full. If iA and
iB are the numbers of internal vertices in TA and TB, and jA and jB are the
numbers of leaves, then jA = iA + 1 and jB = iB + 1. Therefore, in the whole
tree,

the number of leaves = jA + jB

= (iA + 1) + (iB + 1)
= (iA + iB + 1) + 1
= (number of internal vertices) + 1

Solution 2:
Imagine building a full binary tree starting with a single vertex. By con-

tinuing to add leaves in pairs so that the tree stays full, we can build any full
binary tree. Our starting tree satisfies the condition that the number of leaves
is one more than the number of internal vertices . By adding a pair of leaves to
a full binary tree, an old leaf becomes an internal vertex, increasing the number
of internal vertices by one. Although we lose a leaf, the two added leaves create
a net increase of one leaf. Therefore, the desired equality is maintained.

10.4.6.8. Solution.
(a) The root of B is the root of the corresponding ordered rooted tree, which

as no siblings.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES516

(b)

Figure D.0.26

(c)

Figure D.0.27

(d) The number of ordered rooted trees with n vertices is equal to the number
of binary trees with n− 1 vertices, 1

n

(2(n−1)
n−1

)
11 · Algebraic Structures
11.1 · Operations
11.1.4 · Exercises
11.1.4.1. Answer.

(a) Commutative, and associative. Notice that zero is the identity for addition,
but it is not a positive integer.

(b) Commutative, associative, and has an identity (1)

(c) Commutative, associative, has an identity (1), and is idempotent

(d) Commutative, associative, and idempotent

(e) None. Notice that 2@(3@3) = 134217728, while (2@3)@3 = 512; and
a@1 = a, while 1@a = 1.

11.1.4.3. Answer.

a, b ∈ A ∩B ⇒ a, b ∈ A by the definition of intersection
⇒ a ∗ b ∈ A by the closure of A with respect to ∗

Similarly, a, b ∈ A∩B ⇒ a∗b ∈ B. Therefore, a∗b ∈ A∩B. The set of positive
integers is closed under addition, and so is the set of negative integers, but
1 +−1 = 0. Therefore, their union, the nonzero integers, is not closed under
addition.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES517

11.1.4.5. Answer.
(a) ∗ is commutative since |a− b| = |b− a| for all a, b ∈ N

(b) ∗ is not associative. Take a = 1, b = 2, and c = 3, then (a ∗ b) ∗ c =
||1− 2| − 3| = 2 , and a ∗ (b ∗ c) = |1− |2− 3|| = 0.

(c) Zero is the identity for ∗ on N, since a ∗ 0 = |a− 0| = a = |0− a| = 0 ∗ a.

(d) Each element of N inverts itself since a ∗ a = |a− a| = 0.

(e) ∗ is not idempotent, since, for a ̸= 0, a ∗ a = 0 ̸= a.

11.2 · Algebraic Systems
11.2.4 · Exercises
11.2.4.1. Answer. The terms “generic” and “trade” for prescription drugs
are analogous to “generic” and “concrete” algebraic systems. Generic aspirin,
for example, has no name, whereas Bayer, Tylenol, Bufferin, and Anacin are
all trade or specific types of aspirins. The same can be said of a generic group
[G; ∗] where G is a nonempty set and ∗ is a binary operation on G, When
examples of typical domain elements can be given along with descriptions of
how operations act on them, such as Q∗ or M2×2(R), then the system is concrete
(has a specific name, as with the aspirin). Generic is a way to describe a general
algebraic system, whereas a concrete system has a name or symbols making it
distinguishable from other systems.

11.2.4.3. Answer. The systems in parts b, d, e, and f are groups.

11.2.4.5. Answer.

(a) Elements are I =
(

1 0
0 1

)
, and T =

(
0 1
1 0

)
, the group is abelian.

Operation table is
· I T

I I T

T T I

(b)
I R1 R2 F1 F2 F3

I

R1
R2
F1
F2
F3

I R1 R2 F1 F2 F3
R1 R2 I F2 F3 F1
R2 I R1 F3 F1 F2
F1 F F2 I R2 R1
F2 F1 F3 R1 I R2
F3 F2 F1 R2 R1 I

This group is non-abelian since, for example, F1F2 = R2 and F2F1 = R2.

(c) 4! = 24, n!.

11.2.4.7. Answer. The identity is e. a ∗ b = c, a ∗ c = b, b ∗ c = a, and [V ; ∗]
is abelian. (This group is commonly called the Klein-4 group.)

11.2.4.8. Solution. Yes, this is a group. You might see some similarities
with the group of three by three rook matrices.

11.3 · Some General Properties of Groups
11.3.3 · Exercises
11.3.3.1. Answer.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES518

(a) f is injective:

f(x) = f(y)⇒ a ∗ x = a ∗ y

⇒ x = y by left cancellation
.

f is surjective: For all b ∈ G, f(x) = b has the solution a−1 ∗ b.

(b) Functions of the form f(x) = a + x, where a is any integer, are bijections

11.3.3.3. Answer. Basis: (n = 2) (a1 ∗ a2)−1 = a−1
2 ∗a−1

1 by Theorem 11.3.7.
Induction: Assume that for some n ≥ 2,

(a1 ∗ a2 ∗ · · · ∗ an)−1 = a−1
n ∗ · · · ∗ a−1

2 ∗ a−1
1

We must show that

(a1 ∗ a2 ∗ · · · ∗ an ∗ an+1)−1 = a−1
n+1 ∗ a−1

n ∗ · · · ∗ a−1
2 ∗ a−1

1

This can be accomplished as follows:

(a1 ∗ a2 ∗ · · · ∗ an ∗ an+1)−1 = ((a1 ∗ a2 ∗ · · · ∗ an) ∗ an+1)−1 by the associative law
= a−1

n+1 ∗ (a1 ∗ a2 ∗ · · · ∗ an)−1 by the basis
= a−1

n+1 ∗
(
a−1

n ∗ · · · ∗ a−1
2 ∗ a−1

1
)

by the induction hypothesis
= a−1

n+1 ∗ a−1
n ∗ · · · ∗ a−1

2 ∗ a−1
1 by the associative law

11.3.3.5. Answer. In this answer, we will refer to Lemma 11.3.13 simply as
“the lemma.”

(a) Let p(n) be a−n =
(
a−1)n, where a is any element of group [G; ∗]. First

we will prove that p(n) is true for all n ≥ 0.

Basis: If n = 0, Using the definition of the zero exponent,
(
a0)−1 = e−1 =

e, while
(
a−1)0 = e. Therefore, p(0) is true.

Induction: Assume that for some n ≥ 0, p(n) is true.(
an+1)−1 = (an ∗ a)−1 by the definition of exponentiation

= a−1 ∗ (an)−1 by the lemma
= a−1 ∗

(
a−1)n by the induction hypothesis

=
(
a−1)n+1 by the lemma

If n is negative, then −n is positive and

a−n =
(((

a−1)−1
)−n

)
=
(
a−1)−(−n) since the property is true for positive numbers

=
(
a−1)n

(b) For m > 1, let p(m) be an+m = an ∗ am for all n ≥ 1. The basis for this
proof follows directly from the basis for the definition of exponentiation.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES519

Induction: Assume that for some m > 1, p(m) is true. Then

an+(m+1) = a(n+m)+1 by the associativity of integer addition
= an+m ∗ a1 by the definition of exponentiation
= (an ∗ am) ∗ a1 by the induction hypothesis
= an ∗

(
am ∗ a1) by associativity

= an ∗ am+1 by the definition of exponentiation

To complete the proof, you need to consider the cases where m and/or n
are negative.

(c) Let p(m)be (an)m = anm for all integers n.
Basis: (am)0 = e and am·0 = a0 = e therefore, p(0) is true.
Induction; Assume that p(m) is true for some m >0,

(an)m+1 = (an)m ∗ an by the definition of exponentiation
= anm ∗ an by the induction hypothesis
= anm+n by part (b) of this proof
= an(m+1)

Finally, if m is negative, we can verify that (an)m = anm using many of
the same steps as the positive case.

11.4 · Greatest Common Divisors and the Inte-
gers Modulo n
11.4.2 · The Euclidean Algorithm
Investigation 11.4.1 Solution. If quotient in division is 1, then we get
the slowest possible completion. If a = b + r, then working backwards, each
remainder would be the sum of the two previous remainders. This described a
sequence like the Fibonacci sequence and indeed, the greatest common divisor
of two consecutive Fibonacci numbers will take the most steps to reach a final
value of 1.

11.4.6 · Exercises
11.4.6.1. Answer.

(a) 22 · 3 · 5

(b) 32 · 5 · 7

(c) 194

(d) 12112

11.4.6.3. Answer.
(a) 2

(b) 5

(c) 0

(d) 0

(e) 2

(f) 2

(g) 1

(h) 3

(i) 0
11.4.6.5. Answer.

(a) 1

(b) 1

(c) m(4) = r(4), where m = 11q + r,
0 ≤ r < 11

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES520

11.4.6.7. Answer. Since the solutions, if they exist, must come from Z2,
substitution is the easiest approach.

(a) 1 is the only solution, since 12 +2 1 = 0 and 02 +2 1 = 1

(b) No solutions, since 02 +2 0 +2 1 = 1, and 12 +2 1 +2 1 = 1

11.4.6.10. Hint. Prove by induction on m that you can divide any positive
integer into m. That is, let p(m) be “For all n greater than zero, there exist
unique integers q and r such that” In the induction step, divide n into
m− n.
11.4.6.11. Solution. The given conditions can be converted to a system of
linear equations:

f(1) = 11⇒ a +17 b = 11
f(2) = 4⇒ 2×17 a +17 b = 4

If we subtract the first equation from the second, we get a = 4 +17 (−11) =
4 +17 6 = 10. This implies that b = 1, and f(i) = 10 × +17i + 1. To get a
formula for the inverse of f we solve f(j) = i for j, using the fact that the
multiplicative inverse of 10 (mod 17) is 12.

f(j) = i⇒ 10×+17j + 1 = i

⇒ 10×+17j = i +17 16
⇒ j = 12×17 (i +17 16)

Therefore f−1(i) = 12×17 (i +17 16) = 12×17 i +17 5.

11.4.6.12. Solution. This system is a monoid with identity 6 (surprise!).
However it is not a group since 0 has no inverse.

11.4.6.13. Solution. By Bézout’s lemma, 450 is an element of U2021. It’s
inverse in the group is 759 because

450 · 759 = 2021 · 169 + 1 ⇒ 450×2021 759 = 1.

11.5 · Subsystems
11.5.5 · Exercises
11.5.5.1. Answer. Only a and c are subgroups.

11.5.5.3. Answer. {I, R1, R2}, {I, F1}, {I, F2}, and {I, F3} are all the
proper subgroups of R3.

11.5.5.5. Answer.
(a) ⟨1⟩ = ⟨5⟩ = Z6, ⟨2⟩ = ⟨4⟩ = {2, 4, 0}, ⟨3⟩ = {3, 0}, ⟨0⟩ = {0}

(b) ⟨1⟩ = ⟨5⟩ = ⟨7⟩ = ⟨11⟩ = Z12, ⟨2⟩ = ⟨10⟩ = {2, 4, 6, 8, 10, 0}, ⟨3⟩ = ⟨9⟩ =
{3, 6, 9, 0}, ⟨4⟩ = ⟨8⟩ = {4, 8, 0}, ⟨6⟩ = {6, 0}, ⟨0⟩ = {0}

(c) ⟨1⟩ = ⟨3⟩ = ⟨5⟩ = ⟨7⟩ = Z8, ⟨2⟩ = ⟨6⟩ = {2, 4, 6, 0}, ⟨4⟩ = {4, 0},
⟨0⟩ = {0}

(d) Based on the ordering diagrams for parts a through c in Figure D.0.28,
we would expect to see an ordering diagram similar to the one for divides
on {1, 2, 3, 4, 6, 8, 12, 24} (the divisors of 24) if we were to examine the
subgroups of Z24. This is indeed the case.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES521

Figure D.0.28 Figure for exercise 5
11.5.5.7. Hint. Use an indirect argument.
Answer. Assume that H and K are subgroups of group G, and that, as in
Figure 11.5.12, there are elements x ∈ H −K and y ∈ K −H. Consider the
product x ∗ y. Where could it be placed in the Venn diagram? If we can prove
that it must lie in the outer region, Hc ∩Kc = (H ∪K)c, then we have proven
that H ∪K is not closed under ∗ and cannot be a subgroup of G, Assume that
x ∗ y ∈ H. Since x is in H, x−1 is in H and so by closure x−1 ∗ (x ∗ y) = y ∈ H
which is a contradiction. Similarly, x ∗ y /∈ K.

One way to interpret this theorem is that no group is the union of two
groups.

11.6 · Direct Products
11.6.3 · Exercises
11.6.3.1. Answer. Table of Z2 × Z3:

+ (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
(0, 0) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)
(0, 1) (0, 1) (0, 2) (0, 0) (1, 1) (1, 2) (1, 0)
(0, 2) (0, 2) (0, 0) (0, 1) (1, 2) (1, 0) (1, 1)
(1, 0) (1, 0) (1, 1) (1, 2) (0, 0) (0, 1) (0, 2)
(1, 1) (1, 1) (1, 2) (1, 0) (0, 1) (0, 2) (0, 0)
(1, 2) (1, 2) (1, 0) (1, 1) (0, 2) (0, 0) (0, 1)

The only two proper subgroups are {(0, 0), (1, 0)} and {(0, 0), (0, 1), (0, 2)}

11.6.3.3. Algebraic properties of the n-cube.
Answer.

(a) (i) a + b could be (1, 0) or (0, 1). (ii) a + b = (1, 1).

(b) (i) a + b could be(1, 0, 0), (0, 1, 0), or (0, 0, 1). (ii) a + b = (1, 1, 1).

(c) (i) a + b has exactly one 1. (ii) a + b has all 1′s.

11.6.3.5. Answer.
(a) No, 0 is not an element of Z× Z.

(b) Yes.

(c) No, (0, 0) is not an element of this set.

(d) No, the set is not closed: (1, 1) + (2, 4) = (3, 5) and (3, 5) is not in the set.

(e) Yes.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES522

11.7 · Isomorphisms
11.7.4 · Exercises
11.7.4.1. Answer.

(a) Yes, f(n, x) = (x, n) for (n, x) ∈ Z× R is an isomorphism.

(b) No, Z2 × Z has a two element subgroup while Z× Z does not.

(c) No. Q×Q is countable and R is not. Therefore, no bijection can exist
between them.

(d) Yes.

(e) No.

(f) Yes, one isomorphism is defined by f (a1, a2, a3, a4) =
(

a1 a2
a3 a4

)
.

(g) Yes, one isomorphism is defined by f (a1, a2) = (a1, 10a2).

(h) Yes.

(i) Yes f(k) = k(1, 1).

11.7.4.3. Answer. Consider three groups G1, G2, and G3 with operations
∗, ⋄, and ⋆, respectively. We want to show that if G1 is isomorphic to G2, and
if G2 is isomorphic to G3 , then G1 is isomorphic to G3.

G1 isomorphic to G2 ⇒ there exists an isomorphism f : G1 → G2

G2 isomorphic to G3 ⇒ there exists an isomorphism g : G2 → G3

If we compose g with f , we get the function g ◦ f : G1 → G3, By Theorem 7.3.6
and Theorem 7.3.7, g ◦ f is a bijection, and if a, b ∈ G1,

(g ◦ f)(a ∗ b) = g(f(a ∗ b))
= g(f(a) ⋄ f(b)) since f is an isomorphism
= g(f(a)) ⋆ g(f(b)) since g is an isomorphism
= (g ◦ f)(a) ⋆ (g ◦ f)(b)

Therefore, g ◦f is an isomorphism from G1 into G3, proving that “is isomorphic
to” is transitive.
11.7.4.5. Answer. By Theorem 11.7.14(a), T (0) must be 1. T (2) = T (1 +4
1) = T (1)×5 T (1) = 3×5 3 = 4. Since T is a bijection, T (3) = 2.

11.7.4.7. Answer. Let G be an infinite cyclic group generated by a. Then,
using multiplicative notation, G = {an|n ∈ Z}. The map T : G→ Z defined
by T (an) = n is an isomorphism. This is indeed a function, since an = am

implies n = m. Otherwise, a would have a finite order and would not generate
G.

(a) T is one-to-one, since T (an) = T (am) implies n = m, so an = am.

(b) T is onto, since for any n ∈ Z, T (an) = n.

(c) T (an ∗ am) = T
(
an+m

)
= n + m = T (an) + T (am)

11.7.4.11. Answer. Z8, Z2 × Z4 , and Z3
2. One other is the fourth dihedral

group, introduced in Section 15.3.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES523

11.7.4.13. Answer. Each 3 is the order of an element whose inverse is it’s
square; i. e., if a has order 3, a2 = a−1 is distinct from a and also has order 3
and contributes a second matching 3.

12 · More Matrix Algebra
12.1 · Systems of Linear Equations
12.1.7 · Exercises
12.1.7.1. Answer.

(a) {(4/3, 1/3)}

(b) {(1
2x3 − 3,−4x3 + 11, x3) | x3 ∈ R}

(c) {(−5, 14/5, 8/5)}

(d) {(6.25− 2.5x3,−0.75 + 0.5x3, x3) | x3 ∈ R}

12.1.7.3. Answer.
(a) Basic variables: x1, x2 and x4. Free variable: x3. Solution set: {(1.2 +

5x3, 2.6− 4x3, 4.5) | x3 ∈ R}

(b) Basic variables: x1 and x2. Free variable: x3. The solution set is empty
because the last row of the matrix converts to the inconsistent equation
0 = 1.

(c) Basic variables: x1 and x2. Free variable: x3. Solution set: {(−6x3 + 5, 2x3 + 1, x3) | x3 ∈ R}

(d) Basic variables: x1, x2 and x3. Free variable: x4. Solution set: {(3x4 + 1,−2x4 + 2, x4 + 1, x4) | x4 ∈ R}

12.1.7.5. Answer.
(a) {(3, 0)}

(b) {(3, 0, 4)}

12.1.7.7. Answer. Proof: Since b is the n× 1 matrix of 0{’}s, let’s call it 000.
Let S be the set of solutions to AX = 000. If X1 and X2 be in S. Then

A (X1 + X2) = AX1 + AX2 = 000 + 000 = 000

so X1 + X2 ∈ S; or in other words, S is closed under addition in Rn.
The identity of Rn is 000, which is in S. Finally, let X be inS. Then

A(−X) = −(AX) = −000 = 000

and so −X is also in S.

12.2 · Matrix Inversion
12.2.3 · Exercises
12.2.3.3. Answer.

(a)
(15

11
30
11

3
11 − 5

11

)

(b)

−20 21

2
9
2 − 3

2
2 −1 0 0
−4 2 1 0
7 − 7

2 − 3
2

1
2

(c) The inverse does not exist. When the augmented matrix is row-reduced

(see below), the last row of the first half cannot be manipulated to match

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES524

the identity matrix.

(d)

 1 0 0
−3 1 1
−4 1 2

(e) The inverse does not exist.

(f)

 9 −36 30
−36 192 −180
30 −180 180

12.2.3.5. Answer. The solutions are in the solution section of Section 12.1,
exercise 1, We illustrate with the outline of the solution to part (c). The matrix
version of the system is 1 1 2

1 2 −1
1 3 1

 x1
x2
x3

 =

 1
−1
5

We compute the inverse of the matrix of coefficients and get

A−1 =

 1 1 2
1 2 −1
1 3 1

−1

= 1
5

 5 5 −5
−2 −1 3
1 −2 1

and x1

x2
x3

 = A−1

 1
−1
5

 =

 −5
14
5
8
5

12.3 · An Introduction to Vector Spaces
12.3.3 · Exercises
12.3.3.3. Answer. The dimension of M2×3(R) is 6 and yes, Mm×n(R) is
also a vector space of dimension m · n. One basis for Mm×n(R) is {Aij | 1 ≤
i ≤ m, 1 ≤ j ≤ n} where Aij is the m× n matrix with entries all equal to zero
except for in row i, column j where the entry is 1.
12.3.3.7. Answer. If the matrices are named B, A1, A2 , A3, and A4 , then

B = 8
3A1 + 5

3A2 + −5
3 A3 + 23

3 A4

12.3.3.9. Answer.
(a) If x1 = (1, 0), x2 = (0, 1), and y = (b1, b2), then y = b1x1 + b2x2. If

x1 = (3, 2), x2 = (2, 1), and y = (b1, b2), then y = (−b1 + 2b2) x1 +
(2b1 − 3b2) x2.

(b) If y = (b1, b2) is any vector in R2 , then y = (−3b1 + 4b2) x1+(−b1 + b2) x2+
(0)x3

(c) One solution is to add any vector(s) to x1, x2, and x3 of part b.

(d) 2, n

(e)
(

x y

z w

)
= xA1 + yA2 + zA3 + wA4

(f) a0 + a1x + a2x2 + a3x3 = a0(1) + a1(x) + a2
(
x2)+ a3

(
x3).

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES525

12.3.3.11. Answer.
(a) The set is linearly independent: let a and b be scalars such that a(4, 1) +

b(1, 3) = (0, 0), then 4a + b = 0 and a + 3b = 0 which has a = b = 0 as
its only solutions. The set generates all of R2: let (a, b) be an arbitrary
vector in R2 . We want to show that we can always find scalars β1 and β2
such that β1(4, 1) + β2(1, 3) = (a, b). This is equivalent to finding scalars
such that 4β1 + β2 = a and β1 + 3β2 = b. This system has a unique
solution β1 = 3a−b

11 , and β2 = 4b−a
11 . Therefore, the set generates R2.

12.3.3.13. Answer. The answer to the last part is that the three vector
spaces are all isomorphic to one another. Once you have completed part (a) of
this exercise, the following translation rules will give you the answer to parts
(b) and (c),

(a, b, c, d)↔
(

a b

c d

)
↔ a + bx + cx2 + dx2

12.4 · The Diagonalization Process
12.4.4 · Exercises
12.4.4.1. Answer.

(a) Any nonzero multiple of
(

1
−1

)
is an eigenvector associated with λ = 1.

(b) Any nonzero multiple of
(

1
2

)
is an eigenvector associated with λ = 4.

(c) Let x1 =
(

a

−a

)
and x2 =

(
b

2b

)
. You can verify that c1x1 +

c2x2 =
(

0
0

)
if and only if c1 = c2 = 0. Therefore, {x1, x2} is linearly

independent.

12.4.4.3. Answer. Part c: You should obtain
(

4 0
0 1

)
or
(

1 0
0 4

)
,

depending on how you order the eigenvalues.

12.4.4.5. Answer.

(a) If P =
(

2 1
3 −1

)
, then

P −1AP =
(

4 0
0 −1

)
.

(b) If P =
(

1 1
7 1

)
, then

P −1AP =
(

5 0
0 −1

)
.

(c) If P =
(

1 0
0 1

)
, then

P −1AP =
(

3 0
0 4

)
.

(d) If P =

 1 −1 1
−1 4 2
−1 1 1

, then

P −1AP =

 −2 0 0
0 1 0
0 0 0

.

(e) A is not diagonalizable. Five is a
double root of the characteristic
equation, but has an eigenspace
with dimension only 1.

(f) If P =

 1 1 1
−2 0 1
1 −1 1

, then

P −1AP =

 3 0 0
0 1 0
0 0 0

.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES526

12.4.4.7. Answer. This is a direct application of the definition of matrix
multiplication. Let A(i) be the ith row of A, and let P (j) be the jth column of
P . Then the jth column of the product AP is

A(1)P
(j)

A(2)P
(j)

...
A(n)P

(j)

Hence, (AP)(j) = A

(
P (j)) for j = 1, 2, . . . , n. Thus, each column of AP

depends on A and the j th column of P .

12.5 · Some Applications
12.5.5 · Exercises
12.5.5.4. Hint. The characteristic polynomial of the adjacency matrix is
λ4 − 4λ2.
12.5.5.5. Answer.

(a) Since A = A1 =

 1 1 0
1 0 1
0 1 1

, there are 0 paths of length 1 from: node

c to node a, node b to node b, and node a to node c; and there is 1 path
of length 1 for every other pair of nodes.

(b) The characteristic polynomial is |A− cI| =

∣∣∣∣∣∣
1− c 1 0

1 −c 1
0 1 1− c

∣∣∣∣∣∣ = −c3 +

2c2 + c− 2
Solving the characteristic equation −c3 + 2c2 + c− 2 = 0 we find solutions
1, 2, and -1.
If c = 1, we find the associated eigenvector by finding a nonzero solution

to

 0 1 0
1 −1 1
0 1 0

 x1
x2
x3

 =

 0
0
0

 One of these, which will be the

first column of P , is

 1
0
−1

If c = 2, the system

 −1 1 0
1 −2 1
0 1 −1

 x1
x2
x3

 =

 0
0
0

 yields eigen-

vectors, including

 1
1
1

, which will be the second column of P .

If c = −1, then the system determining the eigenvectors is

 2 1 0
1 1 1
0 1 2

 x1
x2
x3

 =

 0
0
0

 and we can select

 1
−2
1

, although any nonzero multiple of

this vector could be the third column of P .

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES527

(c) Assembling the results of part (b) we have P =

 1 1 1
0 1 −2
−1 1 1

 .

A4 = P

 14 0 0
0 24 0
0 0 (−1)4

P −1 = P

 1 0 0
0 16 0
0 0 1

P −1

=

 1 16 1
0 16 −2
−1 16 1

 1
2 0 − 1

2
1
3

1
3

1
3

1
6 − 1

3
1
6

=

 6 5 5
5 6 5
5 5 6

Hence there are five different paths of length 4 between distinct vertices,
and six different paths that start and end at the same vertex. The reader
can verify these facts from Figure 12.5.4

12.5.5.7. Answer.

(a) eA =
(

e e

0 0

)
, eB =

(
0 0
0 e2

)
, and eA+B =

(
e e2 − e

0 e2

)
(b) Let 000 be the zero matrix, e000 = I + 000 + 0002

2 + 0003

6 + . . . = I .

(c) Assume that A and B commute. We will examine the first few terms
in the product eAeB. The pattern that is established does continue in
general. In what follows, it is important that AB = BA. For example, in
the last step, (A+B)2 expands to A2 +AB+BA+B2, not A2 +2AB+B2,
if we can’t assume commutativity.

eAeB =
(∞∑

k=0

Ak

k!

)(∞∑
k=0

Bk

k!

)

=
(

I + A + A2

2 + A3

6 + · · ·
)(

I + B + B2

2 + B3

6 + · · ·
)

= I + A + B + A2

2 + AB + B2

2 + A3

6 + A2B

2 + AB2

2 + B3

6 + · · ·

= I + (A + B) + 1
2
(
A2 + 2AB + B2)+ 1

6
(
A3 + 3A2B + 3AB2 + B3)+ · · ·

= I + (A + B) + 1
2(A + B)2 + 1

6(A + B)3 + · · ·

= eA+B

(d) Since A and −A commute, we can apply part d;

eAe−A = eA+(−A) = e000 = I

12.6 · Linear Equations over the Integers Mod 2
12.6.2 · Exercises
12.6.2.1. Answer.

(a) {(0, 0, 0), (1, 1, 1)}

(b) {(1, 1, 1, 0)}

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES528

12.6.2.2. Answer. As suggested here is the augmented matrix with both
right sides, and its row reduction: 1 1 0 1 1 1

1 0 1 1 0 0
0 1 1 0 1 0

 −→

 1 0 1 1 0 0
0 1 1 0 1 0
0 0 0 0 0 1

There are only two basic variables here because the left side of the last equation
is the sum of the left sides of the first two equations.

(a) Ignoring the last column of both matrices, we see that the last equation
of the first system reduces to 0 = 0, which is always true, and the first
two equations yield two free variables, x3 and x4. The general solution
is the set of quadruples {(x3 +2 x4, x3 +2 1, x3, x4) | x3, x4 ∈ Z2}. The
cardinality of the solution set is 4.

(b) If we replace the fifth column with the sixth one, the last row indicates
that 0 = 1, which means that the solution set is empty.

12.6.2.3. Answer.
(a) Row reduction produces a solution with one free variable, x3.

(x1, x2, x3, x4, x5) = (x3, x3, x3, 0, 0)
= x3(1, 1, 1, 0, 0)

The solution set has only two elements. It is {(0, 0, 0, 0, 0), (1, 1, 1, 0, 0)}.
Since Z5

2 is a finite group, the solution set is a subgroup because it is
closed with respect to coordinatewise mod 2 addition.

(b) The row-reduced augmented matrix of coefficients provides the solution

(x1, x2, x3, x4, x5) = (x3, 1 + x3, x3, 1, 0)
= (0, 1, 0, 1, 0) + x3(1, 1, 1, 0, 0)

Therefore, the solution to this system is a shift of the solution set to the ho-
mogeneous system by the vector (0, 1, 0, 1, 0), which is {(0, 1, 0, 1, 0), (1, 0, 1, 1, 0)}

13 · Boolean Algebra
13.1 · Posets Revisited
· Exercises
13.1.1. Answer.

(a) 1, 5

(b) 5

(c) 30

(d) 30

(e) See the Sage cell below with the
default input displaying a Hasse
diagram for D12.

Posets.DivisorLattice (12).show()

13.1.3. Answer.
• Solution for Hasse diagram (b):

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES529

◦

∨ a1 a2 a3 a4 a5
a1 a1 a2 a3 a4 a5
a2 a2 a2 a4 a4 a5
a3 a3 a4 a3 a4 a5
a4 a4 a4 a4 a4 a5
a5 a5 a5 a5 a5 a5

∧ a1 a2 a3 a4 a5
a1 a1 a1 a1 a1 a1
a2 a1 a2 a1 a2 a2
a3 a1 a1 a3 a3 a3
a4 a1 a2 a3 a4 a4
a5 a1 a2 a3 a4 a5

a1 is the least element and a5 is the greatest element.

• Partial solution for Hasse diagram (f):

◦ lub (a2, a3) and lub (a4, a5) do not exist.
◦ No greatest element exists, but a1 is the least element.

13.1.5. Answer. If 0 and 0′ are distinct least elements, then

0 ≤ 0′ since 0 is a least element
0′ ≤ 0 since 0′ is a least element

}
⇒ 0 = 0′ by antisymmetry, a contradiction

13.1.7. Answer.
(a) The sum of elements in A ∩B = {2, 3, 6} is odd and disqualifies the set

from being an element of the poset.

(b) The following correctly complete the statements in this part.

(i) . . . A ⊆ R and B ⊆ R

(ii) . . . for all A ∈ P0, R ⊆ A

(c) Any set that contains the union of A∪B = {1, 2, 3, 6, 7} but also contains
3 or 5, but not both will be an upper bound. You can create several by
including on not including 4 or 8.

(d) The least upper bound doesn’t exist. Notice that the union of A and
B isn’t in P0. One of the two sets {1, 2, 3, 5, 6, 7} and {1, 2, 3, 6, 7, 9} is
contained within every upper bound of A and B but neither is contained
within the other.

13.2 · Lattices
· Exercises
13.2.5. Answer. One reasonable definition would be this: Let [L;∨,∧] be a
lattice and let K be a nonempty subset of L. Then K is a sublattice of L if
and only if K is closed under both ∨ and ∧

13.3 · Boolean Algebras
· Exercises

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES530

13.3.1. Answer.

B Complement of B

∅
{a}
{b}
{c}
{a, b}
{a, c}
{b, c}

A

A

{b, c}
{a, c}
{a, b}
{c}
{b}
{a}
∅

This lattice is a Boolean algebra since it is a distributive complemented
lattice.
13.3.3. Answer. a and g.

13.3.5. Answer.
(a) S∗ : a ∨ b = a if a ≥ b

(b) The dual of S : A ∩B = A if A ⊆ B is S∗ : A ∪B = A if A ⊇ B

(c) Yes

(d) The dual of S : p ∧ q ⇔ p if p⇒ q is S∗ : p ∨ q ⇔ p if q ⇒ p

(e) Yes

13.3.7. Answer. [B;∧,∨,−] is isomorphic to [B′;∧,∨,̃] if and only if there
exists a function T : B → B′ such that

(a) T is a bijection;

(b) T (a ∧ b) = T (a) ∧ T (b) for all a, b ∈ B

(c) T (a ∨ b) = T (a) ∨ T (b) for all a, b ∈ B

(d) T (ā) = ˜T (a) for all a ∈ B.

13.4 · Atoms of a Boolean Algebra
· Exercises
13.4.1. Answer.

(a) For a = 3 we must show that for each x ∈ D30 one of the following is
true: x ∧ 3 = 3 or x ∧ 3 = 1. We do this through the following table:

x verification
1
2
3
5
6
10
15
30

1 ∧ 3 = 1
2 ∧ 3 = 1
3 ∧ 3 = 3
5 ∧ 3 = 1
6 ∧ 3 = 3
20 ∧ 3 = 1
15 ∧ 3 = 3
30 ∧ 3 = 3

For a = 5, a similar verification can be performed.

(b) 6 = 2 ∨ 3, 10 = 2 ∨ 5, 15 = 3 ∨ 5, and 30 = 2 ∨ 3 ∨ 5.

13.4.3. Answer. If B = D30 30 then A = {2, 3, 5} and D30 is isomorphic to

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES531

P(A), where

1↔ ∅ 5↔ {5}
2↔ {2} 10↔ {2, 5}
3↔ {3} 15↔ {3, 5}

6↔ {2, 3} 30↔ {2, 3, 5}

and
Join↔ Union

Meet↔ Intersection
Complement↔ Set Complement

13.4.5. Hint. Assume that [B;∨,∧,−] is a Boolean algebra of order 3 where
B = {0, x, 1} and show that this cannot happen by investigating the possibilities
for its operation tables.
Answer. Assume that x ̸= 0 or 1 is the third element of a Boolean algebra.
Then there is only one possible set of tables for join and meet, all following
from required properties of the Boolean algebra.

∨ 0 x 1
0
x

1

0 x 1
x x 1
1 1 1

∧ 0 x 1
0
x

1

0 0 0
0 x x

0 x 1

Next, to find the complement of x we want y such that x∧ y = 0 and x∨ y = 1.
No element satisfies both conditions; hence the lattice is not complemented and
cannot be a Boolean algebra. The lack of a complement can also be seen from
the ordering diagram from which ∧ and ∨ must be derived.

13.4.7. Answer. Let X be any countably infinite set, such as the integers.
A subset of X is cofinite if it is finite or its complement is finite. The set of all
cofinite subsets of X is:

(a) Countably infinite - this might not be obvious, but here is a hint. Assume
X = {x0, x1, x2, . . .}. For each finite subset A of X, map that set to the
integer

∑∞
i=0 χA (xi) 2i You can do a similar thing to sets that have a

finite complement, but map them to negative integers. Only one minor
adjustment needs to be made to accommodate both the empty set and X.

(b) Closed under union

(c) Closed under intersection, and

(d) Closed under complementation.

Therefore, if B = {A ⊆ X : A is cofinite}, then B is a countable Boolean
algebra under the usual set operations.

13.4.8. Hint. “Copy” the corresponding proof for groups in Section 11.6.

13.5 · Finite Boolean Algebras as n-tuples of 0’s
and 1’s
· Exercises
13.5.1. Answer.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES532

(a)
∨ (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 1) (1, 0) (1, 1)
(0, 1) (0, 1) (0, 1) (1, 1) (1, 1)
(1, 0) (1, 0) (1, 1) (1, 0) (1, 1)
(1, 1) (1, 1) (1, 1) (1, 1) (1, 1)
∧ (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 1) (0, 0) (0, 1) (0, 0) (0, 1)
(1, 0) (0, 0) (0, 0) (1, 0) (1, 0)
(1, 1) (0, 0) (0, 1) (1, 0) (1, 1)

u

u

(0, 0) (1, 1)
(0, 1) (1, 0)
(1, 0) (0, 1)
(1, 1) (0, 0)

(b) The graphs are isomorphic.

(c) (0, 1) and (1,0)

13.5.3. Answer.
(a) (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) are the atoms.

(b) The n-tuples of bits with exactly one 1.

13.6 · Boolean Expressions
· Exercises
13.6.1. Answer.

(a)

f1 (x1, x2) = 0
f2 (x1, x2) = (x1 ∧ x2)
f3 (x1, x2) = (x1 ∧ x2)
f4 (x1, x2) = (x1 ∧ x2)
f5 (x1, x2) = (x1 ∧ x2)
f6 (x1, x2) = ((x1 ∧ x2) ∨ (x1 ∧ x2)) = x1
f7 (x1, x2) = ((x1 ∧ x2) ∨ (x1 ∧ x2)) = x2
f8 (x1, x2) = ((x1 ∧ x2) ∨ (x1 ∧ x2)) = ((x1 ∧ x2) ∨ (x1 ∧ x2))
f9 (x1, x2) = ((x1 ∧ x2) ∨ (x1 ∧ x2)) = ((x1 ∧ x2) ∨ (x1 ∧ x2))
f10 (x1, x2) = ((x1 ∧ x2) ∨ (x1 ∧ x2)) = x2
f11 (x1, x2) = ((x1 ∧ x2) ∨ (x1 ∧ x2)) = x1
f12 (x1, x2) = ((x1 ∧ x2) ∨ (x1 ∧ x2) ∨ (x1 ∧ x2)) = (x1 ∨ x2)
f13 (x1, x2) = ((x1 ∧ x2) ∨ (x1 ∧ x2) ∨ (x1 ∧ x2)) = (x1 ∨ x2)
f14 (x1, x2) = ((x1 ∧ x2) ∨ (x1 ∧ x2) ∨ (x1 ∧ x2)) = (x1 ∨ x2)
f15 (x1, x2) = ((x1 ∧ x2) ∨ (x1 ∧ x2) ∨ (x1 ∧ x2)) = (x1 ∨ x2)
f16 (x1, x2) = ((x1 ∧ x2) ∨ (x1 ∧ x2) ∨ (x1 ∧ x2) ∨ (x1 ∧ x2)) = 1

(b) The truth table for the functions in part (a) are

x1 x2 f1 f2 f3 f4 f5 f6 f7 f8
0 0 0 1 0 0 0 1 1 1
0 1 0 0 1 0 0 1 0 0
1 0 0 0 0 1 0 0 1 0
1 1 0 0 0 0 1 0 0 1

x1 x2 f9 f10 f11 f12 f13 f14 f15 f16
0 0 0 0 0 1 1 1 0 1
0 1 1 1 0 1 1 0 1 1
1 0 1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1 1 1

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES533

(c) (i) g1 (x1, x2) = f15 (x1, x2)
(ii) g2 (x1, x2) = f12 (x1, x2)
(iii) g3 (x1, x2) = f12 (x1, x2)
(iv) g4 (x1, x2) = f16 (x1, x2)

13.6.3. Answer.
(a) The number of elements in the domain of f is 16 = 42 = |B|2

(b) With two variables, there are 43 = 256 different Boolean functions. With
three variables, there are 48 = 65536 different Boolean functions.

(c) f (x1, x2) = (1 ∧ x1 ∧ x2) ∨ (1 ∧ x1 ∧ x2) ∨ (1 ∧ x1 ∧ x2) ∨ (0 ∧ x1 ∧ x2)

(d) Consider f : B2 → B, defined by f(0, 0) = 0, f(0, 1) = 1, f(1, 0) =
a, f(1, 1) = a, and f(0, a) = b, with the images of all other pairs in
B2 defined arbitrarily. This function is not a Boolean function. If we
assume that it is Boolean function then f can be computed with a
Boolean expression M (x1, x2). This expression can be put into minterm
normal form: M (x1, x2) = (c1 ∧ x1 ∧ x2)∨(c2 ∧ x1 ∧ x2)∨(c3 ∧ x1 ∧ x2)∨
(c4 ∧ x1 ∧ x2)

f(0, 0) = 0⇒M(0, 0) = 0⇒ c1 = 0
f(0, 1) = 1⇒M(0, 0) = 1⇒ c2 = 1
f(1, 0) = a⇒M(0, 0) = a⇒ c3 = a

f(1, 1) = a⇒M(0, 0) = a⇒ c4 = a

Therefore, M (x1, x2) = (x1 ∧ x2) ∨ (a ∧ x1 ∧ x2) ∨ (a ∧ x1 ∧ x2) and so,
using this formula, M(0, a) =

(
0̄ ∧ a

)
∨ (a ∧ 0 ∧ ā) ∨ (a ∧ 0 ∧ a) = a This

contradicts f(0, a) = b, and so f is not a Boolean function.

13.7 · A Brief Introduction to Switching Theory
and Logic Design
· Exercises
13.7.1. Answer.

(1) Associative, commutative, and idempotent laws.

(2) Distributive law.

(3) Idempotent and complement laws.

(4) Null and identity laws

(5) Distributive law.

(6) Null and identity laws.

13.7.2. Answer.
(x1 · x2) + (x1 · x2) + (x1 · x2).

13.7.3. Answer. A simpler boolean expression for the function is x2 ·(x1+x3).

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES534

Figure D.0.29 An even simpler circuit

14 · Monoids and Automata
14.1 · Monoids
· Exercises
14.1.1. Answer.

(a) S1 is not a submonoid since the identity of [Z8;×8], which is 1, is not in
S1. S2 is a submonoid since 1 ∈ S2 and S2 is closed under multiplication;
that is, for all a, b ∈ S2, a×8 b is in S2.

(b) The identity of NN is the identity function i : N→ N defined by i(a) = a,
∀a ∈ N. If a ∈ N, i(a) = a ≤ a, thus the identity of NN is in S1. However,
the image of 1 under any function in S2 is 2, and thus the identity of
NN is not in S2, so S2 is not a submonoid. The composition of any two
functions in S1, f and g, will be a function in S1:

(f ◦ g)(n) = f(g(n)) ≤ g(n) since f is in S1

≤ n since g is in S1 ⇒ f ◦ g ∈ S1

and the two conditions of a submonoid are satisfied and S1 is a submonoid
of NN.

(c) The first set is a submonoid, but the second is not since the null set has
a non-finite complement.

14.1.3. Answer. The set of n× n real matrices is a monoid under matrix
multiplication. This follows from the laws of matrix algebra in Chapter 5. To
prove that the set of stochastic matrices is a monoid over matrix multiplication,
we need only show that the identity matrix is stochastic (this is obvious) and
that the set of stochastic matrices is closed under matrix multiplication. Let A
and B be n× n stochastic matrices.

(AB)ij =
n∑

k=1
aikbkj

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES535

The sum of the jth column is
n∑

j=1
(AB)ij =

n∑
k=1

a1kbkj +
n∑

k=1
a1kbkj + · · ·+

n∑
k=1

ankbkj

=
n∑

k=1
(a1kbkj + a1kbkj + · · ·+ ankbkj)

=
n∑

k=1
bkj (a1k + a1k + · · ·+ ank)

=
n∑

k=1
bkj since A is stochastic

= 1 since B is stochastic

14.1.5. Answer. Let f, g, h ∈M , and a ∈ B.

((f ∗ g) ∗ h)(a) = (f ∗ g)(a) ∧ h(a)
= (f(a) ∧ g(a)) ∧ h(a)
= f(a) ∧ (g(a) ∧ h(a))
= f(a) ∧ (g ∗ h)(a)
= (f ∗ (g ∗ h))(a)

Therefore (f ∗ g) ∗ h = f ∗ (g ∗ h) and ∗ is associative.
The identity for ∗ is the function u ∈ M where u(a) = 1 = the “one” of

B. If a ∈ B, (f ∗ u)(a) = f(a) ∧ u(a) = f(a) ∧ 1 = f(a). Therefore f ∗ u = f .
Similarly, u ∗ f = f .

There are 22 = 4 functions in M for B = B2. These four functions are
named in the text. See Figure 14.1.4. The table for ∗ is

∗ z i t u

z z z z z

i z i z i

t z z t t

u z i t u

14.2 · Free Monoids and Languages
· Exercises
14.2.1. Answer.

(a) For a character set of 350 symbols, the number of bits needed for each
character is the smallest n such that 2n is greater than or equal to 350.
Since 29 = 512 > 350 > 28, 9 bits are needed,

(b) 212 = 4096 > 3500 > 211; therefore, 12 bits are needed.

14.2.3. Answer. This grammar defines the set of all strings over B for which
each string is a palindrome (same string if read forward or backward).

14.2.5. Answer.
(a) Terminal symbols: The null string, 0, and 1. Nonterminal symbols: S,

E. Starting symbol: S. Production rules: S → 00S, S → 01S, S → 10S,
S → 11S, S → E, E → 0, E → 1 This is a regular grammar.

(b) Terminal symbols: The null string, 0, and 1. Nonterminal symbols: S, A,
B, C Starting symbol: S Production rules: S → 0A, S → 1A, S → λ ,

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES536

A → 0B, A → 1B, A → λ, B → 0C, B → 1C, B → A, C → 0, C → 1,
C → λ This is a regular grammar.

(c) See Exercise 3. This language is not regular.

14.2.7. Answer. If s is in A∗ and L is recursive, we can answer the question
“Is s in Lc?” by negating the answer to “Is s in L?”

14.2.9. Answer.
(a) List the elements of each set Xi in a sequence xi1, xi2, xi3 Then

draw arrows as shown below and list the elements of the union in order
established by this pattern: x11, x21, x12, x13, x22, x31, x41, x32, x23, x14,
x15 . . .,

(b) Each of the sets A1 , A2 , A3, . . ., are countable and A∗ is the union of
these sets; hence A∗ is countable.

Figure D.0.30 Exercise 9

14.3 · Automata, Finite-State Machines
· Exercises
14.3.1. Answer.

x s Z(x, s) t(x, s)
Deposit25 ̸ c Locked Nothing Select
Deposit25 ̸ c Select Return25 ̸ c Select

PressS Locked Nothing Locked
PressS Select DispenseS Locked
PressP Locked Nothing Locked
PressP Select DispenseP Locked
PressB Locked Nothing Locked
PressB Select DispenseB Locked

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES537

Figure D.0.31 Vending Machine Transitions

14.3.3. Answer. {000, 011, 101, 110, 111}

14.3.5. Answer.
(a) • Input: 10110, Output: 11011 ⇒ 10110 is in position 27

• Input: 00100, Output: 00111 ⇒ 00100 is in position 7
• Input:11111, Output: 10101 ⇒ 11111 is in position 21

(b) Let x = x1x2 . . . xn and recall that for n ≥ 1, Gn+1 =
(

0Gn

1Gr
n

)
, where

Gr
n is the reverse of Gn. To prove that the Gray Code Decoder always

works, let p(n) be the proposition “Starting in Copy state, x’s output is
the position of x in Gn; and starting in Complement state, x’s output
is the position of x in Gr

n.” That p(1) is true is easy to verify for both
possible values of x, 0 and 1. Now assume that for some n ≥ 1, p(n) is
true and consider x = x1x2 . . . xnxn+1.
If x1 = 0, x’s output is a zero followed by the output for (x2 . . . xnxn+1)
starting in Copy state. By the induction hypothesis, this is zero followed
by the position of (x2 . . . xnxn+1) in Gn, which is the position of x in
Gn+1, by the definition of G.
If x1 = 1, x’s output is a one followed by the output for (x2 . . . xnxn+1)
starting in Complement state. By the induction hypothesis, this is one
followed by the position of (x2 . . . xnxn+1) in Gr

n, which is the position of
x in Gn+1, by the definition of G. □

14.4 · The Monoid of a Finite-State Machine
· Exercises
14.4.1. Hint. Where the output echoes the current state, the output can be
ignored.
Answer.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES538

(a)

Input String a b c aa ab ac

1 (a, 1) (a, 2) (c, 3) (a, 1) (a, 2) (c, 3)
2 (a, 2) (a, 1) (c, 3) (a, 2) (a, 1) (c, 3)
3 (c, 3) (c, 3) (c, 3) (c, 3) (c, 3) (c, 3)

Input String ba bb bc ca cb cc

1 (a, 2) (a, 1) (c, 3) (c, 3) (c, 3) (c, 3)
2 (a, 1) (a, 2) (c, 3) (c, 3) (c, 3) (c, 3)
3 (c, 3) (c, 3) (c, 3) (c, 3) (c, 3) (c, 3)

We can see that TaTa = T aa = Ta, TaTb = T ab = Tb, etc. Therefore, we
have the following monoid:

Ta Tb Tb

Ta

Tb

Tc

Ta Tb Tc

Tb Ta Tc

Tc Tc Tc

Notice that Ta is the identity of this monoid.

(b)

Input String 1 2 11 12 21 22
A C B A D D A

B D A B C C B

C A D C B B C

D B C D A A D

Input String 111 112 121 122 211 212 221 222
A C B B C B C C B

B D A A D A D D A

C B C C B C B B C

D B C C B C B B C

We have the following monoid:

T1 T2 T11 T12
T1
T2
T11
T12

T11 T12 T1 T2
Tb T11 T2 T1
T1 T2 T11 T12
T2 T1 T12 T11

Notice that T11 is the identity of this monoid.

14.4.3. Answer. Yes, just consider the unit time delay machine of Fig-
ure 14.4.4. Its monoid is described by the table at the end of Section 14.4
where the Tλ row and Tλ column are omitted. Next consider the machine in
Figure 14.5.7. The monoid of this machine is:

Tλ T0 T1 T00 T01 T10 T11
Tλ Tλ T0 T1 T00 T01 T10 T11
T0 T0 T00 T01 T00 T01 T10 T11
T1 T1 T10 T11 T00 T01 T10 T11
T00 T00 T00 T01 T00 T01 T10 T11
T01 T01 T10 T11 T00 T01 T10 T11
T10 T10 T00 T01 T00 T01 T10 T11
T11 T11 T10 T11 T00 T01 T10 T11

Hence both of these machines have the same monoid, however, their transi-
tion diagrams are nonisomorphic since the first has two vertices and the second
has seven.

14.5 · The Machine of a Monoid

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES539

· Exercises
14.5.1. Answer.

Figure D.0.32 (a)

Figure D.0.33 (b)

15 · Group Theory and Applications
15.1 · Cyclic Groups
· Exercises
15.1.1. Answer. The only other generator is −1.

15.1.3. Answer. If |G| = m, m > 2, and G = ⟨a⟩, then a, a2, . . ., am−1 ,
am = e are distinct elements of G. Furthermore, a−1 = am−1 ̸= a, If 1 ≤ k ≤ m,
a−1 generates ak: (

a−1)m−k =
(
am−1)m−k

= am2−m−mk+k

= (am)m−k−1 ∗ ak

= e ∗ ak = ak

Similarly, if G is infinite and G = ⟨a⟩, then a−1 generates G.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES540

15.1.5. Answer.
(a) No. Assume that q ∈ Q generates Q. Then ⟨q⟩ = {nq : n ∈ Z}. But this

gives us at most integer multiples of q, not every element in Q.

(b) No. Similar reasoning to part a.

(c) Yes. 6 is a generator of 6Z.

(d) No.

(e) Yes, (1, 1, 1) is a generator of the group.

15.1.7. Answer. Theorem 15.1.13 implies that a generates Zn if and only if
the greatest common divisor of n and a is 1. Therefore the list of generators of
Zn are the integers in Zn that are relatively prime to n. The generators of Z25
are all of the nonzero elements except 5, 10, 15, and 20. The generators of Z256
are the odd integers in Z256 since 256 is 28.

15.1.9. Answer.
(a) θ : Z77 → Z7 × Z11 maps the given integers as follows:

21 → (0, 10)
5 → (5, 5)
7 → (0, 7)
15 → (1, 4)

sum = 48 ← (6, 4) = sum

The final sum, 48, is obtained by using the facts that θ−1(1, 0) = 22 and
θ−1(0, 1) = 56

θ−1(6, 4) = 6×77 θ−1(1, 0) + 4×77 θ−1(0, 1)
= 6×77 22 +77 4×77 56
= 55 +77 70
= 48

.

(b) Using the same isomorphism:

25 → (4, 3)
26 → (5, 4)
40 → (5, 7)

sum = (0, 3)

theta−1(0, 3) = 3×77 θ−1(0, 1)
= 3×77 56
= 14

.

The actual sum is 91. Our result is incorrect, since 91 is not in Z77. Notice
that 91 and 14 differ by 77. Any error that we get using this technique
will be a multiple of 77.

15.2 · Cosets and Factor Groups
· Exercises

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES541

15.2.1. Answer. An example of a valid correct answer: Call the subsets A
and B respectively. If we choose 0 ∈ A and 5 ∈ B we get 0 +10 5 = 5 ∈ B.
On the other hand, if we choose 3 ∈ A and 8 ∈ B, we get 3 +10 8 = 1 ∈ A.
Therefore, the induced operation is not well defined on {A, B}.

15.2.3. Answer.
(a) The four distinct cosets in G/H are H = {(0, 0), (2, 0)}, (1, 0) + H =
{(1, 0), (3, 0)}, (0, 1) + H = {(0, 1), (2, 1)}, and (1, 1) + H = {(1, 1), (3, 1)}.
None of these cosets generates G/H; therefore G/H is not cyclic. Hence
G/H must be isomorphic to Z2 × Z2.

(b) The factor group is isomorphic to [R; +]. Each coset of R is a line in
the complex plane that is parallel to the x-axis: τ : C/R → R, where
T ({a + bi | a ∈ R}) = b is an isomorphism.

(c) ⟨8⟩ = {0, 4, 8, 12, 16}⇒ |Z20/⟨8⟩| = 4. The four cosets are: 0̄, 1̄, 2̄, and
3̄. 1 generates all four cosets. The factor group is isomorphic to [Z4; +4]
because 1̄ is a generator.

15.2.5. Answer.

a ∗H = b ∗H ⇔ a ∈ bH

⇔ a = b ∗ h for some h ∈ H

⇔ b−1 ∗ a = h for some h ∈ H

⇔ b−1 ∗ a ∈ H

15.3 · Permutation Groups
15.3.5 · Exercises
15.3.5.1. Answer.

(a)
(

1 2 3 4
1 4 3 2

)

(b)
(

1 2 3 4
4 3 1 2

)

(c)
(

1 2 3 4
3 4 2 1

)

(d)
(

1 2 3 4
3 4 2 1

)

(e)
(

1 2 3 4
4 2 1 3

)

(f)
(

1 2 3 4
3 1 4 2

)

(g)
(

1 2 3 4
2 1 4 3

)
15.3.5.3. Answer. S3/A3 is a group of order two. The operation on left
cosets of H = ⟨f1⟩ is not well defined and so a group cannot be formed from
left cosets of H.

15.3.5.5. Answer. D4 =
{

i, r, r2, r3, f1, f2, f3, f4
}

Where i is the identity

function, r =
(

1 2 3 4
2 3 4 1

)
, and

f1 =
(

1 2 3 4
4 3 2 1

)
f2 =

(
1 2 3 4
2 1 4 3

)
f3 =

(
1 2 3 4
3 2 1 4

)
f4 =

(
1 2 3 4
1 4 3 2

)

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES542

The operation table for the group is

◦ i r r2 r3 f1 f2 f3 f4
i

r

r2

r3

f1
f2
f3
f4

i r r2 r3 f1 f2 f3 f4
r r2 r3 i f4 f3 f1 f2
r2 r3 i r f2 f1 f4 f3
r3 i r r2 f3 f4 f2 f1
f1 f3 f2 f4 i r2 r r3

f2 f4 f1 f3 r2 i r3 r

f3 f2 f4 f1 r3 r i r2

f4 f1 f3 f2 r r3 r2 i

A lattice diagram of its subgroups is

Figure D.0.34 Subgroups of D4

All proper subgroups are cyclic except
{

i, r2, f1, f2
}

and
{

i, r2, f3, f4
}

.
Each 2-element subgroup is isomorphic to Z2 ;

{
i, r, r2, r3} is isomorphic to Z4

; and
{

i, r2, f1, f2
}

and
{

i, r2, f3, f4
}

are isomorphic to Z2 × Z2.

15.3.5.7. Answer. One solution is to cite Exercise 3 at the end of Section
11.3. It can be directly applied to this problem. An induction proof of the
problem at hand would be almost identical to the proof of the more general
statement. (t1t2 · · · tr) −1 = tr

−1 · · · t2
−1t1

−1 by Exercise 3 of Section 11.3

= tr · · · t2t1 since each transposition inverts itself. ■

15.3.5.9. Answer. Part I: That |Sk| = k! follows from the Rule of Products.
Part II: Let f be the function defined on {1, 2, ..., n} by f(1) = 2, f(2) = 3,

f(3) = 1, and f(j) = j for 4 ≤ j ≤ n; and let g be defined by g(1) = 1, g(2) = 3,
g(3) = 2, and g(j) = j for 4 ≤ j ≤ n. Note that f and g are elements of Sn.
Next, (f ◦ g)(1) = f(g(1)) = f(1) = 2, while (g ◦ f)(1) = g(f(1)) = g(2) = 3,
hence f ◦ g ̸= g ◦ f and Sn is non-abelian for any n ≥ 3.

15.3.5.13. Answer.
(a) Both groups are non-abelian and of order 6; so they must be isomorphic,

since only one such group exists up to isomorphism. The function θ :

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES543

S3 → R3 defined by
θ(i) = I θ (f1) = F1

θ (r1) = R1 θ (f2) = F2
θ (r2) = R2 θ (f3) = F3

is an isomorphism,

(b) Recall that since every function is a relation, it is natural to translate
functions to Boolean matrices. Suppose that f ∈ Sn. We will define its
image, θ(f), by

θ(f)kj = 1 ⇔ f(j) = k

That θ is a bijection follows from the existence of θ−1. If A is a rook
matrix,

θ−1(A)(j) = k ⇔ The 1 in column j of A appears in row k

⇔ Akj = 1

For f, g ∈ Sn,

θ(f ◦ g)kj = 1⇔ (f ◦ g)(j) = k

⇔ ∃l such that g(j) = l and f(l) = k

⇔ ∃l such that θ(g)lj = 1 and θ(f)kl = 1
⇔ (θ(f)θ(g))kj = 1

Therefore, θ is an isomorphism.

15.4 · Normal Subgroups and Group Homomor-
phisms
15.4.3 · Exercises
15.4.3.1. Answer.

(a) Yes, the kernel is {1,−1}

(b) No, since θ2 (2 +5 4) = θ2(1) = 1, but θ2(2) +2 θ2(4) = 0 +2 0 = 0
A follow-up might be to ask what happens if 5 is replaced with some other
positive integer in this part.

(c) Yes, the kernel is {(a,−a)|a ∈ R}

(d) No. A counterexample, among many, would be to consider the two
transpositions t1 = (1, 3) and t2 = (1, 2). Compare θ4(t1 ◦ t2) and
θ4(t1) ◦ θ4(t2).

15.4.3.3. Answer. ⟨r⟩ =
{

i, r, r2, r3} is a normal subgroup of D4. To see you
could use the table given in the solution of Exercise 15.3.5.5 of Section 15.3 and
verify that a−1ha ∈ ⟨r⟩ for all a ∈ D4 and h ∈ ⟨r⟩. A more efficient approach is
to prove the general theorem that if H is a subgroup G with exactly two distinct
left cosets, than H is normal. ⟨f1⟩ is not a normal subgroup of D4. ⟨f1⟩ = {i, f1}
and if we choose a = r and h = f1 then a−1ha = r3f1r = f2 /∈ ⟨f1⟩

15.4.3.5. Answer. (β ◦ α) (a1, a2, a3) = 0 and so β ◦ α is the trivial homo-
morphism, but a homomorphism nevertheless.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES544

15.4.3.7. Answer. Let x, y ∈ G.

q(x ∗ y) = (x ∗ y)2

= x ∗ y ∗ x ∗ y

= x ∗ x ∗ y ∗ y since G is abelian
= x2 ∗ y2

= q(x) ∗ q(y)

Hence, q is a homomorphism. In order for q to be an isomorphism, it must be
the case that no element other than the identity is its own inverse.

x ∈ Ker(q)⇔ q(x) = e

⇔ x ∗ x = e

⇔ x−1 = x

15.4.3.9. Answer. Proof: Recall that the inverse image of H ′ under θ is
θ−1(H ′) = {g ∈ G|θ(g) ∈ H ′}.

Closure: Let g1, g2 ∈ θ−1(H ′), then θ (g1) , θ (g2) ∈ H ′. Since H ′ is a
subgroup of G′,

θ (g1) ⋄ θ (g2) = θ (g1 ∗ g2) ∈ H ′ ⇒ g1 ∗ g2 ∈ θ−1(H ′)

Identity: By Theorem 15.4.14(a), e ∈ θ−1(H ′).
Inverse: Let a ∈ θ−1(H ′) . Then θ(a) ∈ H ′ and by Theorem 15.4.14(b),

θ(a)−1 = θ
(
a−1) ∈ H ′ and so a−1 ∈ θ−1(H ′).

15.5 · Coding Theory, Linear Codes
15.5.4 · Exercises
15.5.4.1. Answer.

(a) Error detected, since an odd number of 1’s was received; ask for retrans-
mission.

(b) No error detected; accept this block.

(c) No error detected; accept this block.

15.5.4.3. Answer.
(a) Syndrome = (1, 0, 1). Corrected coded message is (1, 1, 0, 0, 1, 1) and

original message was (1, 1, 0).

(b) Syndrome = (1, 1, 0). Corrected coded message is (0, 0, 1, 0, 1, 1) and
original message was (0, 0, 1).

(c) Syndrome = (0, 0, 0). No error, coded message is (0, 1, 1, 1, 1, 0) and
original message was (0, 1, 1).

(d) Syndrome = (1, 1, 0). Corrected coded message is (1, 0, 0, 1, 1, 0) and
original message was (1, 0, 0).

(e) Syndrome = (1, 1, 1). This syndrome occurs only if two bits have been
switched. No reliable correction is possible.

(f) Syndrome = (0, 1, 0). Corrected coded message is (1, 0, 0, 1, 1, 0) and
original message was (1, 0, 0).

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES545

15.5.4.5. Answer.
(a) Blocks of two bits are encoded into code words of length 4.

(b) The code words are 0000, 1010, 0111 and 1101.

(c) Since the first two code words have a Hamming distance of 2, not all single
bit errors can be corrected. For example, if 0000 is transmitted and the
first bit is switch, then 1000 is received and we can’t tell for sure whether
this came from 0000 or 1010. To see what can be corrected, we note that
a1a2 is encoded to a1a2(a1 +2 a2)a2 and so if b1b2b3b4 is recieved and no
error has occurred,

b1 +2 b2 +2 b3 = 0
b2 +2 b4 = 0

We can extract the parity check matrix from this set of equations. It is
1 0
1 1
1 0
0 1

The rows of this matrix correspond with the syndromes for errors in bits
1 through 4, which are all nonzero, so we can detect any single bit error.
Notice that the syndromes for bits 1 and 3 are identical. This reflects the
fact that errors in these bits can’t be corrected. However, the syndromes
for bits 2 and 4 are unique and so we can correct them. Therefore the
second bit of the original message can be sent with more confidence than
the first.

15.5.4.7. Solution. Yes, you can correct all single bit errors because the
parity check matrix for the expanded code is

H =

1 1 0
1 0 0
1 0 1
0 1 0
0 1 1
0 0 1

.

Since each possible syndrome of single bit errors is unique we can correct any
error.
15.5.4.8. Hint. There is a parity check equation for each parity bit.

16 · An Introduction to Rings and Fields
16.1 · Rings, Basic Definitions and Concepts
16.1.6 · Exercises
16.1.6.1. Answer. All but ring d are commutative. All of the rings have a
unity element. The number 1 is the unity for all of the rings except d. The
unity for M2×2(R) is the two by two identity matrix. The units are as follows:

(a) {1,−1}

(b) C∗

(c) Q∗

(d) {A |A11A22 −A12A21 ̸= 0}

(e) {1}

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES546

16.1.6.3. Answer.
(a) Consider commutativity

(b) Solve x2 = 3x in both rings.

16.1.6.5. Answer.
(a) We already know that 3Z is a subgroup of the group Z. We need only

show that 3Z is closed with respect to multiplication. Let 3m, 3n ∈ 3Z.
(3m)(3n) = 3(3mn) ∈ 3Z, since 3mn ∈ Z.

(b) The proper subrings are {0, 2, 4, 6} and {0, 4}; while {0} and Z8 are
improper subrings.

(c) The proper subrings are {00, 01}, {00, 10}, and {00, 11}: while {00} and
Z2 × Z2 are improper subrings.

16.1.6.7. Answer.
(a) The left-hand side of the equation factors into the product (x− 2)(x− 3).

Since Z is an integral domain, x = 2 and x = 3 are the only possible
solutions.

(b) Over Z12, 2, 3, 6, and 11 are solutions. Although the equation factors
into (x− 2)(x− 3), this product can be zero without making x either 2 or
3. For example. If x = 6 we get (6− 2)×12 (6− 3) = 4×12 3 = 0. Notice
that 4 and 3 are zero divisors.

16.1.6.9. Answer. Let R1, R2, and R3 be any rings, then
(a) R1 is isomorphic to R1 and so “is isomorphic to” is a reflexive relation on

rings.

(b) R1 is isomorphic to R2 ⇒ R2 is isomorphic to R1, and so “is isomorphic
to” is a symmetric relation on rings,

(c) R1 is isomorphic to R2, and R2 is isomorphic to R3 implies that R1 is
isomorphic to R3, and so “is isomorphic to” is a transitive relation on
rings.

We haven’t proven these properties here, just stated them. The combination of
these observations implies that “is isomorphic to” is an equivalence relation on
rings.

16.1.6.11. Answer.
(a) Commutativity is clear from examination of a multiplication table for

Z2×Z3. More generally, we could prove a theorem that the direct product
of two or more commutative rings is commutative. (1, 1) is the unity of
Z2 × Z3.

(b) {(m, n)|m = 0 or n = 0, (m, n) ̸= (0, 0)}

(c) Another example is Z × Z. You never get an integral domain in this
situation. By the definition an integral domain D must contain a “zero”
so we always have (1, 0) · (0, 1) = (0, 0) in D ×D.

16.1.6.13. Answer.
(a) (a + b)(c + d) = (a + b)c + (a + b)d = ac + bc + ad + bd

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES547

(b)

(a + b)(a + b) = aa + ba + ab + bb by part a
= aa + ab + ab + bb since R is commutative
= a2 + 2ab + b2

.

16.2 · Fields
· Exercises
16.2.5. Answer.

(a) 0 in Z2, 1 in Z3, 3 in Z5

(b) 2 in Z3, 3 in Z5

(c) 2 in Z5

16.2.7. Answer.
(a) 0 and 1 (b) 1 (c) 1 (d) none

16.3 · Polynomial Rings
· Exercises
16.3.1. Answer.

(a) f(x) + g(x) = 2 + 2x + x2 , f(x) · g(x) = 1 + 2x + 2x2 + x3

(b) f(x) + g(x) = x2, f(x) · g(x) = 1 + x3

(c) 1 + 3x + 4x2 + 3x3 + x4

(d) 1 + x + x3 + x4

(e) x2 + x3

16.3.3. Answer.
(a) If a, b ∈ R, a − b and ab are in R since R is a ring in its own right.

Therefore, R is a subring of R[x]. The proofs of parts b and c are similar.

16.3.5. Answer.
(a) Reducible, (x + 1)

(
x2 + x + 1

)
(b) Reducible, x

(
x2 + x + 1

)
(c) Irreducible. If you could factor this polynomial, one factor would be

either x or x + 1, which would give you a root of 0 or 1, respectively. By
substitution of 0 and 1 into this polynomial, it clearly has no roots.

(d) Reducible, (x + 1)4

16.3.7. Answer. We illustrate this property of polynomials by showing that
it is not true for a nonprime polynomial in Z2[x]. Suppose that p(x) = x2 + 1,
which can be reduced to (x + 1)2 , a(x) = x2 + x, and b(x) = x3 + x2. Since
a(x)b(x) = x5 + x3 = x3 (x2 + 1

)
, p(x)|a(x)b(x). However, p(x) is not a factor

of either a(x) or b(x).

16.3.9. Answer. The only possible proper factors of x2 − 3 are
(
x−
√

3
)

and
(
x +
√

3
)
, which are not in Q[x] but are in R[x].

16.3.11. Answer. For n ≥ 0, let S(n) be the proposition: For all g(x) ̸= 0
and f(x) with deg f(x) = n, there exist unique polynomials q(x) and r(x) such
that f(x) = g(x)q(x) + r(x), and either r(x) = 0 or deg r(x) < deg g(x).

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES548

Basis: S(0) is true, for if f(x) has degree 0, it is a nonzero constant,
f(x) = c ̸= 0, and so either f(x) = g(x) · 0 + c if g(x) is not a constant, or
f(x) = g(x)g(x)−1 + 0 if g(x) is also a constant.

Induction: Assume that for some n ≥ 0, S(k) is true for all k ≤ n, If f(x)
has degree n + 1, then there are two cases to consider. If deg g(x) > n + 1,
f(x) = g(x) · 0 + f(x), and we are done. Otherwise, if deg g(x) = m ≤ n + 1, we
perform long division as follows, where LDT’s stand for terms of lower degree
than n + 1.

fn+1 · gm
−1xn+1−m

gmxm + LDT′s)fn+1xn+1 + LDT′s

fn+1xn+1 + LDT′s

h(x)

Therefore,

h(x) = f(x)−
(
fn+1 · gm

−1xn+1−m
)

g(x)⇒ f(x) =
(
fn+1 · gm

−1xn+1−m
)

g(x)+h(x)

Since deg h(x) is less than n + 1, we can apply the induction hypothesis:
h(x) = g(x)q(x) + r(x) with deg r(x) < deg g(x).

Therefore,

f(x) = g(x)
(
fn+1 · gm

−1xn+1−m + q(x)
)

+ r(x)

with deg r(x) < deg g(x). This establishes the existence of a quotient and
remainder. The uniqueness of q(x) and r(x) as stated in the theorem is proven
as follows: if f(x) is also equal to g(x)q̄(x) + r̄(x) with deg r̄(x) < deg g(x),
then

g(x)q(x) + r(x) = g(x)q̄(x) + r(x)⇒ g(x) (q̄(x)− q(x)) = r(x)− r̄(x)

Since deg r(x)− r̄(x) < deg g(x), the degree of both sides of the last equation
is less than deg g(x). Therefore, it must be that q̄(x)− q(x) = 0, or q(x) = q̄(x)
And so r(x) = r̄(x).

16.4 · Field Extensions
· Exercises
16.4.1. Answer. If a0+a1

√
2 ∈ Q

[√
2
]

is nonzero, then it has a multiplicative
inverse:

1
a0 + a1

√
2

= 1
a0 + a1

√
2

a0 − a1
√

2
a0 − a1

√
2

= a0 − a1
√

2
a02 − 2a12

= a0

a02 − 2a12 −
a1

a02 − 2a12

√
2

The denominator, a0
2 − 2a1

2, is nonzero since
√

2 is irrational. Since a0
a02−2a12

and −a1
a02−2a12 are both rational numbers, a0 + a1

√
2 is a unit of Q

[√
2
]
. The

field containing Q
[√

2
]

is denoted Q
(√

2
)

and so Q
(√

2
)

= Q
[√

2
]

16.4.3. Answer. x4 − 5x2 + 6 = (x2 − 2)(x2 − 3) has zeros ±
√

2 and ±
√

3.
Q(
√

2) = {a + b
√

2 | a, b ∈ Q} contains the zeros ±
√

2 but does not contain
±
√

3, since neither are expressible in the form a + b
√

2. If we consider the set
{c + d

√
3 | c, d ∈ Q(

√
2)}, then this field contains ±

√
3 as well as ±

√
2, and is

denoted Q(
√

2)(
√

3) = Q(
√

2,
√

3). Taking into account the form of c and d in

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES549

the description above, we can expand to

Q(
√

2,
√

3) = {b0 + b1
√

2 + b2
√

3 + b3
√

6 | bi ∈ Q}

16.4.5. Answer.
(a) f(x) = x3 + x + 1 is reducible if and only if it has a factor of the form

x − a. By Theorem 16.3.14, x − a is a factor if and only if a is a zero.
Neither 0 nor 1 is a zero of f(x) over Z2.

(b) Since f(x) is irreducible over Z2, all zeros of f(x) must lie in an extension
field of Z2 . Let c be a zero of f(x). Z2(c) can be described several
different ways. One way is to note that since c ∈ Z2(c), cn ∈ Z2(c) for all
n. Therefore, Z2(c) includes 0, c, c2, c3, But c3 = c + 1 since f(c) = 0.
Furthermore, c4 = c2 + c, c5 = c2 + c + 1, c6 = c2 + 1, and c7 = 1. Higher
powers of c repeat preceding powers. Therefore,

Z2(c) =
{

0, 1, c, c2, c + 1, c2 + 1, c2 + c + 1, c2 + c
}

=
{

a0 + a1c + a2c2 | ai ∈ Z2
}

The three zeros of f(x) are c, c2 and c2 + c.

f(x) = (x + c)
(
x + c2) (x + c2 + c

)
(c) Cite Theorem Theorem 16.2.10, part 3.

16.5 · Power Series
16.5.3 · Exercises
16.5.3.5. Answer.

(a)
b0 = 1

b1 = (−1)(2 · 1) = −2
b2 = (−1)(2 · (−2) + 4 · 1) = 0

b3 = (−1)(2 · 0 + 4 · (−2) + 8 · 1) = 0

All other terms are zero. Hence, f(x)−1 = 1− 2x

(b)

f(x) = 1 + 2x + 22x2 + 23x3 + · · ·
= (2x)0 + (2x)1 + (2x)2 + (2x)3 + · · ·

= 1
1− 2x

The last step follows from the formula for the sum of a geometric series.

16.5.3.7. Answer.

APPENDIX D. HINTS AND SOLUTIONS TO SELECTED EXERCISES550

(a) (
x4 − x5)−1 = (x4(1− x))−1

= x−4 1
1− x

= x−4

(∞∑
k=0

xk

)

=
∞∑

k=−4
xk

.

(b) (
x4 − 2x3 + x2)−1 =

(
x2 (x2 − 2x + 1

))−1

= x−2 (1− 2x + x2)−1

= x−2

(∞∑
k=0

(k + 1)xk

)

=
∞∑

k=−2
(k + 2)xk

.

Appendix E

Notation

The following table defines the notation used in this book. Page numbers or
references refer to the first appearance of each symbol.

Symbol Description Page

x ∈ A x is an element of A 1
x /∈ A x is not an element of A 1
P the positive integers 2
N the natural numbers 2
Z the integers 2
Q the rational numbers 2
R the real numbers 2
C the complex numbers 2
|A| The number of elements in a finite set A. 3
A ⊆ B A is a subset of B. 3
∅ the empty set 3
A ∩B The intersection of A and B. 5
A ∪B The union of A and B. 5
B −A The complement of A relative to B 6
Ac The complement of set A relative to the uni-

verse.
6

A⊕B The symmetric difference of A and B. 8
A×B The cartesian product of A with B. 11
P(A) The power set of A, the set of all subsets of A. 11
n! n factorial, the product of the first n positive

integers
25(

n
k

)
n choose k, the number of k element subsets of
an n element set.

33

p ∧ q the conjunction, p and q 40
p ∨ q the disjunction, p or q 40
¬p the negation of p, “not p” 41
p→ q The conditional proposition If p then q. 41
p↔ q The biconditional proposition p if and only if q 42
1 symbol for a tautology 46
0 symbol for a contradiction 46
r ⇐⇒ s r is logically equivalent to s 47

(Continued on next page)

551

APPENDIX E. NOTATION 552

Symbol Description Page

r ⇒ s r implies s 47
p | q the Sheffer Stroke of p and q 48
Tp the truth set of p 57
(∃n)U (p(n)) The statement that p(n) is true for at least one

value of n
66

(∀n)U (p(n)) The statement that p(n) is always true. 66
000m×n the m by n zero matrix 91
In The n× n identity matrix 94
A−1 A inverse, the multiplicative inverse of A 94
det A or |A| The determinant of A, 2 by 2 case 95
a | b a divides b, or a divides evenly into b 102
xsy x is related to y through the relation s 103
rs the composition of relation r with relation s 103
[a] The equivalence class of a 111
A/r Partition of A with respect to an equivalence

relation r
111

a ≡n b a is congruent to b modulo n 112
a ≡ b(mod n) a is congruent to b modulo n 112
r+ The transitive closure of r 120
f : A→ B A function, f , from A into B 125
BA The set of all functions from A into B 126
f(a) The image of a under f 126
f(X) Range of function f : X → Y 126
χS Characteristic function of the set S 128
|A| = n A has cardinality n 130
(g ◦ f)(x) = g(f(x)) The composition of g with f 134
f ◦ f = f2 the “square” of a function. 134
i or iA The identity function (on a set A) 135
f−1 The inverse of function f read “f inverse” 135
logba Logarithm, base b of a 162

167
S ↑ S pop 170
S ↓ S push 170
S ∗ T Convolution of sequences S and T 170
S ↑ p Multiple pop operation on S 172
S ↓ p Multiple push operation on S 172
Kn A complete undirected graph with n vertices 183
deg(v), indeg(v), outdeg(v) degree, indegree and outdegree of vertex v 189
e(v) The eccentricity of a vertex 202
d(G) The diameter of graph G 202
r(G) The radius of graph G 202
C(G) The center of graph G 202
Qn the n-cube 210
V (f) The value of flow f 223

229
Pn a path graph of length n 229
χ(G) the chromatic number of G 232
Cn A cycle with n edges. 237

(Continued on next page)

APPENDIX E. NOTATION 553

Symbol Description Page

∗ generic symbol for a binary operation 265
string1 + string2 The concatenation of string1 and string2 268
[G; ∗] a group with elements G and binary operation

∗
270

gcd(a, b) the greatest common divisor of a and b 278
a +n b the mod n sum of a and b 282
a×n b the mod n product of a and b 282
Zn The Additive Group of Integer Modulo n 283
Un The Multiplicative Group of Integer Modulo n 283
W ≤ V W is a subsystem of V 287
⟨a⟩ the cyclic subgroup generated by a 290
ord(a) Order of a 290
V1 × V2 × · · · × Vn The direct product of algebraic structures

V1, V2, . . . , Vn

292

G1 ×G2 The direct product of groups G1 and G2 292
G1 ∼= G2 G1 is isomorphic to G2 300

321
dim(V) The dimension of vector space V 324
000 least element in a poset 346
111 greatest element in a poset 346
Dn the set of divisors of integer n 347
a ∨ b the join, or least upper bound of a and b 349
a ∧ b the meet, or greatest lower bound of a and b 349
[L;∨,∧] A lattice with domain having meet and join

operations
349

ā The complement of lattice element a 352
[B;∨,∧, ¯] a boolean algebra with operations join, meet

and complementation
352

353
Mδ1δ2···δk

the minterm generated by x1, x2, . . . , xk, where
yi = xi if δi = 1 and yi = x̄i if δi = 0

361

A∗ The set of all strings over an alphabet A 373
An The set of all strings of length n over an alphabet

A
373

λ The empty string 373
s1 + s2 The concatenation of strings s1 and s2 374
L(G) Language created by phrase structure grammar

G
376

(S, X, Z, w, t) A finite-state machine with states S, input al-
phabet X, output alphabet X, and output func-
tion w and next-state function t

380

m(M) The machine of monoid M 387
390

a ∗H, H ∗ a the left and right cosets generated by a 397
G/H The factor group G mod H. 401
SA The group of permutations of the set A 403
Sn The group of permutations on a set with n

elements
403

(Continued on next page)

APPENDIX E. NOTATION 554

Symbol Description Page

An The Alternating Group 406
Dn The nth dihedral group 410
H ◁ G H is a normal subgroup of G 413
kerθ the kernel of homomorphism θ 415
dH(a, b) Hamming distance between a and b 419
[R; +, ·] a ring with domain R and operations + and · 428
U(R) the set of units of a ring R 430

431
433

D a generic integral domain 434
deg f(x) the degree of polynomial f(x) 440
R[x] the set of all polynomials in x over R 440
R[[x]] the set of all powers series in R 449
x̀, x́ pre and post values of a variable x 458
M(A)i,j The i, j minor of A 465
C(A)i,j The i, j cofactor of A 466
det(A)or|A| The determinant of A 466

Appendix F

Glossary

An Informal Glossary of Terms
Many of the words in this glossary are not formally defined in the book either
because they are viewed as prerequisites to a course in discrete mathematics or
are terms in computer science that some students may be unfamiliar with.

An. When referring to “an entity” we mean that the object can be any of the
elements is some set. For example, if you say that n is an integer, it could be
any integer.
Bit. The smallest unit of computer memory, normally represented as a 0 or 1.
Byte. A basic unit of computer memory containing eight Bits, normally
modeled as a sequence of eight 0’s and 1’s.
Complex Number. A number of the form a + bi, where a and b are real
numbers and i2 = −1.
Composite Integer. A positive integer is composite if it is greater than one
and is the product of two positive integers greater than one. For example, 10
(equal to 2 · 5) is composite. Any positive integer greater than one that is not
composite is Prime.
Constant. A numerical value that is unchanging . The value might be unknown
and it still may be represented with a symbol. For example if we are discussing
the process of sorting a file of N numbers, N is considered a constant with
respect to the sorting algorithm. Constants can become variables though. If we
have designed a sorting algorithm, and want to analyze its efficiency, we would
consider N to be a variable.
Creative Commons. An organization which has created several open licenses
for creative works such as Applied Discrete Structures.
Data Structure. A format for organizing, processing, retrieving and storing
data.
Distinct. Two entities are distinct if they are not the same. For example, any
two student ID numbers at a school should be distinct. If not, confusion could
ensue. See also Unique.
Even Integer. Any Integer that is equal to two times an integer. That includes
0, since 0 = 2 · 0.
Factor. If an algebraic expression is the product of several expressions, each
of those expressions is a factor.
Iff. Shorthand for “if and only if”
Integer. Whole number, whether positive, negative or zero.

555

APPENDIX F. GLOSSARY 556

Irrational Number. A number that is not equal to any fraction.
√

2 is one
we prove to be irrational in the book.
LaTeX. A markup language used for books and papers with lots of mathematics,
which is built on TEX. PreTeXt uses LATEX as an intermediate format to produce
pdf and print output.
Multiples. Multiples of a number c are . . . ,−3c, ¯2c,−c, 0, c, 2c, 3c, . . .

Natural Numbers. In this book, its the numbers 0,1,2,3,4,. . . . There isn’t
100% agreement here. Some people say its the numbers 1,2,3,4, We call
those numbers the positive integers. The symbol we use of the natural numbers
is N. There is no consistent definition of positive complex numbers.
Nonnegative Number. A number that is either positive or zero.
Odd Integer. An integer n is odd if there exists an integer k so that n = 2k+1.
Any integer that is not even is odd.
Positive Number. A positive number is a number that is greater than zero.
Normally visualized as being to the right of zero on a conventional number line.
The set of positive integers is denoted P. The sets of positive rational and real
numbers are denoted Q+ and R?+, respectively
Powers. Powers of a nonzero number c are . . . , c−3, c−2, c−1, 1, c1, c2, c3,
Recall that c0 = 1.
PreTeXt. An authoring and publishing system for authors of textbooks,
research articles, and monographs, especially in STEM disciplines. Applied
Discrete Structures is produced using PreTeXt.
Prime. A positive integer that is divisible by exactly two positive integers,
itself and 1. One is not prime, but 2 is the oddest prime because it’s even. See
also Composite Integer.
Queue. A conventional waiting line, with the first come-first serve service rule.
A queue is a common Data Structure in computer science. See also Stack.
Rational Number. Any real number that is equal to a quotient two integers,
a/b, with b ̸= 0.
Real Number. For the purposes of this book, think of the numbers on a
standard number line. All of the points make up the set of real numbers.
SageMath. An open source computer algebra system for a wide range of
symbolic and numerical mathematical computations. Originally named simply
Sage.
Stack. A Data Structure similar to a queue, but where the last come-first
serve service rule is used. This wouldn’t be a fair waiting line rule, but it is a
very useful data structure. See also Queue
Subtraction. Subtraction is really addition of the negation of a number:
a− b = a + (−b).
Term. If an algebraic expression is the sum of several expressions, each of
those expressions is a term. For example there are three terms in the expression
2y + x− (w + 1)/2. Note that subtraction is considered the same as addition
here.
Unique. We say a mathematical entity is unique when there’s nothing else
like it. For example, the solution, x = 3 to the equation 2x + 1 = 7 is unique.
No other number solves the equation. See also Distinct.
Variable. A quantity whose value that can vary within a specified set. Normally
represented by an algebraic symbol. For discrete variables it is customary to
use the letters in the range from i to n, but this isn’t a rigid rule. Letters at
the end of the alphabet are traditionally used for continuous variables.

References

Many of the references listed here were used in preparing the original 1980’s
version of this book. In most cases, the mathematics that they contain is still
worth reading for further background. Many can be found online, in university
libraries or used bookstores. A few more current references have been added.

[1] Allenby, R.B.J.T, Rings, Fields and Groups, Edward Arnold, 1983.
[2] Appel, K., and W. Haken, Every Planar Map Is 4-colorable, Bull, Am.

Math. Soc. no. 82 (1976): 711–12.
This has historical significance in that it announced the first correct proof
of the Four Color Theorem

[3] Austin, A. Keith, An Elementary Approach to NP-Completeness American
Math. Monthly 90 (1983): 398-99.

[4] Beardwood, J., J. H. Halton, and J. M. Hammersley, The Shortest Path
Through Many Points Proc. Cambridge Phil. Soc. no. 55 (1959): 299–327.

[5] Ben-Ari, M, Principles of Concurrent Programming, Englewood Cliffs,
NJ: Prentice-Hall, 1982.

[6] Berge, C, The Theory of Graphs and Its Applications, New York: Wiley,
1962.

[7] Bogart, Kenneth P, Combinatorics Through Guided Discovery, 2005.
This book may be freely downloaded and redistributed at http://www.math.dartmouth.edu/
news-resources/electronic/kpbogart/ under the terms of the GNU Free
Documentation License (FDL), as published by the Free Software Foun-
dation.

[8] Busacker, Robert G., and Thomas L. Saaty, Finite Graphs and Networks,
New York: McGraw-Hill, 1965.

[9] Connell, Ian, Modern Algebra, A Constructive Introduction, New York:
North-Holland, 1982.

[10] Denning, Peter J., Jack B. Dennis, and Joseph L. Qualitz, Machines,
Languages, and Computation, Englewood Cliffs, NJ: Prentice-Hall, 1978.

[11] Denning, Peter J, Multigrids and Hypercubes. American Scientist 75
(1987): 234-238.

[12] Dornhoff, L. L., and F. E. Hohn, Applied Modern Algebra, New York:
Macmillan, 1978.

[13] Ford, L. R., Jr., and D. R. Fulkerson, Flows in Networks, Princeton, NJ:
Princeton Univesity Press, 1962.

[14] Fraleigh, John B, A First Course in Abstract Algebra, 3rd ed. Reading,
MA: Addison-Wesley, 1982.

557

http://www.math.dartmouth.edu/news-resources/electronic/kpbogart/
http://www.math.dartmouth.edu/news-resources/electronic/kpbogart/

APPENDIX F. GLOSSARY 558

[15] Gallian, Joseph A, Contemporary Abstract Algebra, D.C. Heath, 1986.
[16] Gallian, Joseph A, Group Theory and the Design of a Letter-Facing

Machine, American Math. Monthly 84 (1977): 285-287.
[17] Hamming, R. W, Coding and Information Theory, Englewood Cliffs, NJ:

Prentice-Hall, 1980.
[18] Hill, F. J., and G. R. Peterson, Switching Theory and Logical Design, 2nd

ed. New York: Wiley, 1974.
[19] Hofstadter, D. R, Godel, Escher, Bach: An Eternal Golden Braid, New

York: Basic Books, 1979.
[20] Hohn, F. E, Applied Boolean Algebra, 2nd ed. New York: Macmillan,

1966.
[21] Hopcroft, J. E., and J. D. Ullman, Formal Languages and Their Relation

to Automata, Reading, MA: Addison-Wesley, 1969.
[22] Hu, T. C, Combinatorial Algorithms, Reading, MA: Addison-Wesley, 1982.
[23] Knuth, D. E, The Art of Computer Programming. Vol. 1, Fundamental

Algorithms, 2nd ed. Reading, MA: Addison-Wesley, 1973.
[24] Knuth, D. E, The Art of Computer Programming. Vol. 2, Seminumerical

Algorithms, 2nd ed., Reading, MA: Addison-Wesley, 1981.
[25] Knuth, D. E, The Art of Computer Programming. Vol. 3, Sorting and

Searching, Reading, MA: Addison-Wesley, 1973.
[26] Knuth, D. E, The Art of Computer Programming. Vol. 4A, Combinatorial

Algorithms, Part 1, Upper Saddle River, New Jersey: Addison-Wesley,
2011.
https://www-cs-faculty.stanford.edu/~knuth/taocp.html

[27] Kulisch, U. W., and Miranker, W. L, Computer Arithmetic in Theory
and Practice, New York: Academic Press, 1981.

[28] Levin, Oscar, Discrete Mathematics: An Open Introduction, http://
discrete.openmathbooks.org.

[29] Lipson, J. D, Elements of Algebra and Algebraic Computing, Reading,
MA: Addison-Wesley, 1981.

[30] Liu, C. L, Elements of Discrete Mathematics, New York: McGraw-Hill,
1977.

[31] O’Donnell, Analysis of Boolean Functions.
A book about Fourier analysis of boolean functions that is being developed
online in a blog.

[32] The Omnificent English Dictionary In Limerick Form .
The source of all limericks that appear at the beginning of most chapters.
https://www.oedilf.com/

[33] Ore, O, Graphs and Their Uses, New York: Random House, 1963.
[34] Parry, R. T., and H. Pferrer, The Infamous Traveling-Salesman Problem:

A Practical Approach Byte 6 (July 1981): 252-90.
[35] Pless, V, Introduction to the Theory of Error-Correcting Codes, New York:

Wiley-Interscience, 1982.
[36] Purdom, P. W., and C. A. Brown, The Analysis of Algorithms, Holt,

Rinehart, and Winston, 1985.
[37] Quine, W. V, The Ways of Paradox and Other Essays, New York: Random

https://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://discrete.openmathbooks.org
http://discrete.openmathbooks.org
https://www.oedilf.com/

APPENDIX F. GLOSSARY 559

House, 1966.
[38] Ralston, A, The First Course in Computer Science Needs a Mathematics

Corequisite, Communications of the ACM 27-10 (1984): 1002-1005.
[39] Solow, Daniel, How to Read and Do Proofs, New York: Wiley, 1982.
[40] Sopowit, K. J., E. M. Reingold, and D. A. Plaisted The Traveling Salesman

Problem and Minimum Matching in the Unit Square.SIAM J. Computing,
1983,12, 144–56.

[41] Standish, T. A, Data Structure Techniques, Reading, MA: Addison-Wesley,
1980.

[42] Stoll, Robert R, Sets, Logic and Axiomatic Theories, San Francisco: W.
H. Freeman, 1961.

[43] Strang, G, Linear Algebra and Its Applications, 2nd ed. New York:
Academic Press, 1980.

[44] Tucker, Alan C, Applied Combinatorics, 2nd ed. New York: John Wiley
and Sons, 1984.

[45] Wand, Mitchell, Induction, Recursion, and Programming, New York:
North-Holland, 1980.

[46] Warshall, S, A Theorem on Boolean Matrices Journal of the Association
of Computing Machinery, 1962, 11-12.

[47] Weisstein, Eric W. Strassen Formulas, MathWorld--A Wolfram Web
Resource, http://mathworld.wolfram.com/StrassenFormulas.html.

[48] Wilf, Herbert S, Some Examples of Combinatorial Averaging, American
Math. Monthly 92 (1985).

[49] Wilf, Herbert S. generatingfunctionology, A K Peters/CRC Press, 2005
The 1990 edition of this book is available at https://www.math.upenn.edu/
~wilf/DownldGF.html

[50] Winograd, S, On the Time Required to Perform Addition, J. Assoc. Comp.
Mach. 12 (1965): 277-85.

[51] Wilson, R., Four Colors Suffice - How the Map Problem Was SolvedPrinceton,
NJ: Princeton U. Press, 2013.

https://www.math.upenn.edu/~wilf/DownldGF.html
https://www.math.upenn.edu/~wilf/DownldGF.html

Index

Abelian Group, 271
a Limerick, 264

Adjacency Matrix, 117
adjacency matrix

a Limerick, 101
Adjacency Matrix Method, 197
Algebraic Systems, 268
algorithm

a Limerick, 454
Alternating Group, 406
Alternating group

a Limerick, 390
An, 555
Analog-to-digital Conversion, 210
Antisymmetric Relation, 108
Associative Property, 266
Atom of a Boolean Algebra, 355
augmented matrix

a Limerick, 306
Automata, 379
Automorphism

Inner, 305

Basic Law Of Addition:, 29
Basic Set Operations, 5
Basis, 323
Biconditional Proposition, 42
Bijection, 130
Binary Conversion Algorithm, 14
Binary Operation., 265
Binary Representation, 13
Binary Search, 141
Binary Tree, 254
Binary Trees, 253
Binomial Coefficient, 33

Recursive Definition, 139
Binomial Coefficient Formula, 34
Binomial Theorem, The, 36
Bipartite Graph., 234
Bipartitie

a Limerick, 181

Bit, 555
Boolean Algebra, 352
Boolean Algebras, 351
Boolean Arithmetic, 117
Boolean Expression, 359
Boolean Expressions, 359
Bounded Lattice, 351
Breadth-First Search, 197
Breadth-first Search, 199
Bridge, 242
Bubble Sort, 163
Byte, 555
Bézout’s lemma, 280

Cancellation in Groups, 274
Cardinality., 130
Cartesian Product, 11
Center of a Graph, 226
Center of a graph, 202
Characteristic Equation, 151
Characteristic function, 128
Characteristic Polynomial, 466
Characteristic Roots, 151
Child

of a Root, 248
Chinese Remainder Theorem, 393
Chromatic Number, 232
Closed Form Expression., 144
Closest Neighbor Algorithm, 217
Closure Property, 266
Code

Polynomial, 447
Codes

Linear, 418
Coding Theory, 418
Cofactor, 466
Combinations, 33
Commutative Property, 265
Complement of a Lattice Element,

351
as an operation, 352

560

INDEX 561

Complement of a set, 6
Complemented Lattice, 351
Complete Undirected Graph., 183
Complex Number, 555
Composite Integer, 555
Composition of Functions, 134
Composition of Relations, 103
Concatenation, 374
Conditional Statement, 41
Congruence Modulo n, 112
Conjunction, Logical, 40
Connected Component, 186
Connectivity in Graphs, 196
Constant, 555
Contradiction, 46
Contrapositive, 42
Converse, 42
Coset, 397
Coset Counting Formula, 398
Coset Representative, 397
Cosets

Operation on, 399
Cosets and Factor Groups, 396
Countable Set, 130
Counting Binary Trees, 260
covering relation, 356
Creative Commons, 555
Cycle, 237
Cycle Notation, 404
Cyclic Group, 290, 390
Cyclic Subgroup, 290

Data Structure, 555
Degree, 189
Degree Sequence of a Graph, 189
Derangement, 164
Detachment, 50
Determinant, 466

1× 1 and a 2× 2 cases, 465
diagonal matrix

a Limerick, 87
Diagonalizable Matrix, 328
Diagonalization Process, The, 326
Diameter of a Graph, 202
Digraph, 105
Dihedral Group, 407

Definition, 410
Dimension of a Vector Space, 324
Direct Product, 292

of Two Groups, 292
Direct Products, 292
Direct proof, 53
Directed Graph, 181
Directed graph, 105

Disjoint Cycles, 404
Disjoint Sets, 5
Disjunction, Logical, 40
Distinct, 555
Distributive Lattice, 349
Distributive Property, 266
Divides, 102
Division Property for Integers, 278
Division Property for Polynomials,

443
Divisors of an Integer, 347
Doyle, Chris, 125, 390
Duality for Boolean Algebras, 353

Eccentricity of a vertex, 202
Egg, Bob, 87
Eigenvalue, 326
Eigenvector, 326
Elementary Operations on

Equations, 307
Elementary Row Operations, 309
Embedding of a graph, 105
Empty Graph, 182
Empty set, 3
empty set

a Limerick, 1
Equivalence, 47
Equivalence Classes, 111
Equivalence Relation, 111
Equivalence Relations, 111
Euclidean Algorithm, The, 279
Euler’s Formula, 230
Euler’s Theorem, 207

Koenigsberg Case, 206
Eulerian Paths, Circuits, Graphs,

206
Even Integer, 555
Existential Quantifier, 66
Exponentiation in Groups, 275
Expression Tree, 257
Extended Rule Of Products, The,

22

Factor, 555
Factor Group, 401
Factor Theorem, 443
Factorial, 25
Fibonacci Sequence, 143

Matrix Representation, 335
Fibonacci sequence

a Limerick, 139
Field, 436
field extension

a Limerick, 428

INDEX 562

Finite-State Machine, 380
Finite-State Machines, 379
Five-Color Theorem, 233
Flow Augmenting Path, 223
Forest., 238
Formal Language, 374
formal logic

a Limerick, 39
Four-Color Theorem, 233
Frankovich, Jesse, 454
Free Monoids and Languages, 373
Full binary tree, 254, 255
Function, 125

Bijective, 130
Composition, 134
Equality, 133
Injective, 129
One-to-one, 129
Onto, 130
Surjective, 130

Functions
Of two Variables, 127

Functions Between Two Sets
Set of, 126

Fundamental Theorem of Group
Homomorphisms, 416

Gauss-Jordan Algorithm, 312
genealogical terms, 247
Generalized Set Operations, 17
Generate, 321
Generating Function, 167
Generating Functions, 166

Closed form expressions for,
174

Operations on, 172
Generator, 290
George Boole

a Limerick, 345
Glossary, 555
Goldie, 39, 139
Graph

Data Structures, 192
Multigraph, 183
Simple Directed, 181
Simple Undirected, 182

Graph Coloring, 232
Graph Optimization, 216
Graphic Sequence, 189
Gray Code, 210
Gray Code Decoder, 384
Greatest Common Divisor (gcd),

278
Greatest Element, 346

Greatest Lower Bound, 346
Group, 270

Hamiltonian Paths, Circuits, and
Graphs, 209

Hamming Distance, 419
Hasse Diagram, 109
Homogeneous Recurrence

Relation., 150
Homomorphism, 414

Group, 411
Howlett,Chris, 181

Idempotent Property, 266
Identity Function, 135
Identity Matrix, 94
Identity Property, 266
Iff, 555
Image of an Element., 126
Implication, 47
Improper subset, 3
Inclusion-Exclusion, Laws of, 31
Indirect proof, 54
Indirect Reasoning, 50
Induced Subgraph, 185
Induction and Recursion, 144
Injection, 129
Integer, 555
Integers Modulo n

Additive Group, 283
Multiplicative Group, 283

Integral Domain, 434
Intersection, 5
Inverse

Logical, 42
Matrix, 94

Inverse Function
of a function on a set, 135

Inverse Property, 266
Involution Property, 266
Irrational Number, 556
Irreducibility of a Polynomial, 444
Isomorphic Graphs, 188
Isomorphism

Group, 300
Isomorphisms, 298

Join, 349

Karnaugh map, 362
Kernel, 415
kernel of a function, 129
Kruskal’s Algorithm, 250

Lagrange’s Theorem, 399

INDEX 563

LaTeX, 556
Lattice, 349
Lattice Paths, 37
Lattices, 349
Laws of Matrix Algebra, 97
Leaf of a binary tree, 254
Leaf, of a binary tree, 254
Least Element, 346
Least Upper Bound, 346
Left Distributive Property, 266
Level of a vertex, 248
Levels of Abstraction, 269
Limerick

countably infinite, 125
Enumerative Combinatorics,

20
Linear Code, 422
Linear Combination., 321
Linear Dependence, 323
Linear Equations

over the Integers Mod 2, 340
Linear Equations in a Group, 275
Linear Independence, 323
Logarithm

General Base, 162
Logarithm, base 2, 161
Logarithms, 161

Properties, 161
Logic Design, 363
Lower Bound, 345

Machine of a Monoid, 387
Many Faces of Recursion, The, 139
Matrix Addition, 89
Matrix Inversion, 315
Matrix Multiplication, 89
Matrix Oddities, 98
Maximal flow, 223
Meet, 349
Merge Sort, 163
Mesh Graph, 236
Minimal Spanning Tree, 242
Minimum Diameter Spanning Tree,

244
Minor, 465
Minset, 83
Minset Normal Form, 84
Minterm, 361
Minterm Normal Form, 361
Modular Addition, 282
Modular Arithmetic, 281

Properties, 283
Modular Multiplication, 282
Modus Ponens

see Detachment, 50
Modus Tollens

see Indirect Reasoning, 50
Monoid, 370

of a Finite-State Machine, 384
Monoids, 370
Multigraph, 183
Multiple Pop and Push, 172
Multiples, 556
Multiplicative Inverses, 430

N-cube, 210
Natural Homomorphism, 415
Natural Numbers, 556
Negation, Logical, 41
Network, 221
Networks, 221
Ngai, Steve, 306
Nonhomogeneous of Finite Order

Linear Relations
Solution, 153

Nonnegative Number, 556
Normal Subgroup., 413
Normal Subgroups, 411

Odd Integer, 556
Operation Tables, 267
Operations, 264
Order

of elements of a finite cyclic
group, 393

Order of a Group Element, 290
Order of a Recurrence Relation,

149
Order Sequence, 302
Ordering Diagram, 109
Oslan, Steven, vii

Parent of a vertex, 248
Partial Ordering, 108, 345
Partially ordered set, 108
Partition, 29

of a group by cosets, 398
Path Graph, 229
Perfect Codes, 427
Permutation, 26, 136
Permutation Counting Formula, 26
Permutation Groups, 402
Permutations

Composition, 404
Phrase Structure Grammar, 376
Pigeonhole Principle, 131
Planar Graph, 229
Plane Graph, 229
Polynomial

INDEX 564

Irreducible, 444
Polynomial Addition, 440
Polynomial Code, 447
Polynomial Expression

Non-recursive)., 140
Recursive definition, 141

Polynomial Multiplication, 441
Polynomial over a Ring, 440
Polynomial Units, 451
Polynomials, 140
Polynomials and their evaluation,

139
Poset, 108
Posets Revisited, 345
Positive Number, 556
Power Series, 449
Power Series Units, 451
Power Set, 11
Power Set Cardinality Theorem, 22
Powers, 556
Powers of Functions, 134
PreTeXt, 556
Prim’s Algorithm, 243
Prime, 556
Prime number, 63
Products

Extended Rule of, 22
Rule of, 21

Proper subset, 3
Properties of Functions, 129
Properties of Operations, 265
Proposition, 39
Propp, Jim, 302
psheil, 101

Quantifiers, 65
Multiple, 67
Negation, 66

Queue, 556

Radius of a graph, 202
Range of a Function., 126
Rational Number, 556
Real Number, 556
Rectangular codes, 426
Recurrence Relation, 148
Recurrence Relations

Solving, 149
Recurrence Relations Obtained

from “Solutions”, 150
Recursive Language, 375
Recursive Searching, 141
Reducible Polynomial, 444
References, 557

Reflexive Relation, 108
Regular Grammar, 378
Relation, 101
Relation Notation, 103
Relation on a Set, 102
Relatively Prime, 279
Right Distributive Property, 266
Ring, 428

Commutative, 429
Ring Isomorphism., 431
Ring with unity, 429
Robinson, Andrew, 345
Rooted Tree, 248
Rooted Trees, 247
Row Equivalent Matrices, 309
Rule Of Products, The, 21

SageMath, 556
SageMath Note

bridge hands, 36
Cartesian Products and Power

Sets, 11
Functions, 127
Graphs, 194
Kruskal’s Algorithm, 250
Matrix Diagonalization, 332
Matrix Exponential, 338
Matrix Reduction, 313
Modular Arithmetic, 284
Power Series, 261
Search in a Graph, 203
Sets, 8

Scalar Multiplication, 89
Sequence, 145
Sequences, 145

Operations on, 170
Recursively Defined, 142

Set of Functions Between Two Sets,
126

Set-Builder Notation, 2
Sheffer Stroke, 48
SheilaB, 1
Simple Undirected Graph, 182
Solution Set, 306
Some General Properties of

Groups, 273
Span, 321
Spanning Subgraph, 185
Spanning Tree, 241
Spanning Trees, 240
Spindel, Howard, 264
Stack, 556
Strings over an Alphabet, 373
STT, See Sun Tzu’s Theorem

INDEX 565

Subgraph, 185
Subgroup, 287

Conditions, 288
Submonoid

Generated by a Set, 371
Subsystem, 287
Subsystems, 287
Subtraction, 556
Summation Notation and

Generalizations, 16
Sun Tzu’s Theorem, 393
Surjection, 130
Switching Theory, 363
Symmetric Difference, 8
Symmetric Group, 403
Symmetric Relation, 111
Syndrome, 423
Systems of Linear Equations, 306

Tautology, 46
Term, 556
Three Utilities Puzzle, 230
Tournament Graph, 187
Transitive Closure, 120
Transitive Relation, 108
Transposition, 405
Traveling Salesman Problem, The,

217

Traversals of Binary Trees, 255
Traversals of Graphs, 206
Tree, 237
Truth Set, 57

Unary Operation., 265
Union, 5
Unique, 556
Units

of a ring, 430
of Polynomial Rings, 451
of Power Series Rings, 451

Unity of a Ring, 429
Universal Quantifier, 66
Universe, 5
Upper Bound, 345

Value of a Flow, 223
Variable, 556
Vector Space, 319
Vector Spaces, 319

Weighted Graph, 216
What Is a Tree?, 237

XOR linked list, 296

Zero Divisor, 433
zqms, 428

	Acknowledgements
	Preface
	Set Theory
	Set Notation and Relations
	Basic Set Operations
	Cartesian Products and Power Sets
	Binary Representation of Positive Integers
	Summation Notation and Generalizations

	Combinatorics
	Basic Counting Techniques - The Rule of Products
	Permutations
	Partitions of Sets and the Law of Addition
	Combinations and the Binomial Theorem

	Logic
	Propositions and Logical Operators
	Truth Tables and Propositions Generated by a Set
	Equivalence and Implication
	The Laws of Logic
	Mathematical Systems and Proofs
	Propositions over a Universe
	Mathematical Induction
	Quantifiers
	A Review of Methods of Proof

	More on Sets
	Methods of Proof for Sets
	Laws of Set Theory
	Minsets
	The Duality Principle

	Introduction to Matrix Algebra
	Basic Definitions and Operations
	Special Types of Matrices
	Laws of Matrix Algebra
	Matrix Oddities

	Relations
	Basic Definitions
	Graphs of Relations on a Set
	Properties of Relations
	Matrices of Relations
	Closure Operations on Relations

	Functions
	Definition and Notation
	Properties of Functions
	Function Composition

	Recursion and Recurrence Relations
	The Many Faces of Recursion
	Sequences
	Recurrence Relations
	Some Common Recurrence Relations
	Generating Functions

	Graph Theory
	Graphs - General Introduction
	Data Structures for Graphs
	Connectivity
	Traversals: Eulerian and Hamiltonian Graphs
	Graph Optimization
	Planarity and Colorings

	Trees
	What Is a Tree?
	Spanning Trees
	Rooted Trees
	Binary Trees

	Algebraic Structures
	Operations
	Algebraic Systems
	Some General Properties of Groups
	Greatest Common Divisors and the Integers Modulo n
	Subsystems
	Direct Products
	Isomorphisms

	More Matrix Algebra
	Systems of Linear Equations
	Matrix Inversion
	An Introduction to Vector Spaces
	The Diagonalization Process
	Some Applications
	Linear Equations over the Integers Mod 2

	Boolean Algebra
	Posets Revisited
	Lattices
	Boolean Algebras
	Atoms of a Boolean Algebra
	Finite Boolean Algebras as n-tuples of 0's and 1's
	Boolean Expressions
	A Brief Introduction to Switching Theory and Logic Design

	Monoids and Automata
	Monoids
	Free Monoids and Languages
	Automata, Finite-State Machines
	The Monoid of a Finite-State Machine
	The Machine of a Monoid

	Group Theory and Applications
	Cyclic Groups
	Cosets and Factor Groups
	Permutation Groups
	Normal Subgroups and Group Homomorphisms
	Coding Theory, Linear Codes

	An Introduction to Rings and Fields
	Rings, Basic Definitions and Concepts
	Fields
	Polynomial Rings
	Field Extensions
	Power Series

	Appendices
	Algorithms
	An Introduction to Algorithms
	The Invariant Relation Theorem

	Python and SageMath
	Python Iterators
	Dictionaries

	Determinants
	Definition
	Computation

	Hints and Solutions to Selected Exercises
	Notation
	Glossary
	An Informal Glossary of Terms

	Back Matter
	References
	Index

