
chapter 11

ALGEBRAIC SYSTEMS

GOALS
The primary goal of this chapter is to make the reader aware of what an algebraic system is and how algebraic systems can be studied at different levels of
abstraction. After describing the concrete, axiomatic, and universal levels, we will introduce one of the most important algebraic systems at the axiomatic
level,  the  group.  In  this  chapter,  group  theory  will  be  a  vehicle  for  introducing  the  universal  concepts  of  isomorphism,  direct  product,  subsystem,  and
generating  set.  These  concepts  can  be  applied  to  all  algebraic  systems.  The  simplicity  of  group  theory  will  help  the  reader  obtain  a  good  intuitive
understanding of these concepts.  In Chapter 15,  we will  introduce some additional  concepts and applications of group theory.  We will  close the chapter
with a discussion of how some computer hardware and software systems use the concept of an algebraic system.
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11.1 Operations
One of the first mathematical skills that we all learn is how to add a pair of positive integers. A young child soon recognizes that something is wrong if a
sum has two values,  particularly if  his  or  her  sum is  different  from the teacher's.  In  addition,  it  is  unlikely that  a  child would consider  assigning a  non-
positive value to the sum of two positive integers. In other words, at an early age we probably know that the sum of two positive integers is unique and
belongs to the set of positive integers. This is what characterizes all binary operations on a set.

Definition: Binary Operation. Let S be a nonempty set. A binary operation on S is a rule that assigns to each ordered pair
of elements of S a unique element of S. In other words, a binary operation is a function from S µ S into S.

Example  11.1.1.  Union  and  intersection  are  both  binary  operations  on  the  power  set  of  any  universe.  Addition  and
multiplication are binary operators on the natural numbers. Addition and multiplication are binary operations on the set of 2
by 2 real matrices, M2µ2HRL.   Division is a binary operation on some sets of numbers, such as the positive reals. But on the
integers (1 ê2 – Z) and even on the real numbers H1 ê0 is not defined), division is not a binary operation.

Notes:

(a)  We  stress  that  the  image  of  each  ordered  pair  must  be  in  S.  This  requirement  disqualifies  subtraction  on  the  natural
numbers from consideration as a binary operation, since 1 - 2 is not a natural number. Subtraction is a binary operation on
the integers.

(b)     On Notation.  Despite  the  fact  that  a  binary  operation is  a  function,  symbols,  not  letters,  are  used to  name them.  The
most commonly used symbol for a binary operation is an asterisk, *. We will also use a diamond, ù,  when a second symbol is
needed.

(c)   If * is a binary operation on S and a, b œ S, there are three common ways of denoting the image of the pair (a, b). They
are:

  
*a b a*b a b *

Prefix Form Infix Form Postfix FOrm

We are all familiar with infix form. For example, 2 + 3 is how everyone is taught to write the sum of 2 and 3. But notice how
2 + 3 was just described in the previous sentence! The word sum preceded 2 and 3. Orally, prefix form is quite natural to us.
The prefix and postfix forms are superior to infix form in some respects. In Chapter 10, we saw that algebraic expressions
with more than one operation didn't need parentheses if they were in prefix or postfix form. However, due to our familiarity
with infix form, we will use it throughout most of the remainder of this book.
Some operations, such as negation of numbers and complementation of sets, are not binary, but unary operators.

Definition: Unary Operation. Let  S be a nonempty set. A unary operator on S is a rule that assigns to each element of S
a unique element of S. In other words, a unary operator is a function from S into S.

COMMON PROPERTIES OF OPERATIONS
Whenever an operation on a set is encountered, there are several properties that should immediately come to mind. To effectively make use of an operation,
you should know which of these properties it has. By now, you should be familiar with most of these properties. We will list the most common ones here to
refresh your memory and define them for the first time in a general setting. Let S be any set and * a binary operation on S.
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Properties that apply to a single binary operation:

Let * be a binary operation on a set S

* is commutative if a * b = b * a  for all a, b œ S.

* is associative if Ia * bM * c = a * Ib * cM for all a, b, c œ S.

*  has an identity if there exists an element, e, in S such that a * e = e * a = a for all a œ S.

*  has the inverse property if for each a œ S, there exists  b œ S such that a*b = b *a = e.  

    We call b an inverse of a.

*  is idempotent if a * a = a for all a œ S. Properties that apply to two binary operations:

Let ù be a second binary operation on S.

ù is left distributive over * if a ù Ib * cM = Ia ù bM * Ha ù cL for all a, b, c œ S.

ù is right distributive over * if Ib * cMùa = Ib ùaM * Hc ù aL for all a, b, c œ S.

ù is distributive over * if ù is both left and right distributive over *.

Let  -  be a unary operation.

A unary operation ~ on S has the involution property if -H-aL = a for all a œ S.

Finally, a property of sets, as they relate to operations.

If T is a subset of S, we say that T is closed under * if a, b œ T  implies that a * b œ T . In other words, by operating
on elements of T with *, you can't obtain new elements that are outside of T.

Example 11.1.2.

(a)   The odd integers are closed under multiplication, but not under addition.

(b)   Let p be a proposition over U and let A be the set of propositions over U that imply p. That is; q œ A if q fl p. Then A is
closed under both conjunction and disjunction.

(c)   The set positive integers that are multiples of 5 is closed under both addition and multiplication.

Note: It is important to realize that the properties listed above depend on both the set and the operation(s).

OPERATION TABLES
If the set on which an operation is defined is small, a table is often a good way of describing the operation. For example, we might want to define Å⊕ on
80, 1, 2< by 

aÅ⊕b = :
a + b if a + b < 3

a + b - 3 if a + b ¥ 3

The table for Å⊕ is

"

Å⊕ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

The top row and left  column are the column and row headings, respectively.  To determine aÅ⊕b,  find the entry in Row a  and Column b.  The following
operation table serves to define * on 8i, j, k<.
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"

* i j k

i i i i

j j j j

k k k k

Note that; j*k = j, yet k * j = k. Thus, * is not commutative. Commutivity is easy to identify in a table: the table must be symmetric with respect to the
diagonal going from the top left to lower right.

EXERCISES FOR SECTION 11.1
A Exercises

1.   Determine the properties that the following operations have on the positive integers.

(a)   addition

(b)   multiplication

(c)   M defined by a M b = larger of a and b

(d)   m defined by a m b = smaller of a and b

(e)  @ defined by a ü b = a^b

2.   Which pairs of operations in Exercise 1 are distributive over one another?

3.   Let * be an operation on a set S and A, B Œ S. Prove that if A and B are both closed under *, then A› B is also closed under *, but A ‹ B need not be.

4.   How can you pick out the identity of an operation from its table?

5.   Define a * b by a - b , the absolute value of a - b. Which properties does * have on the set of natural numbers, N?
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11.2 Algebraic Systems
An algebraic  system is  a  mathematical  system consisting  of  a  set  called  the  domain and one or  more  operations  on the  domain.  If  V  is  the  domain and
*1 , *2 , …, *n are the operations, @V;*1, *2 , …, *nD denotes the mathematical system. If the context is clear, this notation is abbreviated to V.

Example 11.2.1.

(a)   Let B*  be the set of all finite strings of 0's and 1's including the null (or empty) string, l. An algebraic system is obtained
by adding the operation of concatenation. The concatenation of two strings is simply the linking of the two strings together
in the order indicated. The concatenation of strings a with b is denoted a <> b.  For example, "01101" <> "101" = "01101101"
and l <> "100" = "100". Note that concatenation is an associative operation and that l is the identity for concatenation.

Note  on  Notation:   There  isn't  a  standard  symbol  for  concatenation.   We  have  chosen  <>  to  be  consist  ant  with  the
notation used in Mathematica for the StringJoin function, which does concatenation.   Many programming languages use
the plus sign for concatenation, but others use & or ||.

(b)   Let  M  be  any  nonempty  set  and  let  *  be  any  operation  on  M  that  is  associative  and  has  in  identity  in  M.   Our  second
example might seem strange, but we include it to illustrate a point. The algebraic system @B*; <>D is a special case of @M;*D.
Most  of  us  are  much  more  comfortable  with  B*  than  with  M.   No  doubt,  the  reason  is  that  the  elements  in  B*  are  more
concrete.  We know what they look like and exactly how they are combined. The description of M  is  so vague that we don't
even  know  what  the  elements  are,  much  less  how  they  are  combined.  Why  would  anyone  want  to  study  M?  The  reason  is
related to this  question:  What  theorems are of  interest  in an algebraic  system? Answering this  question is  one of  our main
objectives in this chapter.  Certain properties of algebraic systems are called algebraic properties, and any theorem that says
something about the algebraic properties of a system would be of interest. The ability to identify what is algebraic and what
isn't is one of the skills that you should learn from this chapter.
Now, back to the question of why we study M. Our answer is to illustrate the usefulness of M with a theorem about M.

Theorem 11.2.1. If a, b are elements of M and a * b = b * a, then Ia * bM * Ia * bM = Ha * aL * Ib * bM.
Proof:

Ha*bL* Ha*bL = a* Hb* Ha*bLL
= a* HHb*aL*bL
= a* HHa*bL*bL
= a* Ha* Hb*bLL
= Ha*aL* Hb*bL

  Why ?
Why ?
Why ?
Why ?
Why ?

The power of this theorem is that it can be applied to any algebraic system that M describes. Since B*  is one such system, we can apply Theorem 11.2.1 to
any two strings that commute~for example, 01 and 0101. Although a special case of this theorem could have been proven for B*, it would not have been
any easier to prove, and it would not have given us any insight into other special cases of M .
Example  11.2.2.  Consider  the  set  of  2µ2  real  matrices,  M2µ2HRL,  with  the  operation  of  matrix  multiplication.  In  this  context,  Theorem  11.2.1  can  be

interpreted as saying that if A B = B A,  then HA BL2 = A2 B2.  One pair of matrices that this theorem applies to is 
2 1
1 2

 and 
3 -4
-4 3

.

LEVELS OF ABSTRACTION
One  of  the  fundamental  tools  in  mathematics  is  abstraction.  There  are  three  levels  of  abstraction  that  we  will  identify  for  algebraic  systems:  concrete,
axiomatic, and universal.
Concrete  Level.  Almost  all  of  the  mathematics  that  you  have  done  in  the  past  was  at  the  concrete  level.  As  a  rule,  if  you  can  give  examples  of  a  few
typical elements of the domain and describe how the operations act on them, you are describing a concrete algebraic system. Two examples of concrete
systems are B* and M2µ2HRL. A few others are:

(a)   The integers with addition. Of course, addition isn't the only standard operation that we could include. Technically, if we were to add multiplication,
we would have a different system.
(b)   The subsets of the natural numbers, with union, intersection, and complementation.

(c)   The complex numbers with addition and multiplication.

Axiomatic Level.  The next level of abstraction is the axiomatic level. At this level, the elements of the domain are not specified, but certain axioms are
stated  about  the  number  of  operations  and  their  properties.  The  system that  we  called  M  is  an  axiomatic  system.  Some  combinations  of  axioms  are  so
common that a name is given to any algebraic system  to which they apply. Any system with the properties of M is called a monoid. The study of M would
be called monoid theory. The assumptions that we made about M, associativity and the existence of an identity, are called the monoid axioms. One of your
few brushes with the axiomatic level may have been in your elementary algebra course. Many algebra texts identify the properties of the real numbers with
addition and multiplication as the field axioms. As we will see in Chapter 16, "Rings and Fields," the real numbers share these axioms with other concrete
systems, all of which are called fields.
Universal Level. The final level of abstraction is the universal level. There are certain concepts, called universal algebra concepts, that can be applied to
the study of all algebraic systems. Although a purely universal approach to algebra would be much too abstract for our purposes, defining concepts at this
level  should make it  easier  to  organize  the  various  algebraic  theories  in  your  own mind.  In  this  chapter,  we will  consider  the  concepts  of  isomorphism,
subsystem, and direct product.
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Universal Level. The final level of abstraction is the universal level. There are certain concepts, called universal algebra concepts, that can be applied to
the study of all algebraic systems. Although a purely universal approach to algebra would be much too abstract for our purposes, defining concepts at this
level  should make it  easier  to  organize  the  various  algebraic  theories  in  your  own mind.  In  this  chapter,  we will  consider  the  concepts  of  isomorphism,
subsystem, and direct product.
GROUPS

To illustrate the axiomatic level and the universal concepts, we will consider yet another kind of axiomatic system, the group. In Chapter 5 we noted that
the simplest equation in matrix algebra that we are often called upon to solve is A X = B, where A and B are known square matrices and X is an unknown
matrix. To solve this equation, we need the associative, identity, and inverse laws. We call the systems that have these properties groups.

Definition: Group. A group consists of a nonempty set G and an operation * on G satisfying the properties

(a)  * is associative on G:     Ia*bM*c = a* Ib *cM   for all a, b, c œ G.

(b)   There exists an identity element, e œ G such that a*e = e *a = a  for all a œ G.

(c) For all a œ G, there exists an inverse, there exist b œ G such that a *b = b *a = e.

A group is  usually  denoted by its  set's  name,  G,  or  occasionally  by @G; * D  to  emphasize  the operation.  At  the  concrete  level,  most  sets  have a  standard
operation associated with them that will form a group. As we will see below, the integers with addition is a group. Therefore, in group theory Z  always
stands for @Z; +D.
Generic Symbols. At the axiomatic and universal levels, there are often symbols that have a special meaning attached to them. In group theory, the letter e
is used to denote the identity element of whatever group is being discussed. A little later, we will prove that the inverse of a group element, a, is unique and
it is inverse is usually denoted a-1  and is read "a inverse." When a concrete group is discussed, these symbols are dropped in favor of concrete symbols.
These concrete symbols may or may not be similar to the generic symbols. For example, the identity element of the group of integers is 0, and the inverse
of n is denoted by -n, the additive inverse of n.
The asterisk could also be considered a generic symbol since it is used to denote operations on the axiomatic level.

Example 11.2.3.

(a)     The  integers  with  addition  is  a  group.  We  know  that  addition  is  associative.   Zero  is  the  identity  for  addition:
0 + n = n + 0 = n for all integers n. The additive inverse of any integer is obtained by negating it.  Thus the inverse of n is
-n.

(b)   The integers with multiplication is not a group. Although multiplication is associative and 1 is the identity for multiplica-
tion, not all integers have a multiplicative inverse in Z.  For example, the multiplicative inverse of 10 is 1

10
, but 1

10
 is not an

integer.

(c)     The  power  set  of  any  set  U  with  the  operation  of  symmetric  difference,  Å⊕,  is  a  group.  If  A  and  B  are  sets,  then
AÅ⊕B = HA ‹ BL - HA › BL. We will leave it to the reader to prove that Å⊕ is associative over PHU L. The identity of the group is the
empty set: AÅ⊕ « = A. Every set is its own inverse since A Å⊕ A = «. Note that PHU L is not a group with union or intersection.

Definition: Abelian Group. A group is abelian if its operation is commutative. 
Most of the groups that we will discuss in this book will be abelian. The term abelian is used to honor the Norwegian mathematician N. Abel (1802-29),
who helped develop group theory.

Norwegian Stamp honoring Abel
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EXERCISES FOR SECTION 11.2
A Exercises

1.   Discuss the analogy between the terms generic and concrete for algebraic systems and the terms generic and trade for prescription drugs.

2.   Discuss the connection between groups and monoids. Is every monoid a group? Is every group a monoid?

3.   Which of the following are groups?

(a)   B* with concatenation (Example 11.2.1a).

(b)   M2µ3HRL with matrix addition.

(c)   M2µ3HRL with matrix multiplication.

(d)   The positive real numbers, R+, with multiplication.

(e)   The nonzero real numbers, R*, with multiplication.

(f)   81, -1< with multiplication.

(g)  The positive integers with the operation M defined by a M b = larger of a and b.

4.  Prove that, Å⊕, defined by A Å⊕ B = HA ‹ BL - HA › BL  is an associative operation on PHUL.

5.   The following problem supplies an example of a non-abelian group. A rook matrix is a matrix that has only 0's and 1's as entries such that each row has
exactly one 1 and each column has exactly one 1. The term rook matrix is derived from the fact that each rook matrix represents the placement of n rooks
on an nµn chessboard such that none of the rooks can attack one another. A rook in chess can move only vertically or horizontally, but not diagonally. Let
Rn be the set of nµn rook matrices. There are six 3µ3  rook matrices:

  

I =
1 0 0
0 1 0
0 0 1

R1 =
0 1 0
0 0 1
1 0 0

R2 =
0 0 1
1 0 0
0 1 0

F1 =
1 0 0
0 0 1
0 1 0

F2 =
0 0 1
0 1 0
1 0 0

F3 =
0 1 0
1 0 0
0 0 1

(a)   List the 2µ2 rook matrices. They form a group, R2, under matrix multiplication. Write out the multiplication table. Is the group abelian?

(b)   Write out the multiplication table for R3 . This is another group. Is it abelian?

(c)   How many 4µ4 rook matrices are there? How many nµ n rook matrices are there?

6. For each of the following sets, identify the standard operation that results in a group. What is the identity of each group?

(a)   The set of all 2µ2 matrices with real entries and nonzero determinants.

(b)  The set of 2 µ 3 matrices with rational entries.

B Exercises

7. Let V = 8e, a, b, c<.  Let * be defined (partially) by x * x = e for all x œ V . Write a complete table for * so that @V; * D is a group.
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11.3 Some General Properties of Groups
In this section, we will present some of the most basic theorems of group theory. Keep in mind that each of these theorems tells us something about every
group. We will illustrate this point at the close of the section.

Theorem 11.3.1. The identity of a group is unique.
One difficulty that students often encounter is how to get started in proving a theorem like this. The difficulty is certainly not in the theorem's complexity.
Before actually starting the proof, we rephrase the theorem so that the implication it states is clear.

Theorem 11.3.1 (Rephrased). If G = @G; *D is a group and e is an identity of G, then no other element of G is an identity of
G.

Proof  (Indirect):  Suppose  that  f œ G,  f ¹≠ e,  and  f  is  an  identity  of  G.  We  will  show  that  f = e,  a  contradiction,  which
completes the proof:

          f = f * e   Since e is an identity.

 = e.       Since f is an identity.      ‡

Theorem 11.3.2. The inverse of any element of a group is unique.
The same problem is encountered here as in the previous theorem. We will leave it to the reader to rephrase this theorem. The proof is also left to the reader
to write out in detail. Here is a hint: If b and c are both inverses of a, then you can prove that b = c.  lf you have difficulty with this proof, note that we
have already proven it in a concrete setting in Chapter 5.

The significance of Theorem 11.3.2 is that we can refer to the inverse of an element without ambiguity. The notation for the inverse of a is usually a-1.
(note the exception below).

Example 11.3.1.

(a)   In any group, e-1 is the inverse of the identity e, which always is e.

(b)   Ia-1M
-1 is the inverse of a-1 , which is always equal to a (see Theorem 11.3.3 below).

(c)   Hx *y *zL-1 is the inverse of x * y * z.

(d)   In a concrete group with an operation that is based on addition, the inverse of a is usually written -a. For example, the
inverse  of  k - 3  in  the  group  @Z; +D  is  written  -Ik - 3M = 3 - k.  In  the  group  of  2 µ 2 matrices  over  the  real  numbers,  the

inverse of 4 1
1 -3  is written - 4 1

1 -3 , which equals -4 -1
-1 3 .

Theorem 11.3.3. If a is an element of group G, then Ia-1M
-1

= a.

Theorem 11.3.3 (Rephrased). If a has inverse b and b has inverse c, then a = c.

Proof:

         a = a * Ib * cM    because c is the inverse of b

= Ia * bM * c    why?

                         = e * c               why? 

= c.                     by the identity property of e.          ‡

Theorem 11.3.4. If a and b are elements of group G, then Ia*bM-1 = b-1 *a-1

Note: This theorem simply gives you a formula for the inverse of a * b. This formula should be familiar. In Chapter 5 we
saw that if A and B are invertible matrices, then (AB)~ l = B~ l A~ l .

Proof:  Let x = b-1 *a-1. We will prove that x inverts a * b.  Since we know that the inverse is unique, we will have prove
the theorem.

    Ia * bM * x = Ia * bM * Ib-1 *a-1M

= a* Ib * Ib-1 *a-1MM

= a* IIb *b-1M*a-1M

= a * Ie * a-1M

= a * a-1

= e
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    Ia * bM * x = Ia * bM * Ib-1 *a-1M

= a* Ib * Ib-1 *a-1MM

= a* IIb *b-1M*a-1M

= a * Ie * a-1M

= a * a-1

= e

Similarly, x * Ia * bM = e; therefore, Ia*bM-1 = x = b-1 *a-1 ‡

Theorem 11.3.5. Cancellation Laws. If a, b, and c are elements of group G, both a * b = a * c and b * a = c * a imply that
b = c.

Proof: Since a * b = a * c, we can operate on both a * b and a * c on the left with a-1 :

a-1 * Ia * bM = a-1 * Ha * cL
Applying the associative property to both sides we get

Ia-1 * aM * b = Ia-1 * aM * c
or

e * b = e * c
and finally

b = c.

This completes the proof of the left cancellation law. The right law can be proven in exactly the same way. ‡

Theorem  11.3.6.  Linear  Equations  in  a  Group.   If  G  is  a  group  and  a,  b,  œ  G,  the  equation  a * x = b  has  a  unique
solution, x = a-1 * b.  In addition, the equation x * a = b has a unique solution, x = b * a-1 .

Proof: (for a * x = b):

 a*x = b
= e * b
= Ia* a-1M * b
= a * Ia-1 * bM

By the cancellation law, we can conclude that x = a -1 * b. 

If c and d are two solutions of the equation a * x = b, then a * c = b = a * d  and, by the cancellation law, c = d . This verifies
that a -1 * b is the only solution of a * x = b.  ‡

Note: Our proof of Theorem 11.3.6 was analogous to solving 4 x = 9 in the following way: 

 4 x = 9 = J4 ÿ
1
4
N9 = 4 J

1
4

9N

Therefore, by cancelling 4, 

x =
1
4
ÿ 9 =

9
4
.

Exponentiation in a Group

If a is an element of a group G, then we establish the notation that 

a * a = a2

a*a*a = a3
etc.

 In addition, we allow negative exponent and define, for example, a-2 = Ia2M-1

Although this should be clear, proving exponentiation properties requires a more precise recursive definition:

Definition:  Exponentiation in a Group.   For n ¥ 0, define an  recursively by a 0 = e and if n > 0, an = an-1 *a.  Also, if
n > 1, a-n = IanM

-1 .

Example 11.3.2.
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Example 11.3.2.

(a)  In the group of positive real numbers with multiplication, 

    53 = 52 ÿ5 = I51 ÿ5M ÿ5 = II50 ÿ5M ÿ5M ÿ5 = HH1 ÿ5L ÿ5L ÿ5 = 5 ÿ5 ÿ5 = 125.

and

5-3 = H125L-1 = 1
125

(b)     In  a  group  with  addition,  we  use  a  different  form  of  notation,  reflecting  the  fact  that  in  addition  repeated  terms  are
multiples, not powers.  For example, in @Z; +D, a + a is written as 2 a, a + a + a is written as 3 a, etc. The inverse of a multiple
of a such as - Ha + a + a + a + aL = -H5 aL is written as H-5L a.
Based on the definitions for exponentiation above, there are several properties that can be proven. They are all  identical to the exponentiation properties
from elementary algebra. 

Theorem 11.3.7. Properties of Exponentiation. If a is an element of a group G, and n and m are integers,

(a)  a-n = Ia-1M
n    and hence  IanM

-1 = Ia-1M
n

(b)   an+m = an *am 

(c)   IanM
m = an m

We will leave the proofs of these properties to the interested reader.  All three parts can be done by induction.  For example the proof of  (b) would start by
defining the proposition  pHmL , m ¥ 0, to be  an+m = an *am for all n .   The basis is pH0L : an+0 = an *a0.
Our final theorem is the only one that contains a hypothesis about the group in question. The theorem only applies to finite groups.

Theorem 11.3.8.  If G is a finite group,  †G § = n, and a is an element of G, then there exists a positive integer m such that
am = e and m § n.

Proof: Consider the list a, a2, …, an+1  . Since there are n + 1 elements of G in this list, there must be some duplication.
Suppose that ap = aq, with p < q. Let m = q - p.    Then

 am = aq-p = aq *a-p  = aq * IapM
-1

= aq * IaqM
-1

= e

Furthermore, since 1 § p < q § n + 1,   m = q - p § n.    ‡

Consider the concrete group [Z; +]. All of the theorems that we have stated in this section except for the last one say something about Z. Among the facts
that we conclude from the theorems about Z are:

Since the inverse of 5 is -5, the inverse of -5 is 5.

The inverse of -6 + 71 is -H71L + -H-6L = -71 + 6.

 The solution of 12 + x = 22 is x = -12 + 22.

-4 H6L + 2 H6L = H-4 + 2L H6L = -2 H6L = -H2L H6LL.

7 H4 H3LL = H7 ÿ4L H3L = 28 H3L  (twenty-eight 3s).

EXERCISES FOR SECTION 11.3
A Exercises

1.   Let @G; * D be a group and a be an element of G.  Define f : G Ø G by f HxL = a * x.

(a)  Prove that f is a bijection.

(b)  On the basis of part a, describe a set of bijections on the set of integers.

2.   Rephrase Theorem 11.3.2 and write out a clear proof.

3.   Prove by induction on n that if a1, a2, …, an are elements of a group G, n ¥ 2, then

Ha1 *a2 *º⋯*anL-1 = an-1 *º⋯*a2-1 *a1-1.

       Interpret this result in terms of [Z; +]  and @R;*D.

4.   True or false? If a, b, c are elements of a group G, and a * b = c * a, then b = c. Explain your answer.
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4.   True or false? If a, b, c are elements of a group G, and a * b = c * a, then b = c. Explain your answer.

5.   Prove Theorem 11.3.7.

6.   Each of the following facts can be derived by identifying a certain group and then applying one of the theorems of this section to it. For each fact, list
the group and the theorem that are used.

(a) J 1
3
N 5 is the only solution of 3 x = 5.

(b)  -H-H-18LL = -18.

(c)  If A, B, C are 3µ3 matrices over the real numbers, with A + B = A + C, then B = C.

(d)  There is only one subset of the natural numbers for which K Å⊕ A = A for every A Œ N.
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