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Special Session on Teaching Mathematics in the New Millenium, III 
 
Abstract: Technology approaches will be presented to facilitate the teaching and learning of calculus related 
material from precalculus to the multivariate level.  Distinct approaches and calculator techniques used for applied 
mathematics courses in Management and those used for Science and Engineering students will be presented.  TI 
calculator code listings are supplied.   

The procedures and programs represent tools I have used while teaching different levels of calculus related material.  

Many of the programs and procedures were developed from scratch, while others were adapted from existing 

materials.  The code is for the TI-83 Plus group of graphing calculators. 

 

The sampling of calculator tools presented focus on issues that I have addressed at various levels. In addition to the 

tools presented, I have found that most students gain a better understanding of function behavior and the underlying 

mathematical concepts when manipulating window domain and range settings as opposed to using automated 

window setting features.  I have found this approach most helpful for all types of limit problems. 

 
The focus of the following material is with the use of 2D graphing capability.
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Algebra 
• Inequalities  
 
 • ax + b ≤ c  y1 = abs(ax + b) − c  and examine where y1 ≤ 0 
 
 • ax + b ≥ c  y1 = abs(ax + b) − c  and examine where  y1 ≥ 0
 ex: 2x −1 ≥ 5, define y1 = abs(2x −1) − 5 and look for regions where  y1 ≥ 0

  
The following more analytically challenging examples may arise in follow-up courses when reviewing 
precalculus topics.  The TI-83 approach is the same as that used above. 

ex: 
2
x

≤ 3, define y1 = abs(2 / x) − 3 and look for regions where y1 ≤ 0 to find that  −∞ < x ≤
−2
3

 

or 
2
3

≤ x < ∞    

  Analytically, consider separate cases for x>0 and x<0.   
 ex: 3x +1 < 2 x − 6 , define y1 = abs(3x +1) − 2abs(x − 6)  and examine the graph  

  
 with a window set as Xmin=-15, Xmax=10, Ymin=-15, Ymax=10 to find that   y1 < 0

 when −13 < x <
11
5

. 

 Analytically, square both sides to get (3x +1)2 < 4(x − 6)2 . Collect terms and factor to get 
 (5x −11)(x + 13) < 0 .  

• Rational Equations 

 ex:  
5

x − 3
−

30
x2 − 9

= 1 

 
 • Graphically: y1 = 5/( x − 3) − 30 /(x2 − 9) −1  
  a) Look for zeroes of  (zoom 6)   y1
  b) Redefine window to ymin= -5 and ymax=5 
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 • Analytically: 
5

x − 3
−

30
x2 − 9

= 1 LCD is (x+3)*(x-3) 

 

  (x + 3)(x − 3)
5

x − 3
− (x + 3)(x − 3)

30
x2 − 9

= 1(x + 3)(x − 3)  

  5x +15 − 30 = x 2 − 9   
  then x2 − 5x + 6 = 0  and x=2 or x=3, but x=3 is not a solution 
 
Precalculus 
• Radical Equations 
 ex: Solve x = x + 7 + 5 
 • Graphically:  y1 = x − (x + 7) − 5 and look for zeroes with Xmin=-10,   
  Xmax=20, Ymin=-10, Ymax=10. 

   
   
 • Analytically: x − 5 = x + 7 , then square to get  
 
   and x − 5( )2 = x + 7 x2 −10x + 25 = x + 7 or x2 −11x +18 = 0  
  then x=2 or x=9, but x=2 is not a solution 

 
 
• Systems of Equations 

 •  
ax + by = c
dx + ey = f

 • y : 2nd CALC intersect for a 2x2 system, for an nxn system introduce alternate techniques. 1 = y2

 • 
AX = B

X = A−1B
 

 
  

3x + 2y = 7
 ex: 

5x − y = 3
 

 a) MATRX, -> to EDIT, 1 to edit matrix A  
 b) 2 enter (row), 2 enter (column), 3 enter, 2 enter, 5 enter, -1 enter,  then 2nd QUIT 
 c) MATRX, -> to EDIT, 2 to edit matrix B 
 d) 2 enter (row), 1 enter (column)7 enter, 3 enter, then 2nd QUIT 
 e) to compute X = A−1B , MATRX 1 (i.e. matrix A), x−1  (inverse of A), 
 * (multiplication symbol is optional) MATRX 2 (i.e. matrix B), enter 
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     output is 
1
2

 
  

 
   

 f) MATRX, 1, x−1  enter, yields A−1 

 ex: show that AA−1 = I =
1 0
0 1

 
  

 
  : MATRX, NAMES, 1 (i.e. matrix A) 

 then * (optional), MATRX, NAMES, 1 (i.e. matrix A), x−1  (inverse of A), enter 
g) to output  in a "pretty print"  form, print the inverse matrix in decimal form as in step f), then Math, 
option 1, to get 

A−1

   
• Conics 
The following programs dealing with nonrotated conics can be used throughout the calculus curriculum. Normally 
the material is first introduced at a precalculus level.  The examples used are also presented in the text files 
conicel.txt, conichyp.txt, conicpx.txt, conicpy.txt  at the web site www.ti.com.   
 
This program examines a parabola of the form y = ax2 + bx + c .  Input requirements are the coefficients.  Output 
consists of the vertex, focus and directrix. 
 
Program:PARABY 
:ClrHome 
:Disp "Y=AX^2+BX+C" 
:Disp "A=" 
:Input A 
:Disp "B=" 
:Input B 
:Disp "C=" 
:Input C 
:B/A->D 
:1/A->F 
:-D/2->H     X coordinate of the vertex   
:C-(B^2)/(4A)->K    Y coordinate of the vertex 
:F/4->P      Distance from focus to vertex 
:Disp "VERTEX AT X=" 
:Disp H 
:Disp "Y=" 
:Disp K 
:Pause 
:Disp "FOCUS AT X=" 
:Disp H 
:Disp "Y=" 
:Disp K+P 
:Disp "DIRECTRIX IS Y=" 
:Disp K-P 
 

 ex: y = −
1
2

x2 − x +
1
2

 

 output is: vertex at x= -1 y=1, focus at x= -1 y= .5, directrix is y=1.5 
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This program examines a parabola of the form x = ay2 + by + c .  Input requirements are the coefficients.  Output 
consists of the vertex, focus and directrix. 
 
Program:PARABX 
:ClrHome 
:Disp "X=AY^2+BY+C" 
:Disp "A=" 
:Input A 
:Disp "B=" 
:Input B 
:Disp "C=" 
:Input C 
:B/A->D 
:1/A->F 
:-D/2->K     Y coordinate of the vertex 
:C-(B^2)/(4A)->H    X coordinate of the vertex 
:F/4->P     Distance from the focus to vertex 
:Disp "VERTEX AT X=" 
:Disp H 
:Disp "Y=" 
:Disp K 
:Pause 
:Disp "FOCUS AT X=" 
:Disp H+P 
:Disp "Y=" 
:Disp K 
:Disp "DIRECTRIX IS X=" 
:Disp H-P 
 

 ex: x =
1
2

y2 +
1
2

y +
41
8

 

 output is: vertex at x= 5 y= -.5, focus at x=5.5 y= -.5, directrix is x=4.5 
 
The following program PARABOLA combines the features of the two previous versions.  An advantage to looking 
at PARABY or PARABX separately is their relative simplicity. 
 
Program:PARABOLA 
:ClrHome 
:Disp "IF Y=AX^2+BX+C" 
:Disp "INPUT CODE=1" 
:Disp "IF X=AY^2+BY+C" 
:Disp "INPUT CODE=2" 
:Disp "CODE=" 
:Input M 
:Disp "A=" 
:Input A 
:Disp "B=" 
:Input B 
:Disp "C=" 
:Input C 
:B/A->D 
:1/A->F 
:–D/2->H 
:C-(B^2)/(4A)->K 
:F/4->P 
:If M=1 
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:Then 
:1->X 
:0->Y 
:Else 
:0->X 
:1->Y 
:End 
:XH+YK->S 
:XK+YH->T 
:Disp "VERTEX AT X=",S 
:Disp "Y=",T 
:Pause  
:ClrHome 
:Disp "FOCUS AT X=",S+YP 
:Disp "Y=",T+XP 
:If M=1 
:Then 
:Disp "DIRECTRIXIS Y=",K-P 
:Else 
:Disp "DIRECTRIX IS X=",K-P 
:End 
 
The following program examines an ellipse in the form Ax 2 + Cy2 + Dx + Ey + F = 0 .  Input consists 
of the coefficients.  Output consists of the center, foci, vertices, end points of the minor axis and 
eccentricity.  The program will also output a, b and c values for the standard form of the equation of an 

ellipse 
(x − h)2

a2 +
(y − k)2

b2 =1

h)2

 with center at (  if the major axis is horizontal and h,k)

(x −
b2 +

(y − k)2

a2 =1 with center at (  if the major axis is vertical.  In both cases ch,k) 2 = a2 − b2  

and the major axis axis has length 2a. 
 
Program: ELLIPSE 
:ClrHome 
:Disp "AX^2+CY^2+DX" 
:Disp "+EY+F=0" 
:Disp "A=" 
:Input A 
:Disp "C=" 
:Input C 
:Disp "D=" 
:Input D 
:Disp "E=" 
:Input E 
:Disp "F=" 
:Input F 
:-D/(2A)->H    Procedure to complete the square 
:-E/(2C)->K      " 
:(A(H^2)+C(K^2)-F)->M    " 
:M/A->N    Compute a  and b  for the standard form 2 2

:M/C->O    of the equation of an ellipse 
:1->X        
:0->Y 
:If N<0  
:Then     Major axis is vertical 
:0->X     Algorithm to adjust for output when 
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:1->Y     the major axis is vertical 
: (O - N) ->C 
:Else     Major axis is horizontal 
: (N - O) ->C 
:End 
: N ->A 
: O ->B 
:ClrHome 
:Disp "CENTER AT" 
:Disp "X=",H 
:Disp "Y=",K 
:Pause 
:ClrHome 
:Disp "A=",XA+YB   Output for the standard form of the equation of an 
:Disp "B=",XB+YA   ellipse.  'a' is associated with the major axis, 'b' with 
:Disp "C=",C    the minor axis, and c2 = a2 − b2  
:Pause 
:ClrHome 
:Disp "FOCI AT" 
:Disp "X=",H+XC 
:Disp "Y=",K+YC 
:Pause 
:ClrHome 
:Disp "AND X=",H-XC 
:Disp "Y=",K-YC 
:Pause 
:ClrHome 
:Disp "VERTICES AT" 
:Disp "X=",H+XA 
:Disp "Y=",K+YB 
:Pause 
:ClrHome 
:Disp "AND X=",H-XA 
:Disp "Y=",K-YB 
:Pause 
:ClrHome 
:Disp "END POINTS FOR" 
:Disp "MINOR AXIS" 
:Disp "X=",H+YA 
:Disp "Y=",K+XB 
:Pause 
:Clrhome 
:Disp "AND X=",H-YA 
:Disp "Y=",K-XB 
:Pause 
:ClrHome 
:If A=0 
:Then 
:Disp "DEGENERATE" 
:Disp "ELLIPSE" 
:Else 
:Disp "ECCENTRICITY=",C/(XA+YB) 
:End 
 
 ex: 4x 2 + y2 −8x + 4y − 8 = 0  
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 output is: center at x=1 y= -2, a=4 b=2 c=3.464, foci at x=1 y=1.464 and  
 x=1 y= -5.464, vertices at x=1 y=2 and x=1 y= -6, end points for minor axis  
 x=3 y= -2 and x= -1 y= -2, eccentricity= .866 
 
 
The following program examines a hyperbola in the form Ax 2 + Cy2 + Dx + Ey + F = 0 .  Input consists 
of the coefficients.  Output consists of the center, foci, vertices, slopes and intercepts of the asymptotes, end 
points of the conjugate axis and eccentricity.  The program will also output a, b and c values for the standard 

form of the equation of a hyperbola 
(x − h)2

a2 −
(y − k)

b2

2

=1 h,k) with center at (  if the transverse axis is 

horizontal and 
(y − k)2

a2 −
(x − h)2

b2 =1 with center at (  if the transverse axis is vertical.  In both cases 

.  An exception case in the output will flag a degenerate hyperbola when a  

h,k)

= bc2 = a2 + b2 = c = 0.
 
Program: HYPERB 
:ClrHome 
:Disp "AX^2+CY^2+DX" 
:Disp "+EY+F=0" 
:Disp "A=" 
:Input A 
:Disp "C=" 
:Input C 
:Disp "D=" 
:Input D 
:Disp "E=" 
:Input E 
:Disp "F=" 
:Input F 
:-D/(2A)->H    Procedure to complete the square 
:-E/(2C)->K      " 
:(A(H^2)+C(K^2)-F)->M    " 
:M/A->N    Compute a  and b  for the standard form 2 2

:M/C->O    of the equation of a hyperbola 
:1->X        
:0->Y 
:If N<0  
:Then     Transverse axis is vertical 
:-N->N 
:0->X     Algorithm to adjust for output when 
:1->Y     the transverse axis is vertical 
:Else      
-O->O     Transverse axis is horizontal  
:End 
: N ->A 
: O ->B 
: (N + O) ->C 
:ClrHome 
:Disp "CENTER AT" 
:Disp "X=",H 
:Disp "Y=",K 
:Pause 
:ClrHome 
:Disp "A=",XA+YB   Output for the standard form of the equation of a  
:Disp "B=",XB+YA   hyperbola.  'a'  is associated with the transverse axis,  
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:Disp "C=",C    'b' with the conjugate axis, and c2 = a2 + b2  
:Pause 
:ClrHome 
:Disp "FOCI AT" 
:Disp "X=",H+XC 
:Disp "Y=",K+YC 
:Pause 
:ClrHome 
:Disp "AND X=",H-XC 
:Disp "Y=",K-YC 
:Pause 
:ClrHome 
:Disp "VERTICES AT" 
:Disp "X=",H+XA 
:Disp "Y=",K+YB 
:Pause 
:ClrHome 
:Disp "AND X=",H-XA 
:Disp "Y=",K-YB 
:Pause 
:ClrHome 
:If A=0     Exception case to flag a degenerate hyperbola 
:Then 
:Disp "DEGENERATE" 
:Disp "HYPERBOLA" 
:Else 
:Disp "ASYMPTOTES ARE" 
:B/A->R 
:Disp "Y1 INTERCEPT=",K-HR 
:Disp "Y1 SLOPE",R 
:Pause 
:ClrHome 
:Disp "Y2 INTERCEPT=",K+HR 
:Disp "Y2 SLOPE=",-R 
:End 
:Pause 
:ClrHome  
:Disp "END POINTS OF" 
:Disp "CONJUGATE AXIS" 
:Disp "X=",H-YA 
:Disp "Y=",K-XB 
:Pause 
:Clrhome 
:Disp "AND X=",H+YA 
:Disp "Y=",K+XB 
:Pause 
:ClrHome 
:If A  ≠ 0
:Disp "ECCENTRICITY=",C/(XA+YB) 
 
 ex: 4x 2 − 3y2 + 8x +16 = 0  
 output is: center at x= -1 y=0, a=2 b=1.732 c=2.646, foci at x= -1 y=2.646 and  
 x= -1 y= -2.646, vertices at x= -1 y=2 and x= -1 y= -2, assymptotes are  y1 =1.155x +1.155 

y2 = −1.155x −1.155, end points of conjugate axis x= -2.732 y=0  and x= .732 y=0, 
eccentricity=1.323 
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Differential Calculus 

• Local Max/Min: s =
1
2

gt  2 + v0t + s0

 
 • y1 = f (x)  and  y2 = nDeriv(y1, x, x)    
  ex: s = −16t2 + 80t + 5   Xmin=0, Xmax=5, Ymin= -80, Ymax=160 
  Find zero for y , i.e. Intermediate Value Theorem 2

   
 

• Point of Diminishing Return: f (x) = 4 1 +
x − 4

x2 − 8x + 20

 

 
 

 

 
     

 Xmin=0, Xmax=12, Ymin= -4, Ymax=10,  Xres=2 
 
 • y1 = f (x)    y2 = nDeriv(y1, x, x)    y3 = nDeriv(y2 , x, x)   

   
 
• Inflection Point: f ( =x) x3 −3x2 − x + 3 
 Xmin= -5, Xmax=5, Ymin= -10, Ymax=10, Xres=2 
 • y1 = f (x)    y2 = nDeriv(y1, x, x)    y3 = nDeriv(y2 , x, x)  

   
 
• Mean Value Theorem 
  
The program MVT will aid in showing the existence of points c where the slope of the secant line and tangent are 
approximately equal. However, the program will not work properly for cases such as those when f (x)  is not 
continuously differentiable.  Try the example f (x) = x , a= -1, b=1, with different tolerances.  The problem is 
calculator approximation of the derivative with computation of y2 = nDeriv(y1, x, x) .  A false derivative value is 
returned at x=0. 
 
Program:MVT 
:1->F      flag value  
:Disp "Y1=F(X)"    enter f(x) in Y1 
:Disp "Y2=DERIV"    enter nDeriv(Y1,X,X) in Y2 
:Input "TOLERANCE=",T   start with .05, then try .02, .01 to refine  
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:Input "LEFT END PT=",X 
:X->A 
:Input "RT END PT=",X 
:X->B 
:(Y1(B)-Y1(A))/(B-A)->C 
:Disp "AVE SLOPE=",C 
:A->X 
:While X<B 
:X+.01->X     will take a while to do all computation due to .01 
:Y2->S 
:If abs(S-C)<=T 
:Then 
:Disp "SOLUTION=",X 
:0->F 
:End 
:End 
:If F=1 
:Disp "SOLUTION NOT", " FOUND" 
 
 
 
 
 

ex 1: f(x)=x^3  (analytic solution=±
1
3

= ±.577 ) 

tolerance=.05, left end pt= -1, rt end pt=1 
ave slope=1 
solution= -.59   
solution= -.58   
solution= -.57    
 
solution= .57 
solution= .58 
solution= .59 
 
ex 2: f(x)=x^3 
tolerance=.02, left end pt= -1, rt end pt=1 
 
ave slope=1 
solution= -.58  solution= .58 
 
• Price Elasticity of Demand 

ex: p(x) = 5 − 0.03x   η =
p / x

dp / dx
 Xmin=0, Xmax=166, Ymin=0, Ymax=10 elastic 

when η >1 <, i.e. 0 x ≤ 83 and inelastic when 84 ≤ x ≤ 166 
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Integral Calculus 
• Midpoint Rule 
 
I've used the program MIDPT to motivate the discussion of a Riemann Sum. Input requires the lower and upper 
limits of integration and number of rectangles to be used.  The function to be integrated is entered in  and the 
user must specify appropriate window settings. 

y1

  
Program:MIDPT    
:ClrDraw 
:Disp "LOWER LIMIT" 
:Input A 
:Disp "UPPER LIMIT" 
:Input B 
:Disp "N DIVISIONS" 
:Input D 
:0-> S 
:(B - A)/ D-> W 
:1-> J 
:Lbl 1 
:A + (J  - 1) W->L 
:L + W/ 2->M 
:M->X 
:Y1->V      enter f(x) in y  1
:VW + S->S 
:Line (L, 0, L, V)     will first generate graph of f(x) 
:L + W->R 
:Line (L, V, R, V) 
:Line (R, 0, R, V) 
:IS > (J, D) 
:Goto 1 
:Pause 
:ClrHome 
:Disp "APPROXIMATION=" 
:Disp S 
:Disp "DEF INT=" 
:fnInt(Y1, X, A, B)->C 
:Disp C 
:Disp "ABS ERROR = " 
:abs  (C - S)-> E 
:Disp E 
 

 Distance: s =(t) v(t)
a

b

dt∫   

 ex: v = 50 + 20sin x  0 ≤ x ≤ 3 N=3  
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An alternate version that allows for function input and automatic window settings is program MIDPT2. 
 
Program:MIDPT2   Automatically set Xmin, Xmax, Ymin,Ymax 
:ClrDraw 
:Disp "INPUT YOUR EQN," 
:Disp " USE QUOTES TO"  store a string of characters in a function 
:Disp "START AND END" 
:Disp "Y =" 
:Input Y1 
:Disp "LOWER LIMIT" 
:Input A 
:A->Xmin    From VARS, WINDOW ,    Set Xmin for graph 
:Disp "UPPER LIMIT" 
:Input B 
:B->Xmax    Set Xmax for graph from VARS, WINDOW  
:fMin (Y1, X, A, B)->X   From MATH Menu 
:Y1->Ymin    Evaluates Y1 at min value X; set Ymin for graph 
:fMax ((Y1, X, A, B)->X 
:Y1->Ymax    Evaluates Y1 at max value X; set Ymax for graph 
:Disp "N DIVISIONS" 
:Input D 
:0->S 
:(B - A)/ D->W 
:1-> J 
:Lbl 1 
:A + (J  - 1) W->L 
:L + W/ 2->M 
:M->X 
:Y1->V 
:VW + S->S 
:Line (L, 0, L, V) 
:L + W->R 
:Line (L, V, R, V) 
:Line (R, 0, R, V) 
:IS > (J, D) 
:Goto 1 
:Pause 
:ClrHome 
:Disp "APPROX IMATION =" 
:Disp S 
:Disp "DEF INT =" 
: fnInt(Y1, X, A, B)-> C 
:Disp C 
:Disp "ABS ERROR = " 
:abs  (C - S)->E 
:Disp E 
:ClrDraw    Clear the screen 
 
 ex:  y = x2 − 2 −1 ≤ x ≤ 3 N=4 

2 Define y  by entering "1 x − 2 " at the prompt 
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• Differential Equations 

 To graph the solution to 
dy
dx

= f (x)  with the boundary condition y(A) = B, define 

 y1 = f (x)  y2 = fnInt(y1, x, A, x) + B     
 ex: y1 = 2x            
 Values for the constatnts A and B are first stored on the home screen. Window settings  are Xmin= -5  

Xmax=5  Ymin= -10  Ymax=30  Xres=2. 

   
 Note: With Xres=2, plotting time was approximately 20 seconds. An option is to define  the boundary 
condition constants as y2 = fnInt(y1, x,0, x) + 3. 
 
• Arc Length  

  L = di
i =1

n

∑ L = 1+ f ' (x)[ ]2
a

b

∫ dx  

 y1 = f (x)  y2 = nDeriv(y1, x, x)  fnInt (1+ (y2 )2 ), x,a,b( ) 

  
 ex: Gateway Arch in St. Louis  
 y = 693.8597 − 68.7672cosh 0.0100333x  x ≤ 299.2239 

  
     
  
 Xmin=-299.2  Xmax=299.2  Ymin=0  Ymax=700  Xres=1 
  
 

Note: Setting the tolerance to .1 rather than use the default (1E-5) value results in computation time less 
than 5 secs as opposed to approx 20 secs.  

   
• Arc Length - Parametric Equations 
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 L =
dx
dt

 
 
  

 
 

2

+
dy
dt

 
 
  

 
 

2

t = a

t = b

∫ dt  

 x1T = x(t)   y1T = y(t) x2T = nDeriv(x1T ,T,T )  y2T = nDeriv(y1T ,T,T )  
 ex: x(t) = 2 cos(t)  , 0y(t) = 4sin(t) ≤ t ≤ 2π   

     
 
 
• Series 
 
I've used the program SERIES to motivate the discussion of convergent and divergent series.  Input requires the 
lower and upper limits of for the sum. The function  is entered in . This routine serves as an alternative to y1
sum(seq(y1,x,begin,end))
sum(seq(y1,

 when the list has more than 999 items.  Repeated use of 
x,begin,end))with adjusted begin and limits for the series in cases where as n is very large would 

bypass this problem but would require that intermediate sums be recorded. 
    

Program:SERIES 
:Disp "ENTER Y1 IN X" 
:DISP "LOWER LIMIT" 
:Input L 
:Disp "UPPER LIMIT" 
:Input U 
:U->X 
:0->S 
:Lbl 1 
:Y1+S->S 
:DS < (X,L) 
:Goto 1 
:Disp S 

 ex: 
1
3

 
 
  

 
 

k =1

n

∑
k

    geometric series, a = r =
1
3

   

  y1 =
1
3

 
 
  

 
 

x

 lower limit=1, upper limit=25, sum= .5 

 ex: 
1
kk =1

n
∑       harmonic series 

  y1 =
1
x

 lower limit        upper limit  sum              

          1   100  5.187 
            1   500  6.793 
            1             2000  8.178 
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ex: $2000 is invested yearly for 30 years and assume interest compounds continuously at  6%. The 

accumulated amount at the end of the last year is ∑ . 2000ert

t =1

30

   lower limit=1, upper limit=30, sum=$173,421.72 y1 = 2000e .06x

 
Multivariable Calculus 
• Dot Product 
 
The following program VDOT will compute the dot product of vectors U and V.  The orthogonal components of U 
are (A,B,C) and those of vector V are (D,E,F). Output consists of the magnitude of U, i.e. U , and the magnitude of 
V, i.e. V . The user will then have to hit ENTER to continue with the output of the dot product 
U ⋅V AD += BE + CF . Finally, the angle between the two vectors is output in degrees using the fact that 

cosθ
⋅V

U
=

U
V

.  Three space is assumed, but to use the code for 2D, set the appropriate U or V coefficient to zero. 

 
Program:VDOT 
:Disp "ENTER(A,B,C)" 
:Input "A=",A 
:Input "B=",B 
:Input "C=",C 

: A2 + B2 + C2( )→ U  
:Disp "MAGNITUDE OF U=",U 
:Disp "ENTER(D,E,F)" 
:Input "D=",D 
:Input "E=",E 
:Input "F=",F 

: D2 + E2 + F 2( ) → V  
:Disp "MAGNITUDE OF V=",V 
:Pause  
: AD + BE + CF → G  
:Disp "DOT PRODUCT=",G 
:(360 /(2π ))cos−1(G /(UV )) → T  
:Disp "THETA=",T 
 
 ex:  

  

  

U = i
 

V = j

 

 
   i.e  

  

U =< 1,0,0 >
 

V =< 0,1,0 >

 
 
 

  

 output is  

    U =1, V
→

= 1,   U ⋅V = 0 , θ = 90     

 ex:  

  

  

U =< 2,3,1 >
 

V =< −1,4,2 >

 

 
  

 output is  

    U = 3.742 , V
→

= 4.583,   U ⋅V =12 , θ = 45.585  

 

 18



• Cross Product 
 
The following program VCROSS will compute the cross product of vectors U and V.  The orthogonal components 
of U in the program are (A,B,C) and those of vector V are (D,E,F). Output consists of the magnitude of U, i.e. U , 
and the magnitude of V, i.e. V . The user will then have to hit ENTER to continue with the output of the cross 
product which is defined in the program as UxV = BF − CE,CD − AF, AE − BD = L, M, N .  If we 
consider the more mathematical representation U = u1,u2 ,u3  and V = v1,v2, v3 , then 

UxV = u2v3 − u3v2,u3v1 − u1v3 ,u1v2 −u2v1 . The user will then have to hit ENTER to continue with the output 

of the magnitude of the cross product UxV , i.e. UxV  .   
 
Program:VCROSS 
:Disp "ENTER(A,B,C) 
:Input "A=",A 
:Input "B=",B 
:Input "C=",C 

: A2 + B2 + C2( )→ U  
:Disp "MAGNITUDE OF U=",U 
:Disp "ENTER(D,E,F)" 
:Input "D=",D 
:Input "E=",E 
:Input "F=",F 

: D2 + E2 + F 2( ) → V  
:Disp "MAGNITUDE OF V=",V 
:Pause  
:BF-CE→L 
:CD-AF→M 
:AE-BD→N 
:Disp "CROSS PRODUCT IS" 
:Disp "L=",L 
:Disp "M=",M 
:Disp "N=",N 
:Pause  
: L2 + M2 + N2 → W  
:Disp "MAGNITUDE OF W=",W 
 
 ex:  

  

  

U = i
 

V = j

 

 
   i.e  

  

U =< 1,0,0 >
 

V =< 0,1,0 >

 
 
 

  

 output is  

    U =1, V
→

= 1,   U × V =< 0, 0,1> ,   U × V = 1  

 ex: Find a unit vector perpendicular to the plane determined by   U =< 2,3,1 >  and 
   V =< 1,−1,2 > . 

 output is   U = 3.742 , V
→

= 2.449,   U × V =< 7,−3, −5 > ,   U × V = 9.110  

 
• Slices 
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 To simulate 3D graphing, slices can be taken for functions of the form z = f x, y( ). 
 
 
 
 

 ex: z = e
− x 2 + y2( )

, y = 0,±1,±1.5  

    
 

 An alternate approach to quickly graph z = f x, y( ) slices is to define . Then  store 
values as you choose for A at the home screen. 

y1 = e
− x 2 + A 2( )

   
• Partial Derivatives 
 
This program can be used to test for a max or min at the critical point for x and y.  The program will compute the 
partials fx, fy , fxx, fyy, fxy, fyx  for the function z = f (x, y)  which is stored in Y1 .  The user must input the critical 

point values of x and y.  The second partials test D = fxx fyy − ( fxy)
2  is evaluated at the critical point.  When 

fxx > 0 (or fyy > 0 D >) and , the critical point is a min. When 0 fxx < 0 (or fyy < 0) and , the critical 
point is a max. When , there is a saddle point at the input value.  The program can also be used to find 
directional derivatives at specified points. 

D > 0
D < 0

 
Program:PARTIALS 
:Disp "STORE Z IN Y1" 
:Input "X=",X 
:Input "Y=",Y 
:nDeriv(Y1 ,X,X)->A 
:nDeriv(Y1 ,Y,Y)->B 
:Disp "FX=",A 
:Disp "FY=",B 
:Pause  
:nDeriv(nDeriv(Y1 ,X,X),X,X)->C 
:nDeriv(nDeriv(Y1 ,Y,Y),Y,Y)->D 
:Disp "FXX=",C 
:Disp "FYY=",D 
:Pause  
:nDeriv(nDeriv(Y1 ,X,X),Y,Y)->E 
:nDeriv(nDeriv(Y1 ,Y,Y),X,X)->F 
:Disp "FXY=",E 
:Disp "FYX=",F 
:Pause  
:Disp "SECOND PARTIALS" 
:Disp "TEST" 
:Disp "D=",C*D-E*F 

 

 ex: z = e
− x2 + y2 

 
  

 

 
  
 

 1) At x=0 and y=1, output is  
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 fx = 0 , fy = −.736, fxx = −.736, fyy = .736 , fxy = fyx = 0 (Disregard computation for D 
 since this is not a critical point.) 
 2) At the critical point x=0 and y=0, output is 

  fx = 0 , fy = 0,  fxx = −2,  fyy = −2,  fxy = fyx = 0,    D = fxx fyy − fxy
 
 
  

 
 
2

= 4

 
• Iterated Integral  
 

This program evaluates the iterated integral f (x, y)dxdy
x =a

x= b

∫y = c

y =d

∫ . Input consists of limits for x, i.e. 

a ≤ x ≤ b , and limits for y, i.e. c ≤ y ≤ d . The number of divisions N represents divisions in the y 

direction. The width of each increment ∆y  is 
d − c

N
 and the midpoint of the appropriate interval is stored 

in Y for use in fnInt(y1, x,a,b

∆yi
i =1

)  computation. The approximate sum representing the value of the iterated 

integral is computed as 
N

∑  where fnInt(y1, x, a,b) y1 = f (x, y) . 

 
Program:DXDY 
:0->V 
:Prompt A 
:Prompt B 
:Prompt C 
:Prompt D 
:Prompt N 
:(D-C)/N->W 
:C+W/2->Y 
:For(K,1,N) 
:V+W*fnInt(Y1, X, A, B)->V 
:Y+W->Y 
:End 
:Disp V 
 
Guideline: Start with N=5, 10, ...  and enter z=f(x,y) in Y1 
      
 

 ex: e
− x2 +y2 

 
 

 

 
 

x=−∞

x=∞

∫
y=−∞

y=∞

∫ dxdy  

y

 As an approximation, consider e
− x2 +y2 

 
 

 

 
 

x=−3

x=3

∫
y=−3

=3

∫ dxdy . 

 Setting A=-3  B=3  C=-3  D=3  N=5, output is  3.148143999 for the volume. 
 When N=10, the volume approximation is 3.14148307. 
 
 
 

 ex: 4 − x − y( )
x=0

x=1

∫
y=0

y=2

∫ dxdy  

 Setting A=0  B=1  C=0  D=2  N=5, output is  5 for the volume of the solid under the   
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 plane z = 4 − x − y  over the rectangle 0 ≤ x ≤1, 0 ≤ y ≤ 2. 
 
Appendix A 
 
Polynomial Approximations 
  
After generating a Maclaurin or Taylor series approximation for an appropriate transcendental function, a common 
technique to examine agreement between the polynomial approximation Pn x( )  and the function is to literally use 
the Y= Editor and code successive approximations.  An alternate and quicker approach is as follows. 
 
• sin(x) 

For Pn x( ) = −1( )
k=1

n

∑
k+1 x2k −1

2k − 1( )!
, sin(x) window settings are set as: 

 

 
 
With Xres=1, graphing is slow as the number of terms in the series increases. 
 

    
 
 

    
 
 

    
 
 
 
With Xres=1, the following took more than 2 minutes to graph: 
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Setting Xres=4 reduced the time to 40 seconds without much change in appearance. 
 
 
• ex  

For Pn x( ) = 1+
x k

k!k =1

n

∑ ,  a 2nd order polynomial approximation for ex  uses the window 

 

 
 
 

    
 
 
Changing the window and resolution enables us to quickly generate a 6th order approximation: 
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• ln(x) 

For Pn x( ) = ln c( )+ −1( )
k =1

n

∑
k+1 x − c( )k

ckk
 approximations to ln(x), the following window for expansions 

about c=5 was used: 
 

 
 
Storing 5 in C, i.e. 5->C generates the following 5th, 10th and 15th order approximations: 
 

    
 
 

    
 
 

    
 
 
• TI-89 Implementation 
 
For sin(x), window settings were the same as those used previously, but the TI-89 default Xres=2 was used.  The 
following polynomial approximation of degree 21 took 35 seconds to graph: 
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The procedure was to use the taylor function and entries were: 
 
1.To generate a polynomial expansion of degree 21 about c=0, enter taylor (sin(x), x, 21,0) at the  
home screen.  The key strokes to access the taylor function are: F3, option 9.  Use the sin function key to enter it as 
the expression to approximate. 
 
2. Store the polynomial expansion in y2.  The key strokes are: STO->y2(x) and the display on the  
home screen will be ans(1)->y2(x). 
 
3. Enter y1=sin(x) as a user defined function and change the style for y2 to thick.  The key strokes after defining y1 
at the Y= Editor are: highlight the y2 polynomial expansion, F6 to select style, option 4 for thick.  Then graph the 
functions. 
 
Setting Xres=4 reduced the time to 20 seconds without much change in appearance. 
 
 
For ln(x), the window for expansions about c=5 were consistent with those previously used including Xres=4.  The 
following graph took  45 seconds to generate. 
 
 

 
The procedure was to use the taylor function and store a 5th degree polynomial expansion in y2, a 10th degree 
polynomial in y3, and a 15th degree polynomial in y4.  The ln function was stored in y1.   
 
The procedure was: 
 
1. taylor (ln(x), x, 5, 5);  ans(1)->y2(x) to store the results in y2. 
2. taylor (ln(x), x, 10, 5); ans(1)->y3(x) to store the results in y3.   
3. taylor (ln(x), x, 15, 5); ans(1)->y4(x) to store the results in y4. 
 
The style was set to thick only for y1=ln(x). 
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