89.301 - MINERALOGY BRAGG'S LAW CALCULATIONS

1. An unknown sample is analyzed by x-ray diffraction. A copper x-ray tube is used ($K\alpha = 1.54\text{Å}$). A diffracted beam occurs at 19.4°. Calculate the d spacing.

2. An unknown sample is analyzed by x-ray diffraction. A copper x-ray tube is used ($K\alpha = 1.54\text{Å}$). The following data are obtained. Complete the table below.

θ	Intensity (cps)	d (Å)	I/I _o
11.0	772		
15.5	15448		
20.6	4788		
25.5	4557		

The sample was collected from a carbonate rock. X-ray powder diffraction data for calcite and dolomite are reproduced below. Identify the mineral.

Calcite (5-586)					
I/I_1	100	18	18	12	
d	3.04	2.29	2.10	3.86	
Dolomite (11-78)					
I/I_1	100	30	30	5	
d	2.89	2.19	1.79	4.03	