NAME

89.304 - Igneous & Metamorphic Petrology Pressure & Temperature

1. Calculate and graph the pressure-depth relationship for the outer part of the earth (from 0 to 400 km). The following layers are encountered going from the surface to 400 km: a 25-km-thick granitic layer with a density of 2750 kg m⁻³, a 10-km-thick lower basaltic crust with a density of 3000 kg m⁻³ and underlying upper mantle with a density of 3300 kg m⁻³ which is constant to 400 km. This problem can be done on a spreadsheet.

Element	$e_i (mW kg^{-1})$	c _i (ppm)
U	9.66 x 10 ⁻²	0.9
Th	2.65 x 10 ⁻²	2.2
Κ	3.58 x 10 ⁻⁶	15,000

2. Calculate the radiogenic heat productivity of basalt in μ W m⁻³ given the following data.

The density of basalt is 2800 kg m⁻³. Compare the individual contributions of U, Th and K to the total heat productivity.

3. The surface heat flow in the Basin and Range province of the western United States is unusually high - 87.86 mW m^2 . The heat flow - heat productivity relation for this region is modeled using a 9.4-km-thick crustal layer in which radioactive heat-producing elements are concentrated. Given a radiogenic heat productivity for this layer of 2.1 μ W m⁻³, compute the reduced heat flow into the base of the 9.4-km-thick layer from the mantle below. Comment on the value of the reduced heat flow.