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Introduction 

 Co-seismic slip depth limited within sub-cm-thick 
gouge & cataclastic-bearing principal slip zones 

 Localization to sub-mm scale during single co-seismic 
slip events 

 High-velocity (Vmax = 1 m/s) rotary-shear experiments 
@ normal stress (σn) of 3-20 Mpa done under room-dry 
& wet conditions 

 Natural fault zones in limestone more susceptible to 
rapid dynamic weakening if water is in granular 
slipping zones 



Material & 
methods 

 There were 2 different rotary-shear apparatus utilized 

 I. Slow to High Velocity Apparatus (SHIVA) 

 II. Pressurized High-Velocity (Phv) 



Setup of SHIVA 

 18 experiments using strain markers 

 Max. slip rate: 1 m/s 

 Accel. & Decel.: 6 m/s2 

 σn: 3-20 Mpa 

 Total displacements: 0.011-2.5 m under room-dry & water-
dampened condiditons 

 Gouge layer inner/outer diameters: 35 & 55 mm 



Setup of Phv  

 24 experiments under room-dry & controlled pore-pressure conditions 

 Max. slip rate:1 m/s 

 Acceleration: 0.5 m/s2 

 Gouge layer inner/outer diameters: 30 & 60 mm 

 σn: 3-12 Mpa 

 Pore-fluid pressure: 0.2-1.5 Mpa 

 Perfomed w/room-dry & water-saturated conditions, no strain markers 

 Data recorded @ 1 kHz rate 

 



Sample prep & 
analysis techniques 

 Calcite group from crushed Carrara marble 

 Both gouges sieved to <250μm 

 5 g of calcite gouge used to get 3 mm thickness for 
SHIVA tests 

 15 g of calcite gouge used to get 3mm thickness for Phv 
tests 

 Dark grey dolomite marker is sheared in slip & finite 
strain fashion @ different positions within gouge layer 

 τ = tan ϕ = dx/x = horizontal displacement/layer thickness 



Results 

 Mechanical behavior of room-dry & water-
dampened calcite gouge 

 In SHIVA, peak stress (σpeak) is 2.5-16 MPa @ 3-20 MPa 
normal stress (σn) correlating to peak friction coefficient 
(μ = τ/σn) of ~0.6 to 0.7  

 Absolute shear stress values higher in Phv than in SHIVA 

 Compaction rate change higher for room-dry samples 

 Strengthening phases shorten with increased σn in room-
dry experiments 

 Higher acceleration, longer strengthening phases for 
SHIVA tests in wet conditions than for Phv 

 2 water-dampened SHIVA tests suggest rising length of 
strengthening values 

 Dynamic weakening initiates after strengthening phase 
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Results 

 Progressive microstructure development 

 Microstructure of sheared calcite gouge changes 
w/displacement growth 

 In both wet & dry gouges, zone of comminution grows 

 Both samples show rapid change from high to low strain 

 Little change in preserved samples in microstructure of 
both dry & wet gouges 

 Both gouges show high strain zone go from general zone 
of slightly compacted pulverized powder to highly 
comminuted and compressed gouge sliced by a discrete 
principal slip surface 





Results 

 Quantitative strain analysis 

 14 of 18 SHIVA experiments kept a strain marker used to 
add up strain distribution in gouge layer 

 Marker boundaries appear straight and are traceable  

 Angle of distortion (0-60O) leads to low strains (0-2 Mpa) 

 Finite strain solved by subtracting finite strain from low to 
intermediate strain zones from bulk strain 

 Finite strain show little to no total displacement 
dependence, & is similar in dry & wet samples 

 At short total displacements, high strain zone’s strain is 
bigger in water-dampened tests than non-dry tests 
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Discussion 

 PURPOSE: to investigate water’s effect on strain 
localization process in calcite groups 

 Progressive strain localization 
 No microstructural differences 

 Most slip is hosted in principal slip zone after localization 
is met regardless of conditions suggesting the presence of 
substantial strain & velocity gradient 

 Calcite gouge tests @ high velocity shows quicker 
dynamic weakening w/water present 

 Gouges w/20% H2O (SHIVA) behaved in same way as 
completely saturated gouges deformed w/stable pore 
pressure (Phv) 

 Rapid weakening in wet conditions not caused by faster 
localization 

 Emergence of dynamic weakening in calcite-bearing fault 
zone relies on normal stress. 



Discussion 

 Potential dynamic weakening mechanisms 

 More efficient or different active weakening mechanism 
for rapid weakening in wet conditions 

 Phv pore pressure is not elevated, has little effect on 
mechanical behavior, based on results from SHIVA & Phv 

 High efficiency stress corrosion in wet conditions due to 
3x less fracture surface energy for calcite in water 

 Lower steady-state shear stress & higher levels of 
weakening under dry conditions 



Discussion 

 Implications for natural faults 

 If critical shear stress due to tectonic loading is met, 
frictional sliding will occur & potential for dynamic 
weakening of a fault increases 

 Gouge-bearing faults in carbonates become vulnerable 
to rapid dynamic weakening in water at shallow depths 

 Results say dynamic weakening will come sooner in slip 
zone water 



Conclusion 

 Difference in mechanical behavior for wet & dry 
gouges @ 1 m/s 

 Dry gouges show extended strengthening phase prior to 
dynamic weakening 

 Wet gouges dynamically weaken instantaneously to a 
slightly larger steady-state shear stress  

 High strain slipping zone & slip surface set up most of 
displacement 

 Amount of strain & velocity gradient found in gouge’s 
thin layer 
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