
Convolution Tutorial 
 

 
INTRODUCTION 
 
This document is designed to overview the theory of the convolution integral and its 
applications.  It introduces the convolution integral and then demonstrates its use with a 
detailed example.  The Convolution Integral Labview GUI can be used to follow along 
with the example shown here. 
 
ARBITRARY SIGNALS 
 
 The convolution of two time domain signals is given by the following equation: 
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To calculate the convolution at a specific time, t, first the integrand x1(τ)·x2(t- τ) is 
computed as a function of τ, and then the integration step is performed with respect to τ, 
resulting in a function of t.  In discrete time domain data, this is the same as point by 
point multiplication of x1(τ) and x2(t- τ) and taking the sum.   
 
 
 
This is demonstrated graphically in the Labview GUI “ConvolutionArb.vi”. The overall 
GUI is shown in Figure 1. The top two plots on the far left and far right are two arbitrary 
signals, x1(t) and x2(t).  The top middle plot shows x1(τ) overlaid with x2(t- τ) at time t, 
specified by the calculation point.  The second signal is flipped by the minus sign and 
shifted by the calculation point t.  The middle plot shows the result of multiplying the two 
overlaid signals together at the time specified.  Finally, the bottom plot is designed to 
build the resulting convolution of the two original signals by dragging the calculation 
point slider-bar from time equals zero to the end time.  As the calculation point is 
changed, note the position of the second signal on the top middle plot, as well as the area 
under the curve in the middle plot. 
 
This GUI is designed for any two arbitrary signals convolved together.  The default 
signals (when the GUI is initially opened) are a sine wave and a square wave, each with 1 
v amplitude, 20 Hz frequency, 0° phase, and are computed for one cycle.  It should be 
noted that the order of operations does not matter for convolution, since it is equivalent to 
multiplication in the frequency domain.  That is X1(ω) ·X2(ω) = X2(ω) ·X1(ω)  
x1(t)*x2(t) = x2(t)*x1(t). 
 
To prove this drag the calculation point slider bar all the way to the right so that the entire 
convolution integral is calculated.  Now reverse the two signals by changing signal 1 to a 
square wave and signal 2 to a sine wave.  The result of the convolution is the same. 



 
Figure 1 Labview GUI:ConvolutionArb 

The GUI gives you the ability to construct signals X1 and X2 from several basic 
waveforms including, sine, square, triangle and sawtooth. The Amplitude, Frequency, 
and Phase properties can be controlled. Additional waveform shapes can be made by 
using the Truncate Start, and Truncate Length features along with the basic waveform 
functions. The signal construction tools for X1 are shown in Figure 2. 
 

 
Figure 2 Signal Construction Tools 

To further understand the convolution integral, explore different signals by adjusting the 
construction tools for each signal.  What happens when one signal is a sawtooth?  What 
happens if one of the signals is increased in amplitude or changed in frequency?  What 



happens when phase is introduced, or if the truncation window is adjusted to calculate 
longer periods? 
 
One interesting aspect to look at is when one signal becomes a unit impulse.  To do this 
change one of the signals to a square wave of amplitude = 1 v.  Then adjust the truncation 
window length for as short as possible and then use the calculation point slider to 
compute the convolution function.  The resulting convolution is the same as the other 
signal.  
 
 
 
 
 
UNIT IMPULSE RESPONSE 
 
As we’ve seen the response of any continuous, linear system can be described by the 
convolution integral.  Consider a system with the unit impulse response h(t), which is 
assumed to be known.  The response signal x(t), to input f(t), is found by the convolution 
of f(t) with h(t).  This is given by the following equation: 
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This concept is demonstrated by the Labview GUI “ConvolutionSDOF.vi”.  This GUI is 
very similar to the GUI for two arbitrary signals, Figure 3.  The second signal has been 
replaced by the unit impulse response of a single degree of freedom system, h(t).  The 
first signal therefore becomes the input function, f(t).  The remaining plots are the same 
as the previous GUI, with the final plot being the result of the convolution integral, or the 
system response, x(t).  Drag the calculation point slider-bar across to build the 
convolution integral for the default settings. 
 
Note how the response of the system is affected by changing the values of mass, 
damping, and stiffness of the single degree of freedom system.  What happens when mass 
in increased or decreased?  How does the response change if some of the damping is 
removed or if some of the stiffness is removed the system?  Next see how the response of 
the system is affected by different inputs into the system by changing the signal type, 
amplitude, frequency, and phase.   
 
Change the input to a unit impulse signal as before, and see how the response of the 
system becomes the same as the computed transfer function, h(t).  
 



 
Figure 3 Labview GUI: ConvolutionSDOF 

 
 
Change the input to a unit impulse signal as before, and see how the response of the 
system becomes the same as the computed transfer function, h(t).  
 
Now try dragging the calculation point slider-bar back to the left to hide the convolution 
result.  Make a few changes to the system and to the input function, and see if you can 
predict what will happen to the convolution result.  Rebuild the convolution by dragging 
the slider-bar to the right again to see if you were right. 
 
 
 
 


