
Theory of Second-Order Systems 
 
 
INTRODUCTION 
 

A second-order dynamic system is one whose response can be described by a second-order 
ordinary differential equation (ODE). A second-order ODE is one in which the highest-order 
derivative is a second derivative.  

Many mechanical systems can be modeled as second-order systems. A commonly used 
example of such a system is the simple single-degree-of-freedom mass-spring-dashpot system 
shown in Fig. 1. This model will be used as an example in this and other tutorials in this series.  

 

 
Fig. 1.  Mass-spring-dashpot system. 

Many electrical circuits, such as the RLC circuit shown in Fig. 2, can also be modeled as 
second-order systems. 

 
Fig. 2.  Second-order RLC circuit 

 
SYSTEM EQUATION  

 
In standard form, the ODE describing the behavior of a second-order dynamic system is 
 , (1) )t(fxx2x 2

nn =ω+ζω+ &&&

where 
x = displacement, or the equivalent property for the given system, 
x&  = velocity, or equivalent, 
x&&  = acceleration, or equivalent, 
ωn = the natural frequency of the system,  
ζ = the damping ratio, and 

  
  

Theory of Second-Order Systems Rev 011805
1



f(t) = the forcing function, a function of time. 
 
The natural frequency of the system is the frequency at which it will oscillate if set into 

motion and allowed to move freely.  
The damping ratio is defined as 

 
cc
c

=ζ , (2)  

where  
c = the damping in the system, and 
cc = the critical damping. 
 
Damping is a measure of how fast the system dissipates energy. Critical damping is the 

amount of damping for a particular system which will cause it to reach the steady-state response 
in the minimum possible time. 

The function on the right-hand side of (1), f(t), is the forcing function—some input to the 
system which is driving its response. 

 
MASS-SPRING-DASHPOT SYSTEM 

 
For the mass-spring-dashpot system shown in Fig. 1, the equation of motion is 
 )t(fkxxcxm =++ &&& , (3) 
where  
m = effective mass of system, 
c = damping, 
k = stiffness, and 
f(t) = the forcing function. 
 
When this equation is put into standard form and compared to (1), it can easily be seen that  

 
m
k

n =ω ,  (4) 

and 

 
nm2

c
ω

=ζ .  (5) 

By comparing  (5) and (2), it can be seen that, for the mass-spring-dashpot system,  
 nc m2c ω= .  (6) 

 
SYSTEM RESPONSE 

 
In order to determine the actual response, such as the displacement, of a second order system, 

the differential equation must be solved. The ODE has a homogeneous solution and a particular 
solution, xh and xp, which describe the response of the system. 
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Homogeneous Solution 
 
The homogeneous solution depends on the inherent characteristics of the system and 

describes the system’s free response. It describes how the system will respond if set into motion, 
such as with an initial displacement or initial velocity, and then allowed to move freely. The free 
response is the solution of the equation 

 , (7) 0xx2x 2
nn =ω+ζω+ &&&

which is identical to (1) except that there is no forcing function; the right-hand side of the 
equation is equal to zero. If it is now assumed, as it was for the first-order system, that the 
solution is in the form 
 ( ) tetx λ= , (8) 
then the characteristic equation is found to be 
 . (9) 02 2

nn
2 =ω+λζω+λ

Solving for λ, it is found that 
 12

nn −ζω±ζω−=λ  (10) 
Clearly, the form of the solution depends strongly on whether the quantity under the radical is 
positive, negative, or zero.  

 
Effect of Damping Ratio on System Response  
 
Depending on whether the quantity ( )12 −ζ  is negative, zero, or positive, the system is 

underdamped, critically damped, or overdamped, respectively.   
 
Underdamped:  When this quantity is negative (ζ<1), the system is said to be underdamped. 

This is, by far, the most common case for structural systems. When a system is underdamped, it 
will oscillate around the steady state condition before leveling out at steady state. This can 
clearly be seen in Fig. 3. For an underdamped system, the solution to the equation of motion is 
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where 
 nζω=σ , (12) 

and 

 2
nd 1 ζ−ω=ω . (13) 

The value ωd is the damped natural frequency. This is the frequency at which the system will 
oscillate when there is damping present. If measurements are being taken on an actual dynamic 
system, the frequency being measured is the damped natural frequency. For very small amounts 
of damping, however, ω . nd ω≅

Note that the solution in (11) allows for the possibility that the system is subjected to initial 
conditions—x0 and v0 are initial displacement and initial velocity, respectively.  

 
Critically damped:  When the quantity under the radical is zero (ζ=1), the system is critically 

damped. As explained above, a critically damped system will reach the steady-state response in 
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the minimum possible time. For a critically damped system, the solution to the equation of 
motion is 

 ( ) ( ) t
00n

t
0p

nn tevxextx ω−ω− +ω+=  (14) 
 
Overdamped:  When the quantity under the radical in (10) is positive (ζ>1), the system is 

overdamped. This means that it has greater than critical damping; the response will lag behind 
the input. The greater the damping beyond critical damping, the more slowly the system will 
respond. For an overdamped system, the solution to the equation of motion is 
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= . (15) 

 
These three cases are compared in Fig. 3, which shows the response of a second-order system 

to an initial displacement of 0.01. Note that this is the free response of the system, because no 
force acts on the system after time t = 0.  
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Fig. 3.  Comparison of underdamped, critically damped, and overdamped cases.  

 
Particular Solution 
 
The particular solution to the ODE depends on the inputs to the system. It describes the 

response of the system when the right-hand side of (1), f(t), is non-zero. The form of the solution 
depends on the actual forcing function, which can be any time-varying function. Typical 
functions which are found are impulses and step functions. The response of a second-order 
system to these forcing functions is discussed in detail in separate documents.  
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