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 Implicit vs. Explicit Functions: 

 
The equation xxy sin=  explicitly defines y as a function of x. Plug in a value of x 
on the right hand side and out pops y on the left hand side.  We write )(xfy =  to 
denote explicit functions. 
 
Consider the equation  
 

132 =+ yx  
 

If 0=x ,  13 =y ,   or 1=y .   
 
 
If 1=x ,   03 =y ,   or 0=y .   
 
 
If 2=x ,      12 3 =+ y , or 13 −=y , and so 1−=y .   
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Any equation in x and y implicitly defines y as a function(s) of x.  
 
Example:  Consider 122 =+ yx , which is a circle of radius 1, centered about the 
origin.  Knowing the graph of the circle one immediately knows it fails to define a 
function in the usually sense since it does not pass the vertical line test. 
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In solving 122 =+ yx  for y it becomes apparent why this is the case. 
 

122 =+ yx     ⇒     22 1 xy −=    ⇒    21 xy −±= . 
 
Except for 1±=x , every value of x in the domain yields 2 values for y.  Picking the 
“+” sign yields a value on the upper part of the circle and choosing the “−“ sign 
gives the lower part of the circle.  
 
 

2
1 1)( xxy −=  

 
 
 
 
 
 
 
 

2
2 1)( xxy −−=  



MATH 1380 Lecture 20 4 of 13 
Ronald Brent © 2018 All rights reserved. 

While one doesn’t view the graph of 122 =+ yx  as coming from a function, one 
can still wonder about lines tangent to the graph of the circle at points ),( ba . The 
slope of these lines is viewed as the derivative  

),(),( bayxxd
yd

=

 

 
A general equation in x and y can be written as  
 

0),( =yxF . 
 
The set of solution points (x, y), yield the graph of this equation. 
 
 
Since it isn’t always possible to solve a given equation for y as an explicit function 
or functions of x, a method is needed to compute the derivative or slope of the 
graph at particular points. 
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Implicit Differentiation 

 When trying to compute the derivative 
xd
yd , given an equation 0),( =yxF , the 

method is to view y as a function of x, and use the chain rule. 
 
Example:  Find the slope of the line tangent to the graph of the circle

122 =+ yx  at points ),( yx  on the circle. 
 Take the x-derivative of the equation assuming that )(xyy = . 
 

)1())]([( 22

xd
dxyx

xd
d

=+  

or   

0)]([)( 22 =+ xy
xd

dx
xd

d , 

or 

y
x

xd
yd

xd
ydyx −=⇒=+ 022  
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With 
y
x
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Example:   Using implicit differentiation determine the derivative 
xd
yd  at every 

point on the graph of  
34 xy = . 

 
Take the x derivative of the equation assuming )(xyy = . 
 

34 )( x
dx
dy

xd
d

=  

 
Using the chain rule on the LHS: 
 

23 34 x
xd
ydy =  

Solving for 
xd
yd  gives 
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Example:   Determine the derivative 
xd
yd  at every point on the graph of  

0232 =++ xy . 
 
Take the x derivative of the equation assuming )(xyy = . 
 

00)2( 32 ==++
dx
dxy

xd
d  

 
 

032)()()2( 23232 =+=+=++ x
dx
dyyx

xd
dy

xd
dxy

xd
d  

 
 

232 x
xd
ydy −=   or  

y
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yd
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Example:   Determine the derivative 
xd
yd  at every point on the graph of  

 

122 += xxy . 
 

Take the x derivative of the equation assuming )(xyy = . 
 

1)1()( 22 =+= x
dx
dxy

xd
d  

 

Using the chain rule and product rule on the left hand side, 
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Or    ( ) 122 2 =+

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 xyx
xd

dyy  or  122 2 =+ xy
xd

dyxy  
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Example:   Determine the derivative 
xd
yd  at every point on the graph of 

023 =+++ xyyy . 
 
Take the x derivative of the equation assuming )(xyy = . 
 

0)( 23 =+++ xyyy
xd

d  

 
Using the chain rule, 
 

0)()()()()( 2323 =+++=+++ x
xd

dy
xd

dy
xd

dy
xd

dxyyy
xd

d  

 

                      0123 2 =+++
xd
yd

xd
ydy
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ydy  

1)123( 2 −=++ yy
xd
yd   or  
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Example:  Determine the derivative 
xd
yd  at every point on the graph of 

 
xy =)sin(  

 
 

)()sin( x
xd

dy
xd

d
=  

 
 
 
 

xxd
dyy

2
1)cos( =  

 
 
 
 

xydx
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1

=  

  



MATH 1380 Lecture 20 13 of 13 
Ronald Brent © 2018 All rights reserved. 

 Proof of the power rule 1−= rr xrx
xd

d  for rational values of r. 

 

Suppose rxy = .  If r is rational one can write 
n
mr = , where m and n are integers. 

 
n

m
xy =    ⇒    mn xy =  

Taking the x derivative: 
 

)()( mn x
xd

dy
xd

d
=  

 
11 −− = mn xm

xd
ydyn  
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