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Exponential growth and decay applications 
 
 We wish to solve an equation that has a derivative.  

ky
dx
dy

=    k > 0 

This equation says that the rate of change of the function is proportional to the 
function. 
 
The solution is kxcey = .  We can show this by taking the derivative of y. 
 

kycekkecce
dx
d

dx
dy kxkxkt ==== )()()(  

 
Where k is either given or determined from the data and c is an arbitrary 
constant. 
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 Suppose y is replaced by P which represents the population of some 
species.  The assumption  kPP =′  makes perfect sense for smaller populations. 
It says the rate of change of the population is proportional to the population.  
A specific problem is: 

kPP =′   
With initial condition 

0)0( PP =  
which is called an initial value problem. 
 
The initial condition states what the starting population is at time = 0. 
 
Example:  Suppose  

PP 01.0=′  so  k =0.01. 
Find the solution given  

100)0( =P . 

We know the solution is tceP 01.0= . To get the value of c, plug in 0. So, 
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100)1()0( 0)0(01.0 ===== ccceceP  

 
So the specific solution is 

tetP 01.0100)( =  
P(t)
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If k is not specified some other piece of information is needed.  
 
Suppose  

kPP =′   
 

100)0( =P  
 

The last equation again gives an initial population of 100 people.  
 
If, in addition, we know 
 

1000)1( =P  
We can figure out k.   
 
The solution from before is 

tketP 100)( =
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To get k plug in the second point 1000)1( =P  
 

1000100100)1( )1( === kk eeP   or   

10=ke  
 

Solving for k by taking the natural logarithm of both side. 
 
 

10ln

10ln)ln(

=

⇒=

k

ek

 

 
And the solution is 

tetP )10(ln100)( =  
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Let ktePtP 0)( = , and suppose the extra piece of information is the time T when 
the initial population doubles.  That is: 
 

02)( PTP =  
 

i.e. The time T is also called the generation time.  So we need to solve for T: 
 

00 2PeP kT =    or   2=kTe  
 
Notice that the initial population is no long in the equation. 
Logging both sides gives 2ln)ln( =kTe  
 

2ln=kT  
 

This is a crucial equation that relates the growth constant k to the doubling time 
T. 
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The growth rate k and the generation (doubling time) are linked by the formula 
2ln=kT  

Dividing by T gives 

T
k 2ln
=  

Dividing by k gives 

k
T 2ln
=  

 
Example:  What is the growth rate k if the doubling time is T = 24.568? 
 

0282.0
568.24
2ln

≈=k  

Example:  What is the doubling time if the growth rate is 0.024. 

88.28
024.0

2ln
≈=T  
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Example:  Suppose a population has a doubling time T = 17.38 years, and an 
initial population of 2500. What is the population after 10 years. 

First compute k:       0399.0
38.17
2ln
≈=k .  

Plugging into the solution equation gives  
 

tetP )0399.0(2500)( =  
372625002500)10( 399.010)0399.0( ≈== ⋅ eeP  

 
Example:  A certain town has an initial population of 10,231 and it doubles in 
130 years.  Find the solution and determine when the population is 17,000. 
 

So the solution is ktetP 231,10)( = . To get k we need to solve 
T

k 2ln
=  so 

005332.0
130

2ln
≈=k  
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And so               tetP )005332.0(231,10)( =  
 

Let 0tt =  be the time when the population is 17,000, then 
 

000,17231,10)( 0)005332.0(
0 == tetP  

 

Which gives 

231,10
000,17

0)005332.0( =te  

Logging both sides: 







=

231,10
000,17ln)005332.0( 0t  

Which gives 

23.95
005332.0

231,10
000,17ln

0 ≈








=t years 
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Logistic Population Model 
The problem with the exponential solution we just obtained is that the 
population goes to ∞ as time goes to ∞.  We all know that limited space and or 
food limits the population.  A better model is called the Logistic model.  
This population model is  

ktbe
LtP −+

=
1

)(  

 

Notice that when t = 0,  00 11
)0( P

b
L

be
LP =

+
=

+
= , and when t goes to ∞,  

 

LL
be

L
be
LtP kt

t

kttt
=

+
=

+
=

+
= −

∞→

−∞→∞→ 01lim11
lim)(lim  

 
This means the limiting population is L.  Depending on initial condition the 
solution looks like: 
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Notice that in the upper curve, the initial population is greater than L, and in the 
lower curve, the initial population is less than the limiting population  

P(t)

t

L
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Exponential Decay: 
 We again wish to solve an equation that has a derivative.  

ky
dx
dy

−=    k > 0 

This equation says that the rate of change of the function is proportional to the 
function, but now there is a negative on the right hand side. 
 

The solution is kxcey −= .  We can show this by taking the derivative 
 

kycekcke
dx
dy kxkx −=−=−= −− )(  

 
Where k is either given or determined from the data and c is an arbitrary 
constant determined by the initial condition. 
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 Suppose y is replaced by N which represents the amount of radioactive 
material in some object. The assumption  kNN −=′  makes sense. It says the 
rate of change of the amount is proportional to the amount present.  
 
A specific problem is: 

kNN −=′   k > 0 
 

With initial condition 

0)0( NN =  

 
Whose solution is 

kteNtN −= 0)(  
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Example:  Suppose  
NN 052.0−=′  then  k =0.052. 

Find the solution given  

0)0( NN = . 

We know the solution is tceN 52.0−= . To see this: 
 

kNkececce
dx
dN ttt −=−=−==′ −−− )()052.0()( 052.0052.0052.0  

 
To get the value of c, plug in 0. So, 
 

0
)0(052.0)0( NcceN === −  

 
So the specific solution is 

teNtN 052.0
0)( −=  
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N(t)

t

N0
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If k is not specified some other piece of information is needed.  
 
Suppose  

kNN −=′   
 

100)0( 0 == NN  
 

Which is the initial population. If in addition, we know 
 

75)2( =N  
We can then figure out k.   
 
First, the solution is 

tktk eeNtN −− == 100)( 0  
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To get k plug in the second point 
 

75100100)2( 2)2( === −− kk eeN   or   

75.
75100

2

2

=
⇒=

−

−

k

k

e
e

 

Solving for k by taking the natural logarithm of both side. 
 

0
2
75.ln75.ln275.ln)ln( 2 >

−
=⇒=−⇒=− kke k  

Note: )3/4ln(])3/4ln[()4/3ln()75ln(. 1 −=== −  
And the solution is 

t

etN






−

= 2
3/4ln

100)(  
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If kteNtN −= 0)(  and the extra piece of information is  

 

0)2/1()( NTN =  
Then we want the time T when the initial amount halves. 

00 )2/1( NeN kT =−  
or 

2/1=−kTe  
Notice that the equation doesn’t have 0N  in it. Logging both sides gives 
 

2ln)2/1ln()ln( −==−kTe  

2ln
2ln

=
−=−

kT
kT

 

This is just like the equation before. the decay constant k is related to the halving 
time T, also called the half life. 
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The decay rate k and the half life T, are related by 
 

693147.0~2ln=kT  
In which case 

T
k 2ln
=  and 

k
T 2ln
=  

 
Example:  What is the decay rate k if the halving time if T = 36.45? 
 

019016.0
45.36
2ln
≈=k  

 
Example:  What is the half-life if the growth rate is 0.024? 

88.28
024.0

2ln
≈=T  
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Example: Carbon-14 has a half-life of 5750 years. Suppose an object has lost 
20% of its carbon-14. How old is it? 
 
The decay rate is  

000125.0
5750

2ln2ln
≈==

T
k  

 
So the amount present is   

teNtN 000125.0
0)( −=  

So we want to know how old (the time 0t ) when there is 80% left. 

0
000125.0

00 8.0)( 0 NeNtN t == −  
Solving for 0t  

8.00000125.0 =− te  
so 

yrst 1785
000125.0

8.0ln
0 ≈

−
=  
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Newton’s Law of Cooling. 
 
 Suppose the temperature of an object changes at a rate proportional to 
the difference of the object’s temperature and the surrounding medium. 
 
 
 
 
 
 
The equation to solve is 

)()( CTktT −−=′     
with 0)0( TT =  

Notice. If T > C then 0)( <′ tT  and the object cools.  If T < C then 0)( >′ tT  then 
the object warms up. 

 

T(t)             C  
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Suppose we let  

CtTtP −= )()(  
Then 

)())(()()( tkPCtTktPtT −=−−=′=′  
Or 

)()( tkPtP −=′  
Which we just solved so 

 
ktePtP −= 0)(  

Then 
CTPP −== 00)0(  

And then 
CeCTtT kt +−= −)()( 0  

Suppose the object is initially 750 degrees, and the surrounding medium is 250 
degrees. Then 
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250500)( += −ktetT  
Which has graph: 

T(t)

t

T0 = 750o

C = 250o

 


