Exponential growth and decay applications

We wish to solve an equation that has a derivative.

\[
\frac{dy}{dx} = ky \quad k > 0
\]

This equation says that the rate of change of the function is proportional to the function.

The solution is \(y = ce^{kx} \). We can show this by taking the derivative of \(y \).

\[
\frac{dy}{dx} = \frac{d}{dx} (ce^{kx}) = c(ke^{kx}) = k(ce^{kx}) = ky
\]

Where \(k \) is either given or determined from the data and \(c \) is an arbitrary constant.
Suppose \(y \) is replaced by \(P \) which represents the population of some species. The assumption \(P' = kP \) makes perfect sense for smaller populations. It says the rate of change of the population is proportional to the population.

A specific problem is:

\[
P' = kP
\]

With initial condition

\[
P(0) = P_0
\]

which is called an initial value problem.

The initial condition states what the starting population is at time = 0.

Example: Suppose

\[
P' = 0.01P \text{ so } k = 0.01.
\]

Find the solution given

\[
P(0) = 100.
\]

We know the solution is \(P = ce^{0.01t} \). To get the value of \(c \), plug in 0. So,
\[P(0) = ce^{0.01(0)} = ce^0 = c(1) = c = 100 \]

So the specific solution is

\[P(t) = 100e^{0.01t} \]
If \(k \) is not specified some other piece of information is needed.

Suppose

\[
P' = kP
\]

\[
P(0) = 100
\]

The last equation again gives an initial population of 100 people.

If, in addition, we know

\[
P(1) = 1000
\]

We can figure out \(k \).

The solution from before is

\[
P(t) = 100e^{kt}
\]
To get k plug in the second point $P(1) = 1000$

\[P(1) = 100e^{k(1)} = 100e^k = 1000 \]

or

\[e^k = 10 \]

Solving for k by taking the natural logarithm of both side.

\[\ln(e^k) = \ln10 \implies \]

\[k = \ln10 \]

And the solution is

\[P(t) = 100e^{(\ln10)t} \]
Let \(P(t) = P_0 e^{kt} \), and suppose the extra piece of information is the time \(T \) when the initial population doubles. That is:

\[
P(T) = 2P_0
\]

i.e. The time \(T \) is also called the generation time. So we need to solve for \(T \):

\[
P_0 e^{kT} = 2P_0 \quad \text{or} \quad e^{kT} = 2
\]

Notice that the initial population is no long in the equation. Logging both sides gives

\[
\ln(e^{kT}) = \ln 2
\]

This is a crucial equation that relates the growth constant \(k \) to the doubling time \(T \).
The growth rate k and the generation (doubling time) are linked by the formula

$$kT = \ln 2$$

Dividing by T gives

$$k = \frac{\ln 2}{T}$$

Dividing by k gives

$$T = \frac{\ln 2}{k}$$

Example: What is the growth rate k if the doubling time is $T = 24.568$?

$$k = \frac{\ln 2}{24.568} \approx 0.0282$$

Example: What is the doubling time if the growth rate is 0.024.

$$T = \frac{\ln 2}{0.024} \approx 28.88$$
Example: Suppose a population has a doubling time $T = 17.38$ years, and an initial population of 2500. What is the population after 10 years.

First compute k:

$$k = \frac{\ln 2}{17.38} \approx 0.0399.$$

Plugging into the solution equation gives

$$P(t) = 2500 e^{(0.0399)t}$$

$$P(10) = 2500 e^{(0.0399)10} = 2500 e^{0.399} \approx 3726$$

Example: A certain town has an initial population of 10,231 and it doubles in 130 years. Find the solution and determine when the population is 17,000.

So the solution is $P(t) = 10,231 e^{kt}$. To get k we need to solve $k = \frac{\ln 2}{T}$ so

$$k = \frac{\ln 2}{130} \approx 0.005332$$
And so \[P(t) = 10,231 e^{(0.005332)t} \]

Let \(t = t_0 \) be the time when the population is 17,000, then

\[P(t_0) = 10,231 e^{(0.005332)t_0} = 17,000 \]

Which gives

\[e^{(0.005332)t_0} = \frac{17,000}{10,231} \]

Logging both sides:

\[(0.005332)t_0 = \ln \left(\frac{17,000}{10,231} \right) \]

Which gives

\[t_0 = \frac{\ln \left(\frac{17,000}{10,231} \right)}{0.005332} \approx 95.23 \text{ years} \]
Logistic Population Model

The problem with the exponential solution we just obtained is that the population goes to ∞ as time goes to ∞. We all know that limited space and or food limits the population. A better model is called the Logistic model. This population model is

$$P(t) = \frac{L}{1 + be^{-kt}}$$

Notice that when $t = 0$, $P(0) = \frac{L}{1 + b} = \frac{L}{1 + b} = P_0$, and when t goes to ∞,

$$\lim_{t \to \infty} P(t) = \lim_{t \to \infty} \frac{L}{1 + be^{-kt}} = \frac{L}{1 + \lim_{t \to \infty} be^{-kt}} = \frac{L}{1 + 0} = L$$

This means the limiting population is L. Depending on initial condition the solution looks like:
Notice that in the upper curve, the initial population is greater than L, and in the lower curve, the initial population is less than the limiting population.
Exponential Decay:

We again wish to solve an equation that has a derivative.

\[
\frac{dy}{dx} = -ky \quad k > 0
\]

This equation says that the rate of change of the function is proportional to the function, but now there is a negative on the right hand side.

The solution is \(y = ce^{-kx} \). We can show this by taking the derivative

\[
\frac{dy}{dx} = -cke^{-kx} = -k(ce^{-kx}) = -ky
\]

Where \(k \) is either given or determined from the data and \(c \) is an arbitrary constant determined by the initial condition.
Suppose y is replaced by N which represents the amount of radioactive material in some object. The assumption $N' = -kN$ makes sense. It says the rate of change of the amount is proportional to the amount present.

A specific problem is:

$$N' = -kN \quad k > 0$$

With initial condition

$$N(0) = N_0$$

Whose solution is

$$N(t) = N_0e^{-kt}$$
Example: Suppose

\[N' = -0.052N \text{ then } k = 0.052. \]

Find the solution given

\[N(0) = N_0. \]

We know the solution is \(N = ce^{-0.52t} \). To see this:

\[
N' = \frac{d}{dx}(ce^{-0.052t}) = c(-0.052e^{-0.052t}) = -c(ke^{-0.052t}) = -kN
\]

To get the value of \(c \), plug in 0. So,

\[N(0) = ce^{-0.052(0)} = c = N_0 \]

So the specific solution is

\[N(t) = N_0 e^{-0.052t} \]
If k is not specified some other piece of information is needed.

Suppose

$$N' = -kN$$

$$N(0) = N_0 = 100$$

Which is the initial population. If in addition, we know

$$N(2) = 75$$

We can then figure out k.

First, the solution is

$$N(t) = N_0 e^{-kt} = 100 e^{-kt}$$
To get k plug in the second point

$$
N(2) = 100e^{-k(2)} = 100e^{-2k} = 75 \text{ or }
100e^{-2k} = 75 \Rightarrow
$$
$$
 e^{-2k} = .75
$$

Solving for k by taking the natural logarithm of both side.

$$
\ln(e^{-2k}) = \ln.75 \Rightarrow -2k = \ln.75 \Rightarrow k = \frac{\ln.75}{-2} > 0
$$

Note: \(\ln(.75) = \ln(3/4) = \ln[(4/3)^{-1}] = -\ln(4/3) \)

And the solution is

$$
N(t) = 100e^{-(\frac{\ln(4/3)}{2})t}
$$
If $N(t) = N_0 e^{-kt}$ and the extra piece of information is

$$N(T) = (1/2)N_0$$

Then we want the time T when the initial amount halves.

$$N_0 e^{-kT} = (1/2)N_0$$

or

$$e^{-kT} = 1/2$$

Notice that the equation doesn’t have N_0 in it. Logging both sides gives

$$\ln(e^{-kT}) = \ln(1/2) = -\ln 2$$
$$-kT = -\ln 2$$
$$kT = \ln 2$$

This is just like the equation before. The decay constant k is related to the halving time T, also called the half life.
The decay rate k and the half life T, are related by

$$kT = \ln 2 \sim 0.693147$$

In which case

$$k = \frac{\ln 2}{T} \quad \text{and} \quad T = \frac{\ln 2}{k}$$

Example: What is the decay rate k if the halving time if $T = 36.45$?

$$k = \frac{\ln 2}{36.45} \approx 0.019016$$

Example: What is the half-life if the growth rate is 0.024?

$$T = \frac{\ln 2}{0.024} \approx 28.88$$
Example: Carbon-14 has a half-life of 5750 years. Suppose an object has lost 20% of its carbon-14. How old is it?

The decay rate is

\[k = \frac{\ln 2}{T} = \frac{\ln 2}{5750} \approx 0.000125 \]

So the amount present is

\[N(t) = N_0 e^{-0.000125t} \]

So we want to know how old (the time \(t_0 \)) when there is 80% left.

\[N(t_0) = N_0 e^{-0.000125t_0} = 0.8N_0 \]

Solving for \(t_0 \)

\[e^{-0.000125t_0} = 0.8 \]

so

\[t_0 = \frac{\ln 0.8}{-0.000125} \approx 1785 \text{ yrs} \]
Newton’s Law of Cooling.

Suppose the temperature of an object changes at a rate proportional to the difference of the object’s temperature and the surrounding medium.

\[T'(t) = -k(T - C) \]

with \(T(0) = T_0 \)

Notice. If \(T > C \) then \(T'(t) < 0 \) and the object cools. If \(T < C \) then \(T'(t) > 0 \) then the object warms up.
Suppose we let

\[P(t) = T(t) - C \]

Then

\[T'(t) = P'(t) = -k(T(t) - C) = -kP(t) \]

Or

\[P'(t) = -kP(t) \]

Which we just solved so

\[P(t) = P_0 e^{-kt} \]

Then

\[P(0) = P_0 = T_0 - C \]

And then

\[T(t) = (T_0 - C)e^{-kt} + C \]

Suppose the object is initially 750 degrees, and the surrounding medium is 250 degrees. Then
\[T(t) = 500e^{-kt} + 250 \]

Which has graph:

\[T(t) \]

\[T_0 = 750^\circ \]

\[C = 250^\circ \]