## **Chapter 12 Chemical Kinetics**

1) Given the following balanced equation, determine the rate of reaction with respect to [SO<sub>2</sub>].

$$2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$$

- A) Rate =  $-\frac{1}{2} \frac{\Delta[SO_2]}{\Delta t}$
- B) Rate =  $+\frac{1}{2} \frac{\Delta[SO_2]}{\Delta t}$
- C) Rate =  $-\frac{\Delta[SO_2]}{\Delta t}$
- D) Rate =  $+\frac{2\Delta[SO_2]}{\Delta t}$

E) It is not possible to determine without more information



2) Which balanced reaction describes the following rate relationships.

$$\textbf{Rate} = -\frac{1}{2} \frac{\Delta[N_2O_5]}{\Delta t} = \frac{1}{4} \frac{\Delta[NO_2]}{\Delta t} = \frac{\Delta[O_2]}{\Delta t}$$

- A)  $2 \text{ N}_2\text{O}_5 \rightarrow 4 \text{ N}_2 + \text{O}_2$
- B)  $4 \text{ NO}_2 + \text{O}_2 \rightarrow 2 \text{ N}_2\text{O}_5$
- C)  $2 N_2O_5 \rightarrow NO_2 + 4 O_2$
- D)  $\frac{1}{4}$  NO<sub>2</sub> + O<sub>2</sub>  $\rightarrow \frac{1}{2}$  N<sub>2</sub>O<sub>5</sub>
- E)  $\frac{1}{2}$  N<sub>2</sub>O<sub>5</sub>  $\rightarrow \frac{1}{4}$  NO<sub>2</sub> + O<sub>2</sub>



3) Given the following balanced equation, determine the rate of reaction with respect to [NOCI]. If the rate of Cl<sub>2</sub> loss is  $4.84 \times 10^{-2}$  M/s, what is the rate of formation of NOCI?

$$2 \text{ NO(g)} + \text{Cl}_2(g) \rightarrow 2 \text{ NOCl(g)}$$

- A)  $4.84 \times 10^{-2} \text{ M/s}$
- B)  $2.42 \times 10^{-2} \text{ M/s}$
- C)  $1.45 \times 10^{-1} \text{ M/s}$
- D)  $9.68 \times 10^{-2} \text{ M/s}$
- E)  $1.61 \times 10^{-2} \text{ M/s}$





| 4) | What is the overall order | of the following reaction      | , given the rate law? |
|----|---------------------------|--------------------------------|-----------------------|
|    | NO(a) + Oo(a)             | $\rightarrow NO_2(a) + O_2(a)$ | Rate = k[NO][O2]      |

My answer is letter

- A) 1st order
- B) 2nd order
- C) 3rd order

D)  $1\frac{1}{2}$  order

E) 0th order

1st order for No 1st order for Oz

2nd order overall

1+1=2

- i. Given the rate law, Rate = k [X][Y]<sup>2</sup>, how does the rate of reaction change if the concentration of Y is doubled?
  - ii. For this same rate law, how does the rate of reaction change if the concentration of X is doubled?
  - A) The rate of reaction will increase by a factor of 2.
  - B) The rate of reaction will increase by a factor of 4.
  - C) The rate of reaction will increase by a factor of 5.
  - D) The rate of reaction will decrease by a factor of 2.
  - E) The rate of reaction will remain unchanged





ii. A

## For the first order integrated rate law: $ln[A]_t = -kt + ln[A]_0$

- 6) The first-order decomposition of cyclopropane has a rate constant of 6.7 x 10<sup>-4</sup> s<sup>-1</sup>. If the initial concentration of cyclopropane is 1.33 M, what is the concentration of cyclopropane after 644 s?
  - A) 0.43 M
  - B) 0.15 M
  - C) 0.94 M
  - D) 0.86 M
  - E) 0.67 M

R= 6.7 × 10-4 5-1

t = 6445

My answer is letter

0

In [cyclopropane] 
$$_{t=644s} = (-6.7 \times 10^{-4} \text{s}) (644s) + \ln 1.33 \text{ M}$$
  
In [Cp] = -.146 [Cp] = e-.146  
[cp]  $_{t=644s} = 0.86 \text{ M}$ 

| 7)                                                              | after 7.646 days if the sample A) 4.21 g B) 183 g C) 54.8 g D) 76.3 g E) 62.5                                                                                                                                                                                | n has a half-life of 3.823 days. How many grams of radon remain the initially weighs 250.0 grams?  My answer is letter  62.55 in 3.823 days  7.646 days  |  |  |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                 | $\ln \frac{N_1}{N_0} = -kt$ wher $\ln \frac{N_1}{250} = -0.181(7.646d)$                                                                                                                                                                                      | $e^{\frac{1}{4}} = 0.693/R  3.823 = 0.693/R  R = 0.181$ $e^{\frac{1}{12}} = 0.693/R  N = e^{4.1355} = 62.55$ $e^{\frac{1}{12}} = 62.55$                  |  |  |
| For the SECOND order half life expression: $t_{1/2} = 1/[A]_0k$ |                                                                                                                                                                                                                                                              |                                                                                                                                                          |  |  |
|                                                                 | 8) The half-life for the second-o of HI is 0.67 M. What is the A) $1.0 \times 10^{-2}$ M- $^{1}$ s-1 B) $4.5 \times 10^{-2}$ M- $^{1}$ s-1 C) $9.7 \times 10^{-2}$ M- $^{1}$ s-1 D) $2.2 \times 10^{-2}$ M- $^{1}$ s-1 E) $3.8 \times 10^{-2}$ M- $^{1}$ s-1 | order decomposition of HI is 15.4 s when the initial concentration rate constant for this reaction? $t_{1/2} = 15.4 \text{ s}$ $[HI]_o = 0.67 \text{ M}$ |  |  |
|                                                                 | 15.4                                                                                                                                                                                                                                                         | $s = 1/0.67M k$ $k = 1/0.67M \times 15.45 = 9.7 \times 10^{-2} \text{ M/s}^{-1}$                                                                         |  |  |

Given:  $\ln (k_2/k_1) = -E_a/R (1/T_2 - 1/T_1) = (E_a/R) (\frac{1}{T_1} - \frac{1}{T_2})$ The first-order rearrangement of CH3NC is measured to have a rate constant of 3.61  $\times$  10-15 9)  $\mathrm{s}^{-1}$  at 298 K and a rate constant of 8.66  $\times$  10<sup>-7</sup>  $\mathrm{s}^{-1}$  at 425 K. Determine the activation energy for this reaction.

A) 160. kJ/mol

B) 240. kJ/mol

C) 417 kJ/mol

D) 127 kJ/mol

E) 338 kJ/mol

t, = 298°K 2, = 3,61×10-15 5-1

t= 425°K k= 8.66×10-7 5-1

My answer is letter

In (8.66×10<sup>7</sup>5-1/3.61×10-155-1) = (+ Ea/8.3145/mol

In (2,14×108) = Ea 8.314J/molk (.001) (8.314J/molk) 19.3 = Ea = 160 kJ/mol

- 10) A reaction is found to have an activation energy of 108 kJ/mol. If the rate constant for this reaction is  $4.60 \times 10^{-6}$  s<sup>-1</sup> at 275 K, what is the rate constant at 366 K? My answer is letter
  - A) 11.7 s<sup>-1</sup>
  - B) 1.72 s<sup>-1</sup>
  - C)  $0.580 \text{ s}^{-1}$
  - D)  $5.40 \times 10^{-5} \text{ s}^{-1}$
  - E)  $1.85 \times 10^{-4} \text{ s}^{-1}$
- $T_1 = 275K$   $h_1 = 4.60 \times 10^{-6} \text{ s}^{-1}$  $T_2 = 366K$   $h_2 = ?$

Inkz = En ( - 1 ) + Ink, = 108000 J/mol ( 1 - 1 ) + Ink, = 108000 J/mol ( 275K 366)

Intz = -.5495 | hz = e = 0.585-1

11) Match the following.

Write your letter answer below:

i) k

E

A) reaction order

ii) t<sub>1/2</sub>

D

B) activation energy

iii) Ea

B

C) frequency factor

iv) A

D) half-life

- v)  $n_i$  in Rate =  $k[A]^n$
- A

E) rate constant