
Lecture 12 - Continuous time chains and modified log-Sobolev
Monday, September 13

One of the major shortcomings of arguments based on spectral gap is the 1−π∗
π∗

term. For example, for the
lazy walk on the cycle Cn the mixing time is τ(ε) = O(n2 log 1

ε ), however 1 − λ2 = Ω(1/n2) and so the
eigenvalue bound is only τ(ε) = O(n2 log n

ε ).

Observe that the asymptotic rate given by λ2 is of course correct, so the main issue to be addressed here is
the “burn-in” to reach distance say ε = 1/e. We will look at several methods of studying the burn-in time.
These are most easily studied in the context of continuous time Markov chains. We will always work with
reversible chains, although these results hold for non-reversible chains as well.

Our discussion is an amalgam of Aldous-Fill [1] Chapter 3 Section 1.2, Jerrum’s notes [4] Chapter 5.5, and
Section 2 of Bobkov & Tetali’s paper on modified log-Sobolev [2].

Definition 12.1. The continuized chain associated with a transition matrix P is such that given an in-
finitesimal dt then P(Xt+dt = j|Xt = i) = P(i, j) dt if j 6= i.

One can check that
P (Xt = j|X0 = i) =

(
e−t (I−P)

)
ij

is a solution to this condition. In particular,

Xdt = e−dt
∞∑

k=0

Pk
(dt)k

k!
= (1− dt) (P0 + P dt) = (1− dt) I + P dt

and so P(Xt+dt = j 6= i|Xt = i) = P(Xdt = j|X0 = i) = P(i, j) dt, as desired. An alternative interpretation
of this formula is that after each step choose the time t until the next step such that t has mean value 1
(that is Prob(t ∈ dx) = e−x dx), wait until time t, make a transition from P, and repeat.

Remark 12.2. To implement a continuized Markov chain determine the number of steps N that the con-
tinuous time chain makes in time T by the equation Prob(N = n|T ) = Tn e−T

n! (N is Poisson). It is easily
checked that E(N |T ) = T and therefore in particular E(N |T + dt) = T + dT , as would be expected. Given
the continuous-time mixing-time

τc(ε) = max
σ

inf{t : ‖σ e−t(I−P) − π‖TV ≤ ε}

choose a Poisson random variable T with mean value τc(ε) and run the discrete time chain for T steps. This
will be within ε is stationary.

Corollary 2.2 of Diaconis and Saloff-Coste’s paper on log-Sobolev [3] shows how discrete time and continuous
time bounds on L2 distance are related.

Remark 12.3. If (−→ui) is an eigenvector of P then it is easily verified that

(−→ui) e−t (I−P) = (−→ui)
∞∑

k=0

(I − P)k
(−t)k
k!

= (−→ui)
∞∑

k=0

(1− λi)k (−t)k
k!

= (−→ui) e−t(1−λi)

In particular, the continuized chain has the same stationary distribution as P.

Let Ht = e−t(I−P ) denote the t-time transition matrix. Then the t-step distribution is found by p(t) = p(0)Ht

(verify this), while the t-step relative probability distribution ft(x) := p(t)(x)
π(x) can be found by ft = Ht f0,

where p(t) is considered as a row vector and ft as a column vector.
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The Laplacian is given by L = −(I − P ), and so Ht = et L. If a function f on Ω is considered as a column
vector then we use the notation L(f)(x) = (Lf)(x) =

∑
y∈Ω L(x, y)f(y).

The following Lemmas will be key to the remainder of today’s lecture.

Lemma 12.4. If ft = Ht f0 then d ft(x)
dt = Lft(x).

Verify this yourself. Also,

Lemma 12.5. The Dirichlet form E(f, g) satisfies

E(f, g) = −
∑

x∈Ω

f(x)L(g)(x)π(x) .

Proof.

E(f, g) =
1
2

∑

x,y∈Ω

π(x) P(x, y) (f(x)g(x) + f(y)g(y)− f(x)g(y)− f(y)g(x))

= < f, g >π −
∑

x,y∈Ω

π(x) P(x, y) f(x)g(y)

But
∑

x∈Ω

f(x)L(g)(x)π(x) =
∑

x,y∈Ω

f(x)g(y) (P − I)(x, y)π(x)

= − < f, g >π +
∑

x,y∈Ω

f(x)g(y)P(x, y)π(x)

From these two facts we can show many interesting results.

Lemma 12.6. If ft = Ht f0 then
d

dt
V arπ(ft) = −2 E(ft, ft)

Proof. Observe that V arπ(f) = Ef2 − (Ef)2 =
∑
x∈Ω f(x)2π(x) − (Ef)2, where it is easily checked that

Eft = Ef0 and is hence constant.

Then
d

dt
V arπ(ft) =

∑

x∈Ω

d

dt
f2
t (x)π(x) = 2

∑

x∈Ω

ft(x) (Lft)(x)π(x) = −2 E(ft, ft)

This last statement is especially interesting. Recall that

λ = inf
f 6=constant

E(f, f)
V arπ(f)

But by definition of V arπ(ft) and of the L2 distance it follows that ‖1− p(t)

π ‖2,π = V arπ(ft) when ft = p(t)

π .
Therefore,

d

dt

∥∥∥∥1− p(t)(t)
π

∥∥∥∥
2

2,π

= −2 E(ft, ft) ≤ −2λV arπ(ft) = −2λ
∥∥∥∥1− p(t)(t)

π

∥∥∥∥
2

2,π

It follows that the L2 distance is decreasing at an exponential rate and so
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Theorem 12.7.

‖p(t) − π‖TV ≤ 1
2

∥∥∥∥1− p(t)

π

∥∥∥∥
2,π

≤ 1
2
e−λ t

∥∥∥∥1− p(0)

π

∥∥∥∥
2,π

≤ 1
2
e−λ t

√
1− π∗
π∗

.

This was much easier than the proof in the discrete case that λ = 1 − λ2 governs mixing time. No need
for spectral decomposition or any of that. Moreover, there is no need to worry about λn. This is because a
continuous time chain is automatically aperiodic since the transition times are random.

Another useful bound on variation distance is given by considering the following.

Definition 12.8. The informational divergence is given by

D(µ‖π) = Entπ

(µ
π

)

where the entropy

Entπ(f) = Eπf log
f

Eπf
=
∑

x∈Ω

π(x)f(x) log
f(x)∑

y∈Ω π(y)f(y)

Lemma 12.9.
‖µ− π‖2TV ≤ 2 D(µ‖π) ≤ 2V arπ

(µ
π

)

Proof. Let f(v) = µ(v)
π(v) below.

For the first inequality,

‖µ− π‖TV =
∑

π(v)≥µ(v)

(π(v)− µ(v)) = Eπ(1− f(v))+

≤ Eπ
√

2(1− f(v) + f(v) log f(v))

≤
√

Eπ 2(1− f(v) + f(v) log f(v))

=
√

2Eπf(v) log f(v)

=
√

2D(µ‖π)

where x+ = max{x, 0}. The first inequality follows from ∀x > 0 : (1 − x)+ ≤
√

2 (1− x+ x log x), the
second inequality is Cauchy-Schwartz, and the following equality follows from

∑
v∈V π(v) =

∑
v∈V µ(v) = 1

so Eπf(v) = 1.

The second inequality follows easily from log x ≤ x− 1 and Eπf (f − 1) = Eπf
2 − 1 = V arπ(f).

Lemma 12.10.
d

dt
D(p(t)‖π) = −E(ft, log ft)

Proof. This is just like the variance proof.

d

dt
D(p(t)‖π) =

∑

x∈Ω

(
d

dt
ft log ft

)
(x)π(x) =

∑

x∈Ω

π(x) (log ft + 1)Lft

= −E(ft, log ft + 1) =
∑

x∈Ω

π(x)L(log ft + 1) ft = −E(ft, log ft)
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This suggests considering the following quantity.

Definition 12.11. The modified log-Sobolev constant ρ0 is given by

ρ0 = inf
Entπ(f) 6=0

E(f, log f)
2Entπ(f)

In the discrete Markov setting Bobkov and Tetali [2] initiated the study of modified log-Sobolev. Most of
what is know about ρ0 can be found in their paper.

Then, just as before, we have

Theorem 12.12.

‖p(t) − π‖TV ≤
√

2 D(p(t)‖π) ≤ e−ρ0 t
√

2D(p(0)‖π) ≤ e−ρ0 t
√

2 log(1/π∗) .

When bounding the total variation distance this improves substantially over the spectral gap bound because
the 1−π∗

π∗
term has been replaced by log(1/π∗). For instance, for the walk on the boolean cube {0, 1}d then

π∗ = 2d and log(1/π∗) = d log 2, vs. 1−π∗
π∗
≈ 2d for the spectral bound.

A few examples demonstrating this improvement will be given briefly next class.
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