
Lecture 14 - Logarithmic Sobolev inequalities, tensorization
Friday, September 17

Nash inequalities, discussed briefly in the previous lecture, can be used to derive fairly good bounds on
mixing times. However, they are often difficult to compute and may give weak bound if the time s over
which they are used is too long. We now proceed to break down the quantity N(s) into more manageable
pieces.

Our arguments follow the approach of Aldous-Fill book [1]. The theory in this section originates outside the
rapid mixing community, but in the finite Markov chains setting it was largely developed in work of Diaconis
and Saloff-Coste [3].

Now, recall that

∆(t) ≤ 1
2

max
‖f0‖1=1

√
V arπ(ft) ≤ 1

2
max
‖f0‖1=1

‖Hs f0‖2 ‖Ht−s − E‖2→2

≤ 1
2
‖Hs‖1→2 e

−(t−s)λ

This can be rewritten in a (possibly) better form via the following lemma.

Lemma 14.1. Given any operator A let A∗ij = (πj aji/πi) denote its adjoint with respect to π. Then for any
1 ≤ q1, q2 ≤ ∞

‖A‖q1→q2 = ‖A‖q∗2→q∗1
where 1

q + 1
q∗ = 1. In particular, if A is a reversible transition matrix then

‖A‖2→q = ‖A‖q∗→2

This is a standard duality result. For a proof see Lemma 13 in Chapter 8 of Aldous-Fill book [1].

Then N(s) = ‖Hs‖1→2 = ‖Hs‖2→∞. Rather than work with N(s), a slightly better form for our purposes
will be to observe that if 1

q + 1
q∗

= 1 then

‖Hs f0‖2 ≤ ‖f0‖q∗ ‖Hs‖q∗→2 = ‖f0‖ q
q−1
‖Hs‖2→q

and so
‖p(t) − π‖TV ≤ 1

2

√
V arπ(ft) ≤ 1

2
‖f0‖ q

q−1
‖Hs‖2→q e−(t−s)λ

As s→∞ then the distance converges to zero, or equivalently Hs converges to E. Let

sq := inf{s ≥ 0 : ‖Hs‖2→q = 1}
Certainly s2 = 0, but somewhat surprisingly for every finite q the value sq is in fact finite.

Definition 14.2. The logarithmic Sobolev constant ρ is given by

ρ = inf
Entπ(f2) 6=0

2E(f, f)
Entπ(f2)

Theorem 14.3. For any finite, irreducible, reversible Markov chain

ρ = inf
2<q<∞

log(q − 1)
2sq

,

i.e. ∀q ≥ 2 : sq ≤ (2ρ)−1 log(q − 1).
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The proof is not too bad but it is too long for the limited time we have. See Section 8, Theorem 24 of
Aldous-Fill book for a proof of this.

We now have

Theorem 14.4. For a finite, irreducible, reversible Markov chain then for any state with π(i) ≤ e−1 then

‖δx Pt − π‖TV ≤ 1
2
e1−c if t ≥ 1

2ρ
log log(1/π(x)) +

c

λ

τ(ε) ≤ 1
2ρ

log log(1/π∗) +
1
λ

(1 + log(1/2ε))
∥∥∥∥1− p(t)

π

∥∥∥∥
2,π

≥ e−1 if t ≤ 1/ρ

Proof. Recall that

‖p(t) − π‖TV ≤ 1
2
‖f0‖ q

q−1
‖Hs‖2→q e−(t−s)λ

The worst case for f0 is a point mass, i.e. f0 = δx, at which point ‖f0‖q/(q−1) ≤ π(x)−1/q. Also, the result
above shows that ‖Hs‖2→q = 1 for all s ≥ (2ρ)−1 log(q − 1). Let q(s) = 1 + e2ρ s, then

‖δx Pt − π‖TV ≤ 1
2
π(x)−1/q(s) e−(t−s)λ

Let s = 1
2ρ log log(1/π(x)) and so q(s) = 1 + log(1/π(x)) = log(e/π(x)) and thus

‖δx Pt − π‖TV ≤ 1
2
e1−(t−s)λ

when t ≥ s.
The lower bound on L2 mixing time is too complicated for this course. The proof can be found in the paper
of Diaconis and Saloff-Coste [3].

The lower bound on L2 distance is perhaps clearest if written as follows:

1
ρ
≤ χ2(1/e) ≤ 4 + log log(1/π∗)

2ρ
where χ2(ε) = max

x∈Ω
min{t : ‖1− δxHt/π‖2,π ≤ ε}

So the time for L2 distance to reach e−1 is fairly tightly bounded both above and below by ρ. In contrast,
the upper and lower bounds on τ(1/e) in terms of spectral gap differ by a factor of log(1/π∗). When the
state space has exponential size then this is a substantial difference.

Finally, all our analytic methods for bounding mixing time are done. It turns out that the various quantities
studied in the last few lectures, ρ, ρ0 and λ have a strict ordering of sizes.

Following [2] we have:

Theorem 14.5.
2(1− 2π∗)

log
(

1−π∗
π∗

)λ ≤ ρ ≤ ρ0 ≤ λ
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Proof. We will not consider the first inequality. This can be found in [3].

For the second inequality consider any non-negative function f . Then E(
√
f,
√
f) ≤ 1

4 E(f, log f). To show
this it suffices to verify that (x − y)2 ≤ 1

2 (x2 − y2)(log x − log y) for every x, y ≥ 0. This is easily verified.
It follows that

2E(
√
f,
√
f)

Entπ(f)
≤ E(f, log f)

2Entπ(f)

and taking the infinum over all such f shows that ρ ≤ ρ0.

The inequality ρ0 ≤ λ will be given as a homework problem.

The mixing time bounds in terms of ρ and ρ0 are essentially the same. Since ρ0 ≥ ρ it may be more useful
under certain circumstances, but in the asymptotics if ρ0 < λ then the log-Sobolev bound will be better.

Log-sobolev and modified log-Sobolev are notoriously difficult to bound. However, there are arguments that
work in a few cases.

Definition 14.6. Given Markov chains M1,M2, . . . ,Mn the product chain M =
∏Mi is the Markov

chain on the Cartesian product
∏

Ωi with transition matrix

P((x1, x2, . . . , xn), (y1, y2, . . . , yn)) =





1
n Pi(xi, yi) if xi 6= yi and ∀j 6= i : xj = yj
1
n

∑n
i=1 Pi(xi, xi) if xi = yi for all i

0 otherwise

In short, the product chain chooses a coordinate i uniformly at random and then makes a step on this
coordinate according to the chain Mi.

Theorem 14.7 (Tensorization). For a product M =
∏Mi of finite, irreducible, reversible Markov chain

then

λ =
1
n

minλi, ρ =
1
n

min ρi, N(s) =
∏

Ni(s)

Proof. Consider N(s)2. The bound on N(s)2 follows quickly from the form N(s)2 = maxi
P2s(i,i)
π(i) .

For the bounds on λ and ρ see Chapter 8, Lemma 35 and Theorem 36 in Aldous-Fill. A nicer proof can be
found in the Ph.D. Dissertation of Stoyanov [4] (a former GATech student).

This shows that if it is possible to determine ρ, λ or N(s) then it is also possible to determine the values for
the products.

Example 14.8. Consider the lazy simple walk on the boolean cube {0, 1}d a product chain for the two-point
space with a single step to uniform walk, i.e. P(0, 0) = P(0, 1) = P(1, 0) = P(1, 1) = 1/2. This is simple
enough to determine everything exactly.

λ = inf
V arf 6=0

E(f, f)
V arπ(f)

Observe that given a constant c then

E(c+ f, c+ f)
V arπ(c+ f)

=
E(f, f)
V arπ(f)

=
E(c f, c f)
V arπ(c f)
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Given f on {0, 1} then consider f − f(0), so it can be assumed that f(0) = 0. Likewise, given that f(0) = 0
then consider f/f(1), so it can further be assumed that f(1) = 1. It follows that the only function f of
interest is f(0) = 0, f(1) = 1. Then

λ =
(f(1)− f(0))2 π(0)P(0, 1)
(f(1)− f(0))2 π(0)π(1)

=
1/4
1/4

= 1

Therefore
λ({0, 1}d) =

1
d

You will determine ρ and ρ0 on the homework.
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