
Lecture 17 - Mixing times and conductance
Friday, September 24

We continue where we left off last class. All of our results today come from a paper of myself [1], with some
inspiration from the work of Morris and Peres [2]. Note that almost all the results on evolving sets that we
discuss for the next few weeks are in papers of myself that are currently being written up. Any suggestions
regarding notation, clarity, examples, or whatever you like would be appreciated.

Our goal is to say something about mixing times. Let τ(ε) denote normal total variation mixing time, D(ε)
denote time to reach distance ε in informational divergences, and L2(ε) denote the same for L2-distance.

Corollary 17.1. If M is a Markov chain with stationary distribution π then for any starting distribution
p(0) the n-step distribution p(n) = p(0) Pn satisfies

‖p(n) − π‖TV ≤ CnTV (1− π∗) , τ(ε) ≤ log ε−1

1− CTV ,

D(p(n)‖π) ≤ CnD log π−1
∗ , D(ε) ≤ log log π−1

∗ + log ε−1

1− CD ,

‖p(n) − π‖2,π ≤ CnL2

√
1− π∗
π∗

, L2(ε) ≤
1
2 log π−1

∗ + log ε−1

1− CL2
,

where π∗ = miny∈V π(y) and for A ⊂ Ω let

CTV (A) =
∫ 1

0

π(Au)(1− π(Au))
π(A)(1− π(A))

du,

CD(A) =
∫ 1

0

π(Au) log 1
π(Au)

π(A) log 1
π(A)

du,

CL2(A) =
∫ 1

0

√
π(Au)(1− π(Au))
π(A)(1− π(A))

du,

while CTV = maxπ(A)≤1/2 CTV (A), CD = maxA⊂Ω CD(A) and CL2 = maxπ(A)≤1/2 CL2(A).

Proof. We work out only the total variation case. The other cases are similar.

Recall from Lemma 7.3 that the worst initial distribution is a point, so it suffices to consider the case where
the initial distribution is δ{x} for some x ∈ Ω. Let EAf(π(Sn)) denote the expectation when S0 = A.

1
π(x)

E{x}π(Sn)(1− π(Sn)) =
∑

S⊂Ω

(∫ 1

0

π(Su)(1− π(Su)) du
)

Kn−1({x}, S)
π(x)

=
∑

Sn−1⊂Ω

CTV (Sn−1)π(Sn−1)(1− π(Sn−1))
Kn−1({x}, Sn−1)

π(x)

=

(
E{x}

n−1∏

i=0

CTV (Si)

)
π(x)(1− π(x))

π(x)

≤ (1− π(x)) CnTV
The final equality followed by induction, the inequality is because CTV is the worst case.

For the restriction to π(A) ≤ 1/2 observe that (Ac)u = (A1−u)c. But then CTV (Ac) = CTV (A).

Bounds on the various mixing times follow immediately from the bounds on the distances.
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The quantity Cf is a weighted measure of congestion. If we want to understand the mixing in various
distances then this is only a matter of choosing the correct function f to weight π(Sn) by.

Just how strong Corollary 17.1 is can be seen in the following example.

Example 17.2. Given α ∈ [0, 1] consider the random walk on Kn with P(x, y) = (1 − α)/n for all y 6= x
and P(x, x) = α + (1− α)/n, that is, choose a point uniformly at random and move there with probability
1− α, otherwise do nothing. Then

π(Au) =





0 if u > α+ (1− α)π(A),
π(A) if u > (1− α)π(A),
1 otherwise .

A quick calculation shows that CTV = CD = CL2 = α, and so Corollary 17.1 implies ‖p(t) − π‖TV ≤
αt (1− 1/n), D(p(t)‖π) ≤ αt logn and ‖p(t) − π‖L2 ≤ αt√n− 1.

When α ∈
[
−1
n−1 , 0

)
then

π(Au) =





0 if u > (1− α)π(A),
π(Ac) if u > α+ (1− α)π(A),
1 otherwise

Once again, an easy calculation shows that CTV = CL2 = −α and the corollary implies ‖p(t) − π‖TV ≤
(−α)t (1− 1/n) and ‖p(t) − π‖L2 ≤ (−α)t

√
n− 1.

The t step distribution is p(t)(x, x) = 1
n + αt

(
1− 1

n

)
and p(t)(x, y) = 1

n − αt

n for all y 6= x. It follows that
when α ≥ 0 then D(p(t)‖π) = (1 + on(1))αt log n as n → ∞ and our bound is asymptotically correct, while
for general α we have ‖p(t) − π‖TV = |α|t (1− 1/n) and ‖p(t) − π‖L2 = |α|t√n− 1, and our total variation
and L2 bounds are exact at all times t, even for non-lazy chains!

We are now ready to state our main result, upper and lower bounds on the various 1−C quantities in terms
of Ψ(A). Even for lazy Markov chains these can lead to better mixing time bounds than have been shown
by other authors (a few examples are given in the next lecture).

Theorem 17.3. If M is an irreducible Markov chain and A ⊂ Ω, then

φ̃(A) ≥ 1− CL2(A) ≥ 1−
√

1− φ̃(A)2 ≥ φ̃(A)2/2

φ̃(A) ≥ 1− CD(A) ≥ 2φ(A)2

log(1/π(A))

φ̃(A) ≥ 1− CTV (A) ≥ 4φ̃(A)2π(A)(1− π(A))

where φ(A) = Ψ(A)
π(A) and φ̃(A) = Ψ(A)

π(A)π(Ac) .

For lazy Markov chains Ψ(A) = Q(A,Ac) and so φ(A) = Φ(A) = Q(A,Ac)
π(A) and φ̃(A) = Φ̃(A) = Q(A,Ac)

π(A)π(Ac) .

Proof. Jensen’s inequality is the key to all the upper and lower bounds. We give only the lower bound on
CL2(A) because it is the most interesting for our applications; the other lower bounds can be proven similarly.
The upper bound require a more careful use of Jensen, however, rather than detail it here a more elegent
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argument for all of these cases will be given later next week.

CL2(A) =
∫ ℘

0

√
π(Au)(1− π(Au))

π(A)π(Ac)
du+

∫ 1

℘

√
π(Au)(1− π(Au))

π(A)π(Ac)
du

≤ ℘

√(
1 +

Ψ(A)
℘π(A)

)(
1− Ψ(A)

℘π(Ac)

)
+ (1− ℘)

√(
1− Ψ(A)

(1− ℘)π(A)

)(
1 +

Ψ(A)
(1− ℘)π(Ac)

)

=
√(

℘+ φ̃(A)π(Ac)
)(

℘− φ̃(A)π(A)
)

+
√(

1− ℘− φ̃(A)π(Ac)
)(

1− ℘+ φ̃(A)π(A)
)

The inequality is by Jensen’s inequality applied to f(x) =
√
x(1− x), g(u) = π(Au) and probability measure

du
℘ on [0, ℘] or du

1−℘ on [℘, 1].

Suppose that
√
X Y +

√
(1−X)(1− Y ) ≤

√
1− (X − Y )2 when X, Y ∈ [0, 1]. Let X = ℘+ φ̃(A)π(Ac) and

Y = ℘− φ̃(A)π(A). It is easily checked that X,Y ∈ [0, 1], and the bound on CL2(A) follows immediately.

To prove the inequality let g(X,Y ) =
√
X Y +

√
(1−X)(1− Y ). Then

g(X,Y )2 = 1− (X + Y ) + 2X Y +
√

[1− (X + Y ) + 2X Y ]2 − [1− 2(X + Y ) + (X + Y )2] .

Now,
√
A2 −B ≤ A − B if A2 ≥ B and A ≤ 1+B

2 (square both sides to show this). These conditions are
easily verified with A = 1− (X + Y ) + 2X Y and B = 1− 2(X + Y ) + (X + Y )2, and so

g(X,Y )2 ≤ 2 [1− (X + Y ) + 2X Y ]− [1− 2(X + Y ) + (X + Y )2
]

= 1 + 2X Y −X2 − Y 2 = 1− (X − Y )2
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