
Lecture 19 - Consequences of New Cheeger, Average Congestion
Wednesday, September 29

19.1 Consequences of New Cheeger bound

Let us look at a few more small consequences of past results.

Recall from Lecture 10 that Jerrum and Sinclair showed how to bound mixing times of reversible Markov
chains in terms of conductance, and that Mihail [1] later improved this and generalized to the non-reversible
case. We have not used reversibility and so our result applies to non-reversible chains as well.

Corollary 19.1. If M is a lazy (non-reversible) Markov chain then

τ(ε) ≤ L2(2ε) ≤ min
{

1
Φ2
,

2
Φ̃2

}
log

1
2ε
√
π∗

and if M is reversible then moreover λ ≥ max{Φ2, Φ̃2/2}.

One application of the corollary is to the canonical paths method discussed in Lecture 10. Recall that
Φ ≥ 1/(2ρ); if one checks the proof it is clear that it in fact shows Φ̃ ≥ 1/ρ. This gives a factor of 2
improvement Corollary 10.7, and a factor 4 improvement over the statement λ ≥ 1/8ρ2 found in most
papers.

Corollary 19.2 (Canonical Paths). If M is a lazy, reversible, ergodic Markov chain then

λ ≥ 1−
√

1− ρ−2 ≥ 1
2ρ2

.

Further generalizations on canonical path theorems can be found in [3] and might be discussed later, time
permitting.

19.2 Average Congestion

The main point of today’s class is to study how the behavior of C(A) with set sizes effects the mixing time.
So far our study of evolving sets has focused on a global congestion measure Cf . However, if a Markov
chain starts at a single point then it makes more sense to first consider the behavior of small sets, and then
gradually build up to big sets.

A good example of this is the lazy random walk on the boolean cube {0, 1}d.
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At the set A given by a single vertex the Markov chain steps out half the time. However, when it is the
lower half space then it steps out only 1/2d of the time. Therefore we might expect that the Markov chain
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quickly spreads out over the space (due to small sets being good), and only then do the slow asymptotics
start to kick in.

The following theorem shows just that. This can lead to a major improvement because small sets often have
significantly higher expansion than large sets (the cube example is worked out in the next class). Our method
is almost identical to that of Morris and Peres [4], however I have extended it to the various distances that
we now know how to study [2].

Corollary 19.3. If M is a Markov chain with stationary distribution π then

τ(ε) ≤
∫ 1/2

π∗

dx

(1− x)ψTV (x)
+

log(1/2ε)
ψTV (1/2)

, if zψTV (1− z) is convex

D(ε) ≤
∫ e−ε

π∗

dx

x log(1/x)ψD(x)
, if zψD(e−z) is convex

L2(ε) ≤
∫ 1/2

π∗

dx

2x(1− x)ψL2(x)
+

log(1/ε)
ψL2(1/2)

, if zψL2

(
1

1+z2

)
is convex

where ψTV (x) ≤ min
0<π(A)≤x

1− CTV (A), ψD(x) ≤ min
0<π(A)≤x

1− CD(A) and ψL2(x) ≤ min
0<π(A)≤x

1− CL2(A).

If the convexity condition is not met then

τ(ε) ≤ log 1−π∗
ε

1− CTV

D(ε) ≤
∫ e−ε/2

√
π∗

2 dx
x log(1/x)ψD(x)

L2(ε) ≤
∫ 1/2

π∗

dx

2x(1− x)ψL2(x)
+

log(2/ε)
ψL2(1/2)

Proof. Our argument is taken from the proof Morris and Peres [4] for studying L2 mixing. We have made
only slight changes to fit our slightly different mixing time bounds.

Recall that
‖Pt(x, ·)− π‖2,π ≤ 1

π(x)
E{x}

√
π(St)(1− π(St)) (1)

We now try to see how quickly this ratio drops.

Consider the random walk on sets given by

K̂(S,A) =
π(A)
π(S)

K(S,A)

where K(S,A) is the transition matrix (kernel) for the evolving sets walk. Then K̂(S,A) is a transition matrix
because

∑
A⊂Ω K̂(S,A) = 1. Also, by induction

K̂t(S,A) =
π(A)
π(S)

Kt(S,A) .

Therefore,

ÊSf(St) = ES

[
π(St)
π(S)

f(St)
]
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where Ê is the expectation for the transition matrix K̂t(S, ·). In the setting of equation (1) this means that

1
π(x)

E{x}
√
π(St)(1− π(St)) = Ê{x}

√
1− π(St)
π(St)

Therefore, to bound the mixing time we need only find how small Ê{x}Zt is, for Zt =
√

1−π(St)
π(St)

.

First, notice that we know the rate at which Zt drops, as

Ê{x}

(
Zt+1

Zt

∣∣∣∣Sn
)

= E{x}

(√
π(St+1)(1− π(St+1))√
π(St)(1− π(St))

∣∣∣∣∣St
)

= CL2(St) ≤ 1− ψL2(π(St)) .

This can be rewritten in terms of Zt because π(St) = 1/(1 + Z2
t ), and so

Ê{x}

(
Zt+1

Zt

∣∣∣∣Sn
)
≤ 1− ψL2(1/(1 + Z2

t ))

By Lemma 19.4 below it follows that if

n ≥
∫ Z0

δ

2 dz
z ψL2(1/(1 + (z/2)2)

then ‖Pt(x, ·)− π‖L2 ≤ δ. Make a change of variables, with x = 1/(1 + (z/2)2) and Z0 =
√

(1− π∗)/π∗, so
x(Z0) ≥ π∗, while dz

z = − dx
2x(1−x) . Substituting this all in implies that

n ≥
∫ 1/(1+(δ/2)2)

π∗

dx

2x(1− x)ψL2(x)
=
∫ 1/2

π∗

dx

2x(1− x)ψL2(x)
+

log(2/δ)
ψL2(1/2)

The bounds for the convex case, as well as the other distances all follow similarly.

The following lemma is still needed. The lemma and proof are taken verbatim from Morris and Peres [4].

Lemma 19.4. Let f, f0 : [0,∞) → [0, 1] be increasing functions. Suppose that Zn ≥ 0 for n = 0, 1, . . . are
random variables with Z0 = L0. Denote Ln = E(Zn).

1. If Ln − Ln+1 ≥ Ln f(Ln) for all n, then for every n ≥ ∫ L0

δ
dz

z f(z) , we have Ln ≤ δ.

2. If E(Zn+1|Zn) ≤ Zn(1 − f(Zn)) for all n and the function u → u f(u) is convex on (0,∞) then the
conclusion of (i) holds.

3. If E(Zn+1|Zn) ≤ Zn(1− f0(Zn)) for all n and f(z) = f0(z/2)/2, then the conclusion of (i) holds.

Proof. (i) It suffices to show that for every n we have

n ≤
∫ L0

Ln

dz

z f(z)
.

We verify this by induction. Clearly this holds for n = 0. Now, fix n ≥ 0 and suppose that this holds. Then

Ln+1 ≤ Ln [1− f(Ln)] ≤ Ln e−f(Ln)
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whence ∫ Ln

Ln+1

dz

z f(z)
≥ 1
f(Ln)

∫ Ln

Ln+1

dz

z
=

1
f(Ln)

log
Ln
Ln+1

≥ 1 .

Thus ∫ L0

Ln+1

dz

z f(z)
≥
∫ L0

Ln

dz

z f(z)
+ 1 ≥ n+ 1 .

(ii) This is immediate from Jensen’s inequality.

(iii) Fix n ≥ 0. We have

E(Zn − Zn+1) ≥ E[2Znf(2Zn)] ≥ E[2Zn1A]f(Ln)

where A is the even {2Zn ≥ Ln}. Clearly E[2Zn1Ac ] ≤ Ln, whence E[2Zn1A] ≥ Ln. This, in conjunction
with the previous equation yields the hypothesis of (i).
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