
Lecture 21 - Vertex congestion and comparison theorems
Monday, October 4

Today we apply Lemma 20.3 to prove mixing time theorems involving not just the edge edge expansion, but
also the vertex expansion.

21.1 Edge and Vertex expansion effects on mixing times

First, let us give a few applications of Lemma 20.3 which give a good intuition into what governs mixing.

Corollary 21.1 (Edge expansion / flow). If M and M′ are finite, ergodic, lazy Markov chains with the
same stationary distribution π, if f : [0, 1]→ R+ is a concave function, and M′ has smaller pointwise flow,
that is

∀A ⊂ Ω, ∀v ∈ Ac : Q(A, v) ≥ Q′(A, v)

then
∀A ⊂ Ω : 1− Cf (A) ≥ 1− C′f (A) .

This says that if the edge expansion is smaller then the mixing time is worse.

In order to consider vertex expansion we need to define exactly what this term means. One reasonable
definition is to say that the flow is well distributed if cutting it off at some threshold does not cut off too
much, that is if the threshold is u then

∑
v∈Ac min{uπ(v), Q(A, v)} is about the same size as Q(A,Ac), and

likewise with a sum over v ∈ A.

Corollary 21.2 (Vertex expansion). If M and M′ are finite, ergodic, lazy Markov chains with the same
stationary distribution π, if f : [0, 1] → R+ is a concave function, and M′ has more well distributed flow,
that is

∀A ⊂ Ω, ∀u ∈ [0, 1/2] :
∑

v∈Ac
min{uπ(v), Q′(A, v)} ≥

∑

v∈Ac
min{uπ(v), Q(A, v)}

then
∀A ⊂ Ω : 1− C′f (A) ≥ 1− Cf (A)

Likewise, this says that if the flow is more evenly distributed among vertices (vertex expansion is higher)
then the mixing time is better.

Proofs of Corollary 21.1 and 21.2. Figure 1 gives a visual “proof.” This is easily made rigorous and so the
details are left to the interested reader.

The corollaries seem to only require require flow into Ac to be good. However, by considering the subset
Ac ⊂ Ω then the flow into (Ac)c = A must also be good. Alternatively, it suffices to consider only sets with
π(A) ≤ 1/2 if flow into A and Ac are both considered.

21.2 Canonical paths

Recall the setting of canonical paths results is as follows. Consider two Markov chains M̃ and M, with
the same state space (set of vertices V ) but different transition probabilities (edges Ẽ and E). For each
(directed) edge ẽ = (x, y) ∈ Ẽ, define a path γxy from x to y along (directed) edges E of M and transport
p̃i(x)P̃(x, y) units from x to y along this path. The paths should be well distributed so that not too many
pass through the same vertices or edges, or it will become a transportation bottleneck.
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Figure 1: The π(Au) for M vs. lower edge expansion M′, and vs. higher vertex expansion M′.

Theorem 21.3 (Comparison with Conductance Profile (see [3])). Suppose that M̃ and M are lazy
Markov chains with the same set of vertices V , and to every edge ẽ = (x, y) ∈ Ẽ associate a path γxy ⊂ E.
Let

ρe = max
e∈E

1
Q(e)

∑
γxy3e

π̃(x) P̃(x, y) and ρv = max
v∈V

1
π(v)

∑
γxy3v

π̃(x) P̃(x, y) .

If A ⊂ V a proper subset and π = π̃ then

1− CL2(A) ≥ 2
ρv
ρe


1−

√√√√1−
(

Φ̃M̃(A)
2ρv

)2

 ≥ Φ̃M̃(A)2

4 ρvρe

1− CD(A) ≥ ΦM̃(A)2

ρe ρv log(1/π(A))

1− CTV (A) ≥ 2 Φ̃M̃(A)2 π(A)π(Ac)
ρv ρe

If π 6= π̃ then replace Φ̃M̃(A) by QM̃(A,Ac)

π(A)π(Ac) and likewise ΦM̃(A) by QM̃(A,Ac)

π(A) .

Proof. To do this we need only use Lemma 20.3 to construct the worst case from the paths, and then do
some simplification. By Corollary 21.1 being too pessimistic about the ergodic flow Q(A,Ac) will help lower
bound 1− Cf (A), so we may pessimistically assume that the canonical paths include all of the ergodic flow,
and so Q(A,Ac) = QM̃(A,Ac)/ρe. Likewise, ρv says that this flow is not too concentrated at any points, in

particular the worst case of this flow at a single point is ∀v ∈ A : Q(Ac,v)
π(v) ≤ Q̃(A,Ac)/ρe

Q̃(A,Ac)/ρv
= ρv

ρe
, and likewise

for v ∈ Ac. It follows that if M := ρv/ρe then ∀u ∈ [M, 1−M ] : π(Au) = π(A). Subject to this constraint,
in Lemma 20.3 the integral

∫ t
0
π(Au) du is minimized by

π(Au) =





π(A) +M−1 Q(A,Ac) if u < M

π(A) if u ∈ [M, 1−M ]
π(A)−M−1 Q(A,Ac) if u > 1−M

Again, it is perhaps easier to understand this with Figure 2.

To finish the proof apply the worst case constructed above to each of the Cf (A) quantities, and simplify.
The simplification step is basically the same as in Theorem 17.3, hence the similar bounds.

With Theorem 21.3, if the conductance profile of one Markov chain is known then it can be used to study
the mixing time of a second chain via comparison. Alternatively, comparison to Kn gives a canonical path
theorems.
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Figure 2: Correct flow for M, flow bounded by QM̃(A,Ac)/ρe, then adjust for vertex congestion.

Corollary 21.4 (Canonical Paths). Suppose M is a finite, irreducible, lazy Markov chain with paths γxy
between every pair of vertices x, y ∈ V with x 6= y. Define

ρe = max
e∈E

1
Q(e)

∑
γxy3e

π(x)π(y) and ρv = max
v∈V

1
π(v)

∑
γxy3v

π(x)π(y) .

Then

1− CL2 ≥ 2
ρv
ρe

(
1−

√
1− 1/4ρ2

v

)
≥ 1

4 ρv ρe
,

τ(ε) ≤ 4 ρv ρe log
1

2ε
√
π∗

.

If M is reversible then it suffices to consider ρv/2, as unordered pairs of vertices suffice in the sum.

Here is an application showing how several of the results we have proven so far can be combined to get an
improved bound on mixing time. See the papers referenced for details of the facts inequalities that are used.

Example 21.5. Feder and Mihail [1] studied a random walk for sampling spanning trees of an (n+1)-vertex,
m-edge connected graph (more generally, “balanced matroids”). Given a spanning tree choose an edge to
drop, a new edge from the graph to add, and make an exchange if and only if this makes a new spanning
tree. Make this lazy by doing nothing half the time (a similar construction works for counting bases of a
finite vector space as well).

Feder and Mihail showed a result equivalent to ρe ≤ nm and ρv ≤ 2n. By Corollary 21.4 it follows that
for simple balanced matroids then τ(ε) ≤ 8mn2 log 1

2
√
π∗ε
≤ 8mn2

(
n
2 logm+ log(1/2ε)

)
, exactly the same

upper bound obtained by Feder and Mihail [1] by a canonical path theorem.

This can be improved on further. In [4] Jung Bae Son and I showed that Φ(A) ≥ log2(1/π(A))
2mn , which by

Average Conductance (Corollary 20.1) implies that implies that τ(ε) ≤ 4(log 2)m2 n2 + 8m2 n2 log(1/2ε).
This is typically a worse bound, however, combining the two lower bounds on 1− CL2(A) implies that

1− CL2(A) ≥ max
{

1
8mn2

,
log2

2(1/π(A))
8m2n2

}
=

{
log2

2(1/π(A))/8m2n2 if π(A) ≤ 2−
√
m

1/8mn2 if π(A) > 2−
√
m

and this time by Corollary 19.3 the mixing time is τ(ε) ≤ 8(log 2)m3/2 n2 + 8mn2 log(1/2ε) when 2−
√
m ≥

m−n. This is an improvement over the canonical paths bound as m ≤ (n2
)
.

We note that the correct bound is still much smaller at τ(ε) = O
(
mn log n

ε

)
[2].
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