Reduction of volume estimation to uniform sampling

Scribe: Sam Greenberg

Given a convex body $K \subset \mathbb{R}^{n}$, we want to estimate the volume.
Remark 22.1. Generally these volume algorithms can be generalized to integrate log-concave funtions. i.e.

$$
\forall x, y \in K, \lambda \in[0,1]: \lambda \log f(x)+(1-\lambda) \log f(y) \leq \log f(\lambda x-(1-\lambda) y)
$$

These include psitive concave functions and standard functions like the Gaussians.

This volume can not be calculated deterministically. For example, consider the following deterministic idea:

1. Put the body in a box $[-c, c]^{n}$.
2. Check if the points $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are in K, where each $v_{i} \in\left\{-\frac{c}{2}, \frac{c}{2}\right\}$.

This takes 2^{n} steps, and may be of by a factor of ≥ 2; we can evade any way of choosing points, implying a volume of 0 , when in fact the volume is positive. This suggests that any deterministic methodis problematic.

We now try randomization. Consider this simple idea:

1. Put the body in a box as before. $[-c, c]^{n}$
2. Sample randomly in the box.
3. Let the volume be the fraction of the samples that were in the box, times $(2 c)^{n}$.

This works, unless that fraction is exponentially small. Unfortunately, this often is the case. We now try another method:

1. Put the body in a box. $[-c, c]^{n}$
2. Create a sequency of boxes B_{i}, decreasing in volume.
3. Sample from $B_{i} \cap K$. Notice that this is still convex.
4. Estimate $\frac{V o l\left(B_{i+1} \cap K\right)}{V o l\left(B_{i} \cap K\right)}=p_{i+1}$.
5. Let $\operatorname{Vol}(K)=\frac{V o l\left(K \cap B_{0}\right.}{\operatorname{Vol}\left(K \cap B_{1}\right.} \cdot \frac{\operatorname{Vol}\left(K \cap B_{1}\right)}{\operatorname{Vol}\left(B_{2}\right)} \cdots \cdot \frac{\operatorname{Vol}\left(K \cap B_{k-1}\right)}{\operatorname{Vol}\left(K \cap B_{k}\right)} \cdot \operatorname{Vol}\left(B_{k}\right)$.

This will be a good estimate for volume if $\frac{1}{c}<p_{i} \leq c$, for some c.
Note that the easiest way to shrink the side length is by $\left(1-\frac{1}{n}\right)$. Then the volume shrinks by $\leq\left(1-\frac{1}{n}\right)^{n}$, which is basically e^{-1}. We'll have $\operatorname{Vol}\left(B_{i+1} \cap K\right) \geq \frac{\operatorname{Vol}\left(B_{i} \cap K\right)}{e}$.

References

