Lecture 24 - Local conductance and uniform sampling

Assume the same problem description as in Lecture 23, "Introduction to the Ball Walk".
Much of the material on estimating the volume of a convex body can be found in [1], [2], and [3].
In the last class we began to study the speedy walk where given a poiny $x \in K$ the transition probability to a set A is defined by

$$
P(x, A)=\int_{y \in B(x, \delta) \cap K \cap A} \frac{d y}{\operatorname{Vol}_{n}(B(x, \delta) \cap K)} .
$$

In the typical case we will set $\delta \leq 1 / \sqrt{n}$. It was shown that the stationary distribution μ of this Markov chain is given by

$$
\mu(A)=\frac{1}{L} \int_{A} l(x) d x
$$

where $l(x)$ is the local conductance of the point $x \in K$ and is defined by

$$
l(x)=\frac{\operatorname{Vol}_{n}(B(x, \delta) \cap K)}{\operatorname{Vol}_{n}(B(x, \delta))}
$$

It is possible for us to modify our sampling procedure in order to ensure that in the limit we will obtain uniform samples from K. Assume that $l(x) \geq c>0$ for all $x \in K$. Now
(i) Generate a sample according to μ.
(ii) Accept each sample point x with probability $c / l(x)$.

The resulting sampling is uniform since

$$
P(\text { sample point } x \in K) \propto l(x) \cdot \frac{c}{l(x)}=c
$$

One way to guarantee that $l(x)$ is sufficiently large is to make some sort of assumption on the boundary of K.

Lemma 24.1. [1] If for each $x \in K$ there exists a $y \in B(x, \delta) \cap K$ such that $B(y, \delta) \subseteq K$ where $\delta \leq c / \sqrt{n}$, then $.4 \leq l(x) \leq 1$.

However, the conditions in the lemma are fairly strong so a weaker requirement would be nice. Observe that points fairly far from the boundary of K will be sampled roughly uniformly, and only points near the boundary are heavily non-uniform. This can be exploited by scaling K down by a small factor, only accepting Speedy when it samples in this fairly uniform region, and then scaling the result back out until it entirely covers K.

Theorem 24.2. [3] Suppose that the Speedy chain is run long enough that the variation distance is at most δ. Then, given a sample $v \in K$ from the Speedy chain check if $\frac{2 n}{2 n-1} v \in K$; if it is then return $\frac{2 n}{2 n-1} v$ as a sample from K, otherwise run Speedy again and repeat this procedure. Then if

$$
\delta \leq 1 / \sqrt{8 n \log (n / \varepsilon)}
$$

then the final sample is within 10ε from being uniform.

We now must show that the speedy walk is rapidly mixing. Recall the following from last class for a continuous space chain.

Theorem 24.3.

$$
\tau(1 / 4) \leq 15000\left[\int_{\pi_{1}}^{1 / 2} \frac{d x}{x(\Phi(x))^{2}}+\frac{1}{\Phi}\right]
$$

where $\pi_{1}=\sup \left\{t: \forall A \subseteq \Omega\right.$ s.t. $\left.\pi(A)=t, P\left(x, A^{C}\right) \geq 1 / 10 \forall x \in A\right\}$.
This can be used to study $\tau(\varepsilon)$ by a previous inequality from lecture seven.

Lemma 24.4.

$$
\tau(\varepsilon) \leq \tau(\delta)\left\lceil\log _{\frac{1}{2 \delta}}(1 / 2 \varepsilon)\right\rceil
$$

Thus $\tau(\varepsilon) \leq \tau(1 / 4)\left\lceil\log _{2}(1 / 2 \varepsilon)\right\rceil$.
We can bound π_{1} from below for the speedy walk, so long as the step size δ is sufficiently small. Let D be the diameter of K.

Lemma 24.5. $\pi_{1} \leq(1 / 2)(\delta / D)^{2 n}$ if $\delta \leq 1$.

Proof. Let $x \in K$ and $S \subseteq K$ be such that $\pi(S) \leq(1 / 2)(\delta / D)^{2 n}$. It suffices to show that $P_{x}(K \backslash S) \geq 1 / 10$. Blowing up $K \cap B(x, \delta)$ by a factor of D / δ covers K so that

$$
\begin{aligned}
l(x) & =\frac{\operatorname{Vol}_{n}(B(x, \delta) \cap K)}{\operatorname{Vol}_{n}(B(x, \delta))} \\
& \geq\left(\frac{\delta}{D}\right)^{n} \frac{\operatorname{Vol}_{n} K}{\operatorname{Vol}_{n}(B(x, \delta))}
\end{aligned}
$$

Using this inequality and the fact that $l(x) \leq 1$ we get

$$
\begin{aligned}
\pi(S) & =\frac{\int_{S} l(x) d x}{\int_{K} l(x) d x} \\
& \geq \frac{\left(\frac{\delta}{D}\right)^{n} \frac{V o l_{n} K}{V o l_{n} B(x, \delta)} \operatorname{Vol}_{n} S}{\operatorname{Vol}_{n} K}
\end{aligned}
$$

Thus

$$
\begin{aligned}
P_{x}(S) & =\frac{\operatorname{Vol}_{n}(S \cap B(x, \delta))}{\operatorname{Vol}_{n}(K \cap B(x, \delta))} \\
& \leq \frac{\operatorname{Vol}_{n}(S)}{l(x) \operatorname{Vol}_{n}(B(x, \delta))} \\
& \leq \frac{\left(\frac{D}{\delta}\right)^{n} \pi(S) \operatorname{Vol}_{n}(B(x, \delta))}{\left(\frac{\delta}{D}\right)^{n} \frac{V_{n}(K)}{\operatorname{Vol}_{n}(B(x, \delta))} \operatorname{Vol}_{n}(B(x, \delta))} \\
& =\pi(S)\left(\frac{D}{\delta}\right)^{2 n} \operatorname{Vol}_{n}(B(x, \delta)) / \operatorname{Vol}_{n}(K) \\
& \leq 1 / 2 .
\end{aligned}
$$

References

[1] M. Jerrum. Counting, sampling and integration: algorithms and complexity. Birkhauser Boston, also see author's website, 2003.
[2] R. Kannan, L. Lovász, and R. Montenegro. Blocking conductance and mixing in random walks. Preprint, 2003.
[3] R. Kannan, L. Lovász, and M. Simonovits. Random walks and an $o^{*}\left(n^{5}\right)$ volume algorithm. Random Structures and Algorithms, 1997.

