
Lecture 24 - Local conductance and uniform sampling
Scribe: Josh Reed

Monday, October 11

Assume the same problem description as in Lecture 23, ”Introduction to the Ball Walk”.

Much of the material on estimating the volume of a convex body can be found in [1], [2], and [3].

In the last class we began to study the speedy walk where given a poiny x ∈ K the transition probability to
a set A is defined by

P (x,A) =
∫

y∈B(x,δ)∩K∩A

dy

V oln(B(x, δ) ∩K)
.

In the typical case we will set δ ≤ 1/
√
n. It was shown that the stationary distribution µ of this Markov

chain is given by

µ(A) =
1
L

∫

A

l(x)dx

where l(x) is the local conductance of the point x ∈ K and is defined by

l(x) =
V oln(B(x, δ) ∩K)
V oln(B(x, δ))

.

It is possible for us to modify our sampling procedure in order to ensure that in the limit we will obtain
uniform samples from K. Assume that l(x) ≥ c > 0 for all x ∈ K. Now

(i) Generate a sample according to µ.

(ii) Accept each sample point x with probability c/l(x).

The resulting sampling is uniform since

P (sample point x ∈ K) ∝ l(x) · c

l(x)
= c.

One way to guarantee that l(x) is sufficiently large is to make some sort of assumption on the boundary of
K.

Lemma 24.1. [1] If for each x ∈ K there exists a y ∈ B(x, δ) ∩K such that B(y, δ) ⊆ K where δ ≤ c/√n,
then .4 ≤ l(x) ≤ 1.

However, the conditions in the lemma are fairly strong so a weaker requirement would be nice. Observe
that points fairly far from the boundary of K will be sampled roughly uniformly, and only points near the
boundary are heavily non-uniform. This can be exploited by scaling K down by a small factor, only accepting
Speedy when it samples in this fairly uniform region, and then scaling the result back out until it entirely
covers K.

Theorem 24.2. [3] Suppose that the Speedy chain is run long enough that the variation distance is at most
δ. Then, given a sample v ∈ K from the Speedy chain check if 2n

2n−1 v ∈ K; if it is then return 2n
2n−1 v as a

sample from K, otherwise run Speedy again and repeat this procedure. Then if

δ ≤ 1/
√

8n log(n/ε)

then the final sample is within 10ε from being uniform.
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We now must show that the speedy walk is rapidly mixing. Recall the following from last class for a
continuous space chain.

Theorem 24.3.

τ(1/4) ≤ 15000

[∫ 1/2

π1

dx

x(Φ(x))2
+

1
Φ

]

where π1 = sup{t : ∀A ⊆ Ω s.t. π(A) = t, P (x,AC) ≥ 1/10 ∀x ∈ A}.

This can be used to study τ(ε) by a previous inequality from lecture seven.

Lemma 24.4.

τ(ε) ≤ τ(δ)dlog 1
2δ

(1/2ε)e.

Thus τ(ε) ≤ τ(1/4)dlog2(1/2ε)e.
We can bound π1 from below for the speedy walk, so long as the step size δ is sufficiently small. Let D be
the diameter of K.

Lemma 24.5. π1 ≤ (1/2)(δ/D)2n if δ ≤ 1.

Proof. Let x ∈ K and S ⊆ K be such that π(S) ≤ (1/2)(δ/D)2n. It suffices to show that Px(K\S) ≥ 1/10.
Blowing up K ∩B(x, δ) by a factor of D/δ covers K so that

l(x) =
V oln(B(x, δ) ∩K)
V oln(B(x, δ))

≥
(
δ

D

)n
V olnK

V oln(B(x, δ))
.

Using this inequality and the fact that l(x) ≤ 1 we get

π(S) =

∫
S
l(x)dx∫

K
l(x)dx

≥
(
δ
D

)n V olnK
V olnB(x,δ)V olnS

V olnK
.

Thus

Px(S) =
V oln(S ∩B(x, δ))
V oln(K ∩B(x, δ))

≤ V oln(S)
l(x)V oln(B(x, δ))

≤
(
D
δ

)n
π(S)V oln(B(x, δ))(

δ
D

)n V oln(K)
V oln(B(x,δ))V oln(B(x, δ))

= π(S)
(
D

δ

)2n

V oln(B(x, δ))/V oln(K)

≤ 1/2.
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