
Lecture 25 - Mixing times and conductance
Scribe: Sangho Shim
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This is as good as possible, given fixed δ and D. Consider cube of side length D. Diagonal is length D
√
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steps to go halfway across cube
same as what we showed.
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max
π(A)≤x
A closed

Q(A,Ac)
π(A)

.

K

A
S1

S2
B

Basic idea: Want to bound Q(A,Ac) = 1
2 [Q(A,Ac) +Q(Ac, A)]. Let
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Then
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It suffices to find how big B is.

Lemma 25.1. Localization lemma (Lovasz and Simonovitz) Let g and h be lower semicontinuous
(limits of monotone increasing sequence of continuous functions, e.g. indicators of open sets,

∫

Rn
g(x)dx > 0 and

∫

Rn
h(x)dx = 0.

Then there are two points a, b ∈ Rn and a linear function l : [0, 1]→ R+ exist such that

A

∫ 1

0

l(t)n−1g((1− t)a+ tb)dt > 0 and
∫ 1

0

l(t)n−1h((1− t)a+ tb)dt = 0.

l(t)

3d cross sectional area∝ l(t)2. Reduced to needle-like case.

Method of applying: Want to show fact in n-dim. Assume counterexample, writes to integrals. Localization
reduces to one dimension. Show impossible in one-dimension.

Sketch of Proof: Suffices to assume g and h are continuous because if g = limk→∞ gk then
∫
g = lim inf gk

(Monotone convergence), and likewise for h. To get the result, use a bisection argument (Ham Sandwich)

+++

—

–

++
x x

R
g

R
h

R2 R2

Let (++) denote case
R
H1

g ≥ 1
2
R
R2 g Rotate line until

R
H1

Either ∫

H1

g ≥ 1
2

∫

R2
g or

∫

H2

g ≥ 1
2

∫

R2
g

2



Let K1 denote the appropriate half-space, i.e.,
∫

K1

g(x)dx > 0 and
∫

K1

h(x)dx > 0.

Now consider all rational points (countably many) put in a list and bisecting down the list constructing
sequence K0 ⊇ K1 ⊇ .... Then

⋂
Ki has dimension 0 or 1.
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