Lecture 25 - Mixing times and conductance

$$
\begin{gathered}
\pi_{1} \geq \frac{1}{2}\left(\frac{\delta}{D}\right)^{2 n} \\
\Phi(x) \geq \min \left\{\frac{1}{288 \sqrt{n}}, \frac{\delta}{81 \sqrt{n} D} \ln \left(1+\frac{1}{x}\right\}\right. \\
= \begin{cases}\frac{1}{288 \sqrt{D}} & \text { if } x \lesssim e^{-D / 3 \delta} \\
\frac{\delta}{81 \sqrt{n} D} \ln \left(1+\frac{1}{x}\right) & \text { if } x \gtrsim e^{-D / 3 \delta}\end{cases}
\end{gathered}
$$

Then

$$
\begin{aligned}
\tau\left(\frac{1}{4}\right) & \leq 15000\left[288^{2} n \int_{\frac{1}{2}\left(\frac{\delta}{D}\right)^{2 n}}^{e^{-D / 3 \delta}} \frac{d x}{x}+81^{2} n\left(\frac{D}{\delta}\right)^{2} \int_{e^{-D / 3 \delta}}^{\frac{1}{2}} \frac{d x}{x \ln ^{2} 1 / x}\right] \\
& =\left.c_{1} n \ln x\right|_{\frac{1}{2}\left(\frac{\delta}{D}\right)^{2 n}} ^{e^{-D / 3 \delta}}+c_{2} n\left(\frac{D}{\delta}\right)^{2} \frac{1}{\ln 2} \\
& =O\left(n^{2} \ln \frac{D}{\delta}+n\left(\frac{D}{\delta}\right)^{2}\right) \\
& =O\left(n^{3}\right) \quad \because D=O(\sqrt{n}), \quad \delta=\Omega\left(\frac{1}{\sqrt{n}}\right)
\end{aligned}
$$

This is as good as possible, given fixed δ and D. Consider cube of side length D. Diagonal is length $D \sqrt{n}$. Takes $\frac{D \sqrt{n}}{\delta}$ steps to go from one corner to the opposite. about $\left(\frac{1}{2} \frac{D \sqrt{n}}{\delta}\right)^{2}$ steps to go halfway across cube same as what we showed.

It remains to bound

$$
\max _{\substack{\pi(A) \leq x \\ A \text { closed }}} \frac{Q\left(A, A^{c}\right)}{\pi(A)} .
$$

Basic idea: Want to bound $Q\left(A, A^{c}\right)=\frac{1}{2}\left[Q\left(A, A^{c}\right)+Q\left(A^{c}, A\right)\right]$. Let

$$
\begin{aligned}
S_{1} & =\left\{x \in A \left\lvert\, \mathrm{P}_{x}\left(A^{c}\right) \leq \frac{1}{16}\right.\right\} \\
S_{2} & =\left\{x \in A^{c} \left\lvert\, \mathrm{P}_{x}(A) \leq \frac{1}{16}\right.\right\} \\
B & =K \backslash\left(S_{1} \cup S_{2}\right)
\end{aligned}
$$

Then

$$
Q\left(A, A^{c}\right) \geq \frac{1}{2} \frac{\operatorname{Vol}_{n}(B)}{16}
$$

It suffices to find how big B is.
Lemma 25.1. Localization lemma (Lovasz and Simonovitz) Let g and h be lower semicontinuous (limits of monotone increasing sequence of continuous functions, e.g. indicators of open sets,

$$
\int_{\mathbb{R}^{n}} g(x) d x>0 \text { and } \int_{\mathbb{R}^{n}} h(x) d x=0
$$

Then there are two points $a, b \in R^{n}$ and a linear function $l:[0,1] \rightarrow \mathbb{R}_{+}$exist such that

$$
\int_{0}^{1} l(t)^{n-1} g((1-t) a+t b) d t>0 \text { and } \int_{0}^{1} l(t)^{n-1} h((1-t) a+t b) d t=0 .
$$

3d cross sectional area $\propto l(t)^{2}$. Reduced to needle-like case.
Method of applying: Want to show fact in n-dim. Assume counterexample, writes to integrals. Localization reduces to one dimension. Show impossible in one-dimension.

Sketch of Proof: Suffices to assume g and h are continuous because if $g=\lim _{k \rightarrow \infty} g_{k}$ then $\int g=\liminf g_{k}$ (Monotone convergence), and likewise for h. To get the result, use a bisection argument (Ham Sandwich)

Either

$$
\int_{H 1} g \geq \frac{1}{2} \int_{\mathbb{R}^{2}} g \text { or } \int_{H_{2}} g \geq \frac{1}{2} \int_{\mathbb{R}^{2}} g
$$

Let K_{1} denote the appropriate half-space, i.e.,

$$
\int_{K_{1}} g(x) d x>0 \text { and } \int_{K_{1}} h(x) d x>0 .
$$

Now consider all rational points (countably many) put in a list and bisecting down the list constructing sequence $K_{0} \supseteq K_{1} \supseteq \ldots$ Then $\bigcap K_{i}$ has dimension 0 or 1 .

