
Lecture 26 - Bounding Conductance I
Scribe: Teena Carroll

We continue where we left off last class. Last time we stated the localization lemma, and this time we will
be applying it to bound conductance.

Our goal is to show that φ(x) ≥ min{ 1
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It suffices to show that if π(A) = x ≤ 1/2 then Q(A,Ac) ≥ min{ x
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ln(1 + 1/x)} =: A(x). i.e.
Q(A,Ac) ≥ A(x) if π(A) = x

We write this in terms of integrals over Rn to apply the Localization Lemma.

Let

h(y) =

{
Py(A) if y ∈ Ac,
Py(Ac) if y ∈ A),

Note that this the probability of crossing over.

Therefore,
∫
h(y)dµ(y) = 2Q(A,Ac), so it suffices to show that

∫
h(y)dµ(y) ≥ 2A.

We rewrite this in terms of Lebesgue measure, since this is how the localization lemma is stated.

The measure µ, is related to the speedy distribution, so we have µ(y) = l(y)R
K
l(y)dy

, where l denotes the local
conductance. Now we want to rewrite the integral, giving us

∫
h(y)dµ(y) =

∫
h(y)

l(y)∫
K
l(y)dy

dy ≥ 2A

We can also rewrite the equation π(A) = x as

π(A) =
∫
µ(y)χA(y)dy = x

To use LL we assume this is false and let S be a set with π(S) = x but Q(A,Ac) < A(x).

i.e.
∫
h(y)µ(y)dy < 2A and

∫
µ(y)χA(y)dy = x.

so ∫

Rn
2Aµ(y)− h(y)µ(y)dµ > 0

and ∫
xµ(y)− µ(y)χy(y)dy = 0

Note that χS is lower semi-continuous if S is closed.

The Localization Lemma says that ∃a, b ∈ Rn and a linear function l so y(t) = (1− t)a+ tb.

So these integrals are equal to: ∫ 1

0

[2Aµ(t)− h(t)µ(t)]l(t)n−1dt > 0

and ∫ 1

0

[xµ(t)− µ(t)χS(t)]l(t)n−1dt = 0
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Given a set T ⊆ [0, 1] define ν(T ) =
∫
T
µ(t)l(t)n−1dt then we have

∫ 1

0

h(t)dν < 2A
∫ 1

0

χs(t)dν = x

i.e. Now we have a two dimentional counter example.

We can note that µ(t)l(t)n−1 is a log concave measure (this follows from the fact that local conductance is
log concave).

We reduce to the case of a single piece. J1 = {t ∈ (0, 1)|y(t) ∈ S} and J2 = {t ∈ (0, 1)|y(t) ∈ Sc}
We want to further restrict to point with high flow across: J ′1 = {t|y(t) ∈ S and h(t) < 1/16} and J ′2 =
{t|y(t) ∈ Sc and h(t) < 1/16} B = [0, 1]\(J ′1 ∪ J ′2).

We reduce from the general case to the single interval case. We decompose B into maximal intervals [xi, yi].

Then B =
⋃

[xi, yi]

Let Ti = [0, xi] or [yi, 1], whichever has a smaller ν measure. Suppose ν([xi, yi]) ≥ Cν(Ti) for some constant
C, then ν(B) =

∑
ν[xi, yi] ≥

∑
Cν(Ti) ≥ C(min(ν(J ′1), ν(J ′2)).

There is some interval (yi, xi+1) which is entirely contained in either J ′1 or J ′2.

If we suppose that [yi, xi+1] ⊆ J ′1 then J ′2 ⊆ ∪Ti since ∪Ti ⊇ [0, 1]\[xi, yi+1]

This implies that ν(∪Ti) ≥ min{ν(J ′1), ν(J ′2)}.
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