Lecture 4 - Variation Distance and Mixing Time

Now that we can construct good Markov chains a method is needed to measure how long it takes to "approach" a stationary distribution.

Definition 7.1. Given two distributions μ and π, the total variation (TV) distance is given by

$$
\|\mu-\pi\|_{T V}=\sup _{A \subset V} \mu(A)-\pi(A) .
$$

Exercise 1. Show that $\|\mu-\pi\|_{T V}=\frac{1}{2} \sum_{x \in \Omega}|\mu(x)-\pi(x)|$.

Why is variation distance the appropriate notion to use? Recall the example of counting proper k-colorings in a graph G. In order to approximately count it was necessary to estimate

$$
\rho_{1}=\frac{|\chi(G: k)|}{\left|\chi\left(G-e_{1}: k\right)\right|}
$$

by generating uniform k-colorings of $G-e_{1}$ and checking the fraction that color G.
Now, suppose that samples are drawn by running a Markov chain for t steps. Then let $\hat{\rho_{1}}$ be the estimate of ρ_{1} given by averaging over an infinite number of such samples.

If A is the collection of proper k-colorings of G then A is a subset of Ω, the proper k-colorings of $G-e_{1}$. Moreover, $\rho_{1}=\pi(A)$ and $\hat{\rho_{1}}=\mathrm{p}^{(t)}(A)$. Therefore,

$$
\pi(A)-\left\|\mathbf{p}^{(t)}-\pi\right\|_{T V} \leq \hat{\rho_{1}}=\pi(A)+\left(\mathbf{p}^{(t)}(A)-\pi(A)\right) \leq \pi(A)+\left\|\mathbf{p}^{(t)}-\pi\right\|_{T V}
$$

and total variation distance bounds the accuracy of our estimate.
We are more interested in knowing relative error. In this case

$$
1-\frac{\left\|\mathbf{p}^{(t)}-\pi\right\|_{T V}}{\pi(A)} \leq \frac{\hat{\rho}_{1}}{\rho_{1}} \leq 1+\frac{\left\|\mathbf{p}^{(t)}-\pi\right\|_{T V}}{\pi(A)}
$$

and in order to estimate ρ_{1} then we need $\left\|\mathbf{p}^{(t)}-\pi\right\|_{T V}$ to be small relative to $\pi(A)$.
Definition 7.2. The mixing time $\tau(\epsilon)$ is given by

$$
\tau(\epsilon)=\max _{\sigma} \min \left\{t:\left\|\sigma \mathrm{P}^{t}-\pi\right\|_{T V} \leq \epsilon\right\}
$$

where σ is an arbitrary initial distribution.

This says that no matter how bad the initial may be, the t-step distribution $\mathrm{p}^{(t)}$ is ϵ close to stationary in TV distance.

The following lemma makes it easier to compute $\tau(\epsilon)$.
Lemma 7.3. The worst initial distribution is a point mass, i.e. $\mathrm{p}^{(0)}=1_{\{x\}}$ for some $x \in \Omega$.

Proof. The distribution $\mathbf{p}^{(t)}(y)=\sum_{x \in \Omega} \mathbf{p}^{(0)}(y) \mathrm{P}^{t}(x, y)$, and therefore

$$
\begin{aligned}
\left\|\mathbf{p}^{(t)}-\pi\right\|_{T V} & =\frac{1}{2} \sum_{y \in \Omega}\left|\mathbf{p}^{(t)}(y)-\pi(y)\right| \\
& =\frac{1}{2} \sum_{y \in \Omega}\left|\sum_{x \in \Omega} \mathbf{p}^{(0)}(x)\left(\mathrm{P}^{t}(x, y)-\pi(y)\right)\right| \\
& \leq \frac{1}{2} \sum_{y \in \Omega} \sum_{x \in \Omega} \mathbf{p}^{(0)}(x)\left|\mathrm{P}^{t}(x, y)-\pi(y)\right| \\
& =\sum_{x \in \Omega} \mathbf{p}^{(0)}(x) \frac{1}{2} \sum_{y \in \Omega}\left|\mathrm{P}^{t}(x, y)-\pi(y)\right| \\
& \leq \max _{x \in \Omega} \frac{1}{2} \sum_{y \in \Omega}\left|\mathrm{P}^{t}(x, y)-\pi(y)\right|
\end{aligned}
$$

In general it is nearly impossible to determine $\tau(\epsilon)$ exactly. However, there are a few cases where everything is known. Let us now work out a simple example.

Example 7.4. Determine $\tau(\epsilon)$ for the walk on the uniform two-point space with laziness γ, that is

$$
\mathrm{P}=\left(\begin{array}{cc}
\gamma & 1-\gamma \\
1-\gamma & \gamma
\end{array}\right) \quad \text { with } \quad \pi=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

To find the variation distance we need to determine $\mathrm{p}^{(t)}$, and in particular P^{t}. Follow the standard diagonalization routine.

The eigenvalues of P are easily found to be $\lambda_{1}=1$ and $\lambda_{2}=2 \gamma-1$. The left eigenvector for $\lambda_{1}=1$ is just $\overrightarrow{v_{1}}=\left(\begin{array}{cc}\frac{1}{2} & \frac{1}{2}\end{array}\right)$ while that for $\lambda_{2}=2 \gamma-1$ is $\vec{v}_{2}=\left(\begin{array}{cc}1 & -1\end{array}\right)$.

Then let

$$
V=\left(\begin{array}{ll}
\frac{\overrightarrow{v_{1}}}{\left\|v_{1}\right\|} & \frac{\overrightarrow{v_{2}}}{\left\|\overrightarrow{v_{2}}\right\|}
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

and it follows that

$$
\mathrm{P}^{t}=V \Lambda^{t} V^{T}=\left(\begin{array}{cc}
\frac{1}{2}+\frac{1}{2}(2 \gamma-1)^{t}, & \frac{1}{2}-\frac{1}{2}(2 \gamma-1)^{t} \\
\frac{1}{2}+\frac{1}{2}(2 \gamma-1)^{t}, & \frac{1}{2}+\frac{1}{2}(2 \gamma-1)^{t}
\end{array}\right) .
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$.
By Lemma 7.3 it can be assumed that the initial distribution is a point mass. Our problem is completely symmetric, so we may further assume that $\mathrm{p}^{(0)}=\left(\begin{array}{ll}1 & 0\end{array}\right)$. The t-step transition matrix P^{t} was already found above, so

$$
\mathrm{p}^{(t)}=\mathrm{p}^{(0)} \mathrm{P}^{t}=\left(\frac{1}{2}+\frac{1}{2}(2 \gamma-1)^{t}, \quad \frac{1}{2}-\frac{1}{2}(2 \gamma-1)^{t}\right) .
$$

Finally, the variation distance is

$$
\left\|\mathbf{p}^{(t)}-\pi\right\|_{T V}=\frac{1}{2} \sum_{x \in \Omega}\left|\mathbf{p}^{(t)}(x)-\pi(x)\right|=\frac{1}{2}|2 \gamma-1|^{t}
$$

Solve for when this is less than or equal to ϵ to find that

$$
\tau(\epsilon)=\left\lceil\frac{\log (1 / 2 \epsilon)}{\log (1 /|2 \gamma-1|)}\right\rceil .
$$

Since we were able to determine variation distance and mixing time exactly in this problem it will serve as a useful test case as we learn methods for bounding mixing times.

Exercise 2. Generalize this to a walk on the complete graph K_{n} with

$$
\mathrm{P}(x, y)=\left\{\begin{array}{ll}
\gamma & \text { if } x=y \\
\frac{1-\gamma}{n-1} & \text { if } x \neq y
\end{array} .\right.
$$

Hint: Make the complete graph into a weighted two-point space.

