Lecture 4 - Variation Distance and Mixing Time

Monday, August 23

Now that we can construct good Markov chains a method is needed to measure how long it takes to “ap-
proach” a stationary distribution.

Definition 7.1. Given two distributions p and 7, the total variation (TV) distance is given by

[ = llry = sup u(A) —w(A).
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Exercise 1. Show that ||u—7|7v = 3 3,0 lu(z) — 7 (z)|.

Why is variation distance the appropriate notion to use? Recall the example of counting proper k-colorings
in a graph G. In order to approximately count it was necessary to estimate
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by generating uniform k-colorings of G — e; and checking the fraction that color G.

Now, suppose that samples are drawn by running a Markov chain for ¢ steps. Then let g3 be the estimate
of p; given by averaging over an infinite number of such samples.

If A is the collection of proper k-colorings of G then A is a subset of 2, the proper k-colorings of G — ej.
Moreover, p; = (A) and gy = p(Y)(A). Therefore,

w(A) = Ip = iy < g1 = 7(A) + (O (A) = 7(4)) < 7(A) + [P = 7|7y
and total variation distance bounds the accuracy of our estimate.

We are more interested in knowing relative error. In this case
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and in order to estimate p; then we need |[p®) — 7||7v to be small relative to w(A).
Definition 7.2. The mixing time 7(¢€) is given by
7(¢€) = maxmin{t : ||o P* — 7|7y < €}
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where o is an arbitrary initial distribution.

This says that no matter how bad the initial may be, the t-step distribution p® is e close to stationary in
TV distance.

The following lemma makes it easier to compute 7(€).

Lemma 7.3. The worst initial distribution is a point mass, i.e. p(®) = 1(zy for some x € Q.



Proof. The distribution p® (y) = 3= .o p(¥(y) P!(z, y), and therefore
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In general it is nearly impossible to determine 7(¢) exactly. However, there are a few cases where everything
is known. Let us now work out a simple example.

Example 7.4. Determine 7(¢€) for the walk on the uniform two-point space with laziness v, that is
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To find the variation distance we need to determine p(*), and in particular Pt. Follow the standard diago-
nalization routine.

The eigenvalues of P are easily found to be Ay = 1 and Ay = 2y — 1. The left eigenvector for A\; = 1 is just
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and it follows that L
Pt _ At T — 5+
VAV % "

N[0 —

where A = diag(A\1, A2).

By Lemma 7.3 it can be assumed that the initial distribution is a point mass. Our problem is completely
symmetric, so we may further assume that p(® = ( 1 0 ). The t-step transition matrix P* was already

found above, so
p =p@P =(3+32y-1" $-52v—1").

Finally, the variation distance is
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Solve for when this is less than or equal to € to find that

B log(1/2¢)
€)= {loga/m - M |



Since we were able to determine variation distance and mixing time exactly in this problem it will serve as
a useful test case as we learn methods for bounding mixing times.

Exercise 2. Generalize this to a walk on the complete graph K, with

Yo ifr=y

Hint: Make the complete graph into a weighted two-point space.



