
Lecture 4 - Variation Distance and Mixing Time

Monday, August 23

Now that we can construct good Markov chains a method is needed to measure how long it takes to “ap-
proach” a stationary distribution.

Definition 7.1. Given two distributions µ and π, the total variation (TV) distance is given by

‖µ− π‖TV = sup
A⊂V

µ(A)− π(A).

Exercise 1. Show that ‖µ− π‖TV = 1
2

∑
x∈Ω |µ(x)− π(x)|.

Why is variation distance the appropriate notion to use? Recall the example of counting proper k-colorings
in a graph G. In order to approximately count it was necessary to estimate

ρ1 =
|χ(G : k)|

|χ(G− e1 : k)|

by generating uniform k-colorings of G− e1 and checking the fraction that color G.

Now, suppose that samples are drawn by running a Markov chain for t steps. Then let ρ̂1 be the estimate
of ρ1 given by averaging over an infinite number of such samples.

If A is the collection of proper k-colorings of G then A is a subset of Ω, the proper k-colorings of G − e1.
Moreover, ρ1 = π(A) and ρ̂1 = p(t)(A). Therefore,

π(A)− ‖p(t) − π‖TV ≤ ρ̂1 = π(A) + (p(t)(A)− π(A)) ≤ π(A) + ‖p(t) − π‖TV

and total variation distance bounds the accuracy of our estimate.

We are more interested in knowing relative error. In this case

1− ‖p
(t) − π‖TV
π(A)

≤ ρ̂1

ρ1
≤ 1 +

‖p(t) − π‖TV
π(A)

and in order to estimate ρ1 then we need ‖p(t) − π‖TV to be small relative to π(A).

Definition 7.2. The mixing time τ(ε) is given by

τ(ε) = max
σ

min{t : ‖σ Pt − π‖TV ≤ ε}

where σ is an arbitrary initial distribution.

This says that no matter how bad the initial may be, the t-step distribution p(t) is ε close to stationary in
TV distance.

The following lemma makes it easier to compute τ(ε).

Lemma 7.3. The worst initial distribution is a point mass, i.e. p(0) = 1{x} for some x ∈ Ω.
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Proof. The distribution p(t)(y) =
∑
x∈Ω p(0)(y) Pt(x, y), and therefore

‖p(t) − π‖TV =
1
2

∑

y∈Ω

|p(t)(y)− π(y)|

=
1
2

∑

y∈Ω

∣∣∣∣∣
∑

x∈Ω

p(0)(x)
(
Pt(x, y)− π(y)

)
∣∣∣∣∣

≤ 1
2

∑

y∈Ω

∑

x∈Ω

p(0)(x)
∣∣Pt(x, y)− π(y)

∣∣

=
∑

x∈Ω

p(0)(x)
1
2

∑

y∈Ω

∣∣Pt(x, y)− π(y)
∣∣

≤ max
x∈Ω

1
2

∑

y∈Ω

∣∣Pt(x, y)− π(y)
∣∣

In general it is nearly impossible to determine τ(ε) exactly. However, there are a few cases where everything
is known. Let us now work out a simple example.

Example 7.4. Determine τ(ε) for the walk on the uniform two-point space with laziness γ, that is

P =
(

γ 1− γ
1− γ γ

)
with π =

(
1
2

1
2

)

To find the variation distance we need to determine p(t), and in particular Pt. Follow the standard diago-
nalization routine.

The eigenvalues of P are easily found to be λ1 = 1 and λ2 = 2γ − 1. The left eigenvector for λ1 = 1 is just
~v1 =

(
1
2

1
2

)
while that for λ2 = 2γ − 1 is ~v2 =

(
1 −1

)
.

Then let

V =
(

~v1
‖ ~v1‖

~v2
‖ ~v2‖

)
=

1√
2

(
1 1
1 −1

)

and it follows that

Pt = V Λt V T =
(

1
2 + 1

2 (2γ − 1)t, 1
2 − 1

2 (2γ − 1)t
1
2 + 1

2 (2γ − 1)t, 1
2 + 1

2 (2γ − 1)t

)
.

where Λ = diag(λ1, λ2).

By Lemma 7.3 it can be assumed that the initial distribution is a point mass. Our problem is completely
symmetric, so we may further assume that p(0) = ( 1 0 ). The t-step transition matrix Pt was already
found above, so

p(t) = p(0) Pt =
(

1
2 + 1

2 (2γ − 1)t, 1
2 − 1

2 (2γ − 1)t
)
.

Finally, the variation distance is

‖p(t) − π‖TV =
1
2

∑

x∈Ω

|p(t)(x)− π(x)| = 1
2
|2γ − 1|t

Solve for when this is less than or equal to ε to find that

τ(ε) =
⌈

log(1/2ε)
log(1/|2γ − 1|)

⌉
.
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Since we were able to determine variation distance and mixing time exactly in this problem it will serve as
a useful test case as we learn methods for bounding mixing times.

Exercise 2. Generalize this to a walk on the complete graph Kn with

P(x, y) =

{
γ if x = y
1−γ
n−1 if x 6= y

.

Hint: Make the complete graph into a weighted two-point space.
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