Lecture 5- L^{p} distances and the Spectral Decomposition

Wednesday, August 25

In general it is difficult to determine the spectral decomposition, and even when possible it is non-trivial to write the t-step transition probabilities and turn this into a bound on variation distance. In this lecture we will focus first on relating the spectral decomposition to a quantitative bound on mixing time, and next on showing that the second largest (in magnitude) eigenvalue suffices.
First, consider a heuristic. Suppose that P can be diagonalized with eigenvalues λ_{i} and eigenbases $\overrightarrow{v_{i}}$ for $i=1 \ldots n$, where $n=|\Omega|$. Then

$$
\mathrm{p}^{(0)}=\sum_{k=1}^{n} \frac{\left\langle\mathrm{p}^{(0)}, \overrightarrow{v_{i}}>\right.}{\left\langle\overrightarrow{v_{i}}, \overrightarrow{v_{i}}\right\rangle} \overrightarrow{v_{i}}
$$

for the standard scalar product $\langle\vec{a}, \vec{b}\rangle=a \cdot b$. Then

$$
\begin{aligned}
& \mathrm{p}^{(t)}=\sum_{k=1}^{n} \frac{<\mathrm{p}^{(0)}, \overrightarrow{v_{i}}>}{<\overrightarrow{v_{i}}, \overrightarrow{v_{i}}>} \lambda^{t} \overrightarrow{v_{i}} \\
& \xrightarrow{t \rightarrow \infty} \frac{<\mathrm{p}^{(0)}, \overrightarrow{v_{1}}>}{<\overrightarrow{v_{1}}, \overrightarrow{v_{1}}>} \lambda_{1}^{t} \overrightarrow{v_{1}}+\frac{<\mathrm{p}^{(0)}, \overrightarrow{v_{2}}>}{\left\langle\overrightarrow{v_{2}}, \overrightarrow{v_{2}}>\right.} \lambda_{2}^{t} \overrightarrow{v_{2}} \\
&=\pi+\frac{\left\langle\mathrm{p}^{(0)}, \overrightarrow{v_{2}}>\right.}{\left\langle\overrightarrow{v_{2}}, \overrightarrow{v_{2}}>\right.} \lambda_{2}^{t} \overrightarrow{v_{2}}
\end{aligned}
$$

if λ_{2} is the second largest (in magnitude) eigenvalue. When $\left|\lambda_{n}\right|>\lambda_{2}$ then a similar bound holds with $\overrightarrow{v_{2}}$ replaced by $\overrightarrow{v_{n}}$ instead. In short, the second largest (in magnitude) eigenvalue will govern the mixing time.

In order to prove this we need a few preliminary steps.
Theorem 5.1. If P is reversible and ergodic then it has a spectral decomposition with eigenvalues $1=\lambda_{1}>$ $\lambda_{2} \geq \cdots \geq \lambda_{n} \geq-1$ and moreover

$$
\left(\mathrm{P}^{t}\right)_{i j}=\sqrt{\frac{\pi(j)}{\pi(i)}} \sum_{m=1}^{n} \lambda_{m}^{t}\left(\overrightarrow{u_{m}}\right)_{i}\left(\overrightarrow{u_{m}}\right)_{j}
$$

where u_{m} is the m-th left eigenvector of the matrix $S=D \mathrm{P} D^{-1}$ with $D=\operatorname{diag}(\sqrt{\pi(1)}, \sqrt{\pi(2)}, \ldots, \sqrt{\pi(n)})$.

Proof. Our argument is a simplification of one found in Chapter 3, Section 4 of Aldous and Fill's book [1].
Observe from the definition that $S_{i j}=\pi(i)^{1 / 2} \mathrm{P}_{i j} \pi(j)^{-1 / 2}$. It is easily verified that S is symmetric if P is reversible (check this yourself). Then S is a symmetric real matrix and so the Spectral theorem says that S ha a spectral decomposition

$$
S=U \Lambda U^{T}
$$

where the columns of U are the orthonormal left eigenvectors, and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ where λ_{i} are the eigenvalues of S.

Then the λ_{i} are eigenvalues of P as well, with left eigenvectors $\left(\overrightarrow{v_{m}}\right)_{i}=\sqrt{\pi(i)}\left(\overrightarrow{u_{m}}\right)_{i}$, i.e. $\sum_{i=1}^{n}\left(\overrightarrow{v_{m}}\right)_{i} \mathrm{P}_{i j}=$ $\lambda_{m}\left(\overrightarrow{v_{m}}\right)_{j}$. (check this yourself)
Therefore,

$$
\mathrm{P}^{t}=D^{-1} S^{t} D=D^{-1} U \Lambda^{t} U^{T} D
$$

and the theorem follows by computing the elements $\left(\mathrm{P}^{t}\right)_{i j}$ in this expansion.

Exercise 1. Verify that this works on the uniform two-point example worked out earlier.

The upper bound on total variation distance will be done by bounding a different distance, which in turn upper bounds total variation distance. The $\underline{L_{p} \text {-norm of a function } f \text { is given by }}$

$$
\|f\|_{p, \pi}=\left[\sum_{x \in \Omega}|f(x)|^{p} \pi(x)\right]^{1 / p}
$$

The total variation distance is then

$$
\|\mu-\pi\|_{T V}=\frac{1}{2} \sum_{x \in \Omega}|\mu(x)-\pi(x)|=\frac{1}{2} \sum_{x \in \Omega}\left|1-\frac{\mu(x)}{\pi(x)}\right| \pi(x)=\frac{1}{2}\left\|1-\frac{\mu}{\pi}\right\|_{1, \pi}
$$

Cauchy-Schwartz shows that $\|f\|_{p, \pi} \leq\|f\|_{q, \pi}$ if $q \geq p$, so in particular

$$
\|\mu-\pi\|_{T V} \leq \frac{1}{2}\left\|1-\frac{\mu}{\pi}\right\|_{2, \pi}
$$

Finally, we can bound the variation distance.
Theorem 5.2. Given a reversible ergodic Markov chain then

$$
4\left\|\mathrm{P}^{t}(x, \cdot)-\pi\right\|_{T V}^{2} \leq\left\|1-\frac{\mathrm{P}^{t}(x, \cdot)}{\pi(x)}\right\|_{2, \pi}^{2}=\frac{\mathrm{P}^{2 t}(x, x)}{\pi(x)}-1=\frac{\sum_{m=1}^{n} \lambda_{m}^{2 t}\left(\overrightarrow{u_{m}}\right)_{x}^{2}}{\pi(x)}-1 \leq \frac{1-\pi(x)}{\pi(x)} \lambda_{\text {max }}^{2 t}
$$

where $\lambda_{\max }=\max \left\{\lambda_{2},\left|\lambda_{n}\right|\right\}$.

Proof. From the definition it follows that

$$
\left\|1-\frac{\mathrm{P}^{t}(x, \cdot)}{\pi}\right\|_{2, \pi}^{2}=\sum_{y \in \Omega} \pi(y)-2 \mathrm{P}^{t}(x, \cdot)+\frac{\mathrm{P}^{t}(x, y)^{2}}{\pi(y)}=\sum_{y \in \Omega} \frac{\mathrm{P}^{t}(x, y)}{\pi(y)}-1
$$

To simplify further observe that

$$
\frac{\mathrm{P}^{t}(x, y)^{2}}{\pi(y)}=\frac{\mathrm{P}^{t}(x, y) \pi(x) \mathrm{P}^{t}(x, y)}{\pi(x) \pi(y)}=\frac{\mathrm{P}^{t}(x, y) \pi(y) \mathrm{P}^{t}(x, y)}{\pi(x) \pi(y)}=\frac{\mathrm{P}^{t}(x, y) \mathrm{P}^{t}(y, x)}{\pi(x)}
$$

where the second equality followed from $\pi(x) \mathrm{P}^{t}(x, y)=\pi(y) \mathrm{P}^{t}(y, x)$ (use reversibility and induction).
Therefore,

$$
\left\|1-\frac{\mathrm{P}^{t}(x, \cdot)}{\pi}\right\|_{2, \pi}^{2}=\sum_{y \in \Omega} \frac{\mathrm{P}^{t}(x, y) \mathrm{P}^{t}(y, x)}{\pi(x)}-1=\frac{\mathrm{P}^{2 t}(x, x)}{\pi(x)}-1
$$

completing the first equality.
For the second equality apply Theorem 5.1.
For the final inequality we simplify the eigenvalue bounds.

$$
\sum_{m=1}^{n} \lambda_{m}^{2 t}\left(\overrightarrow{u_{m}}\right)_{x}^{2}=\left(\overrightarrow{u_{1}}\right)_{x}^{2}+\sum_{m=2}^{n} \lambda_{m}^{2 t}\left(\overrightarrow{u_{m}}\right)_{x}^{2} \leq\left(\overrightarrow{u_{1}}\right)_{x}^{2}+\lambda^{2 t}\left(-\left(\overrightarrow{u_{1}}\right)_{x}^{2}+\sum_{m=1}^{n}\left(\overrightarrow{u_{m}}\right)_{x}^{2}\right)
$$

To finish, recall that $\left(\overrightarrow{u_{m}}\right) \propto \frac{\left(\overrightarrow{v_{m}}\right)}{\sqrt{\pi}}$. It follows that $\left(\overrightarrow{u_{1}}\right) \propto \frac{\pi}{\sqrt{\pi}}=\sqrt{\pi}$. In fact, $\sqrt{\pi}$ is a unit vector, so $\left(\overrightarrow{u_{1}}\right)=\sqrt{\pi}$ and in particular $\left(\overrightarrow{u_{1}}\right)_{x}^{2}=\pi(x)$. For the term in the sum, recall that $U=\left(\left(\overrightarrow{u_{1}}\right),\left(\overrightarrow{u_{2}}\right), \ldots,\left(\overrightarrow{u_{n}}\right)\right)$ is an orthonormal matrix. It follows that $U^{-1}=U^{T}$ and so $U U^{T}=I$. The matrix $U_{i j}=\left(\overrightarrow{u_{j}}\right)_{i}$ and so it follows that the dot product of row i with row j is 1 if $i=j$ and 0 otherwise, in particular $\sum_{m=1}^{n}\left(\overrightarrow{u_{m}}\right)_{x}^{2}=1$. Substitution into the equation above finishes the proof.

Remark 5.3. A similar argument shows that

$$
\left(\mathrm{P}^{t}\right)_{i j}=\sqrt{\frac{\pi_{j}}{\pi_{i}}} \sum_{m=1}^{n} \lambda_{m}^{t}\left(\overrightarrow{u_{m}}\right)_{i}\left(\overrightarrow{u_{m}}\right)_{j} \xrightarrow{t \rightarrow \infty} \sqrt{\frac{\pi_{j}}{\pi_{i}}}\left(\sqrt{\pi_{i} \pi_{j}}+\lambda_{\max }^{t}\right)=\pi_{j}+\sqrt{\frac{\pi_{j}}{\pi_{i}}} \lambda_{\max }^{t}
$$

Therefore λ also can be used to find the rate at which the t-step distribution approaches π.
Exercise 2. Compare the total variation bound for the uniform two-point space to the L^{2} bound and the bound derived from $\lambda_{\max }$.

References

[1] D. Aldous and J. Fill. Reversible markov chains and random walks on graphs (book to appear). URL for draft http://www.stat.Berkeley.edu/users/aldous.

