Lecture 5 - I” distances and the Spectral Decomposition
Wednesday, August 25

In general it is difficult to determine the spectral decomposition, and even when possible it is non-trivial to
write the t-step transition probabilities and turn this into a bound on variation distance. In this lecture we
will focus first on relating the spectral decomposition to a quantitative bound on mixing time, and next on
showing that the second largest (in magnitude) eigenvalue suffices.

First, consider a heuristic. Suppose that P can be diagonalized with eigenvalues \; and eigenbases v; for

i=1...n, where n = |Q2|. Then
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if Ay is the second largest (in magnitude) eigenvalue. When |\,| > Ay then a similar bound holds with vy
replaced by v, instead. In short, the second largest (in magnitude) eigenvalue will govern the mixing time.

In order to prove this we need a few preliminary steps.

Theorem 5.1. If P is reversible and ergodic then it has a spectral decomposition with eigenvalues 1 = A\ >
Ay > - >\, > —1 and moreover
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where U, is the m-th left eigenvector of the matriz S = DP D~! with D = diag(\/m(1), /7(2),...,/7(n)).

Proof. Our argument is a simplification of one found in Chapter 3, Section 4 of Aldous and Fill’s book [1].

Observe from the definition that S;; = m(i)'/2 P;; w(5)~/2. It is easily verified that S is symmetric if P is
reversible (check this yourself). Then S is a symmetric real matrix and so the Spectral theorem says that S
ha a spectral decomposition

S=UAU"

where the columns of U are the orthonormal left eigenvectors, and A = diag(\1, A2, ..., \,) where \; are the
eigenvalues of S.

Then the \; are eigenvalues of P as well, with left eigenvectors (v,,); = /7 (i) (Um);s €. Sor ) (Om); Pij =
A (O) ;- (check this yourself)

Therefore,
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and the theorem follows by computing the elements (P?). . in this expansion. O
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Exercise 1. Verify that this works on the uniform two-point example worked out earlier.

The upper bound on total variation distance will be done by bounding a different distance, which in turn
upper bounds total variation distance. The L,-norm of a function f is given by
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The total variation distance is then
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Cauchy-Schwartz shows that || f|

v < || fllg.x if ¢ > p, so in particular
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Finally, we can bound the variation distance.

Theorem 5.2. Given a reversible ergodic Markov chain then
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where A\ppae = max{Aa, |An|}.

Proof. From the definition it follows that
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To simplify further observe that
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where the second equality followed from m(x) Pt(x,y) = m(y) P!(y,z) (use reversibility and induction).

Therefore,
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completing the first equality.

For the second equality apply Theorem 5.1.
For the final inequality we simplify the eigenvalue bounds.
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To finish, recall that (u,) o (:}/E) It follows that (u7) o == V7. In fact, /7 is a unit vector, so

(u1) = /7 and in particular (ﬁ)i = m(z). For the term in the sum, recall that U = ((u1), (u2), ..., (u5))
is an orthonormal matrix. It follows that U~! = U and so UUT = I. The matrix U;; = (u;), and so it
follows that the dot product of row i with row j is 1 if i = j and 0 otherwise, in particular > _, (Ug)i =1.
Substitution into the equation above finishes the proof. O

Remark 5.3. A similar argument shows that
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Therefore A also can be used to find the rate at which the t-step distribution approaches .

Exercise 2. Compare the total variation bound for the uniform two-point space to the L? bound and the
bound derived from \,,qz.
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