
Lecture 5 - Lp distances and the Spectral Decomposition
Wednesday, August 25

In general it is difficult to determine the spectral decomposition, and even when possible it is non-trivial to
write the t-step transition probabilities and turn this into a bound on variation distance. In this lecture we
will focus first on relating the spectral decomposition to a quantitative bound on mixing time, and next on
showing that the second largest (in magnitude) eigenvalue suffices.

First, consider a heuristic. Suppose that P can be diagonalized with eigenvalues λi and eigenbases −→vi for
i = 1 . . . n, where n = |Ω|. Then

p(0) =
n∑

k=1

< p(0),−→vi >
< −→vi ,−→vi >

−→vi

for the standard scalar product < −→a ,−→b >= a · b. Then

p(t) =
n∑

k=1

< p(0),−→vi >
< −→vi ,−→vi > λt−→vi

t→∞−−−→ < p(0),−→v1 >

< −→v1 ,
−→v1 >

λt1
−→v1 +

< p(0),−→v2 >

< −→v2 ,
−→v2 >

λt2
−→v2

= π +
< p(0),−→v2 >

< −→v2 ,
−→v2 >

λt2
−→v2

if λ2 is the second largest (in magnitude) eigenvalue. When |λn| > λ2 then a similar bound holds with −→v2

replaced by −→vn instead. In short, the second largest (in magnitude) eigenvalue will govern the mixing time.

In order to prove this we need a few preliminary steps.

Theorem 5.1. If P is reversible and ergodic then it has a spectral decomposition with eigenvalues 1 = λ1 >
λ2 ≥ · · · ≥ λn ≥ −1 and moreover

(
Pt
)
ij

=

√
π(j)
π(i)

n∑
m=1

λtm (−→um)i (−→um)j

where um is the m-th left eigenvector of the matrix S = D PD−1 with D = diag(
√
π(1),

√
π(2), . . . ,

√
π(n)).

Proof. Our argument is a simplification of one found in Chapter 3, Section 4 of Aldous and Fill’s book [1].

Observe from the definition that Sij = π(i)1/2 Pij π(j)−1/2. It is easily verified that S is symmetric if P is
reversible (check this yourself). Then S is a symmetric real matrix and so the Spectral theorem says that S
ha a spectral decomposition

S = U ΛUT

where the columns of U are the orthonormal left eigenvectors, and Λ = diag(λ1, λ2, . . . , λn) where λi are the
eigenvalues of S.

Then the λi are eigenvalues of P as well, with left eigenvectors (−→vm)i =
√
π(i) (−→um)i, i.e.

∑n
i=1 (−→vm)i Pij =

λm (−→vm)j . (check this yourself)

Therefore,
Pt = D−1 StD = D−1 U Λt UT D

and the theorem follows by computing the elements (Pt)ij in this expansion.
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Exercise 1. Verify that this works on the uniform two-point example worked out earlier.

The upper bound on total variation distance will be done by bounding a different distance, which in turn
upper bounds total variation distance. The Lp-norm of a function f is given by

‖f‖p,π =

[∑

x∈Ω

|f(x)|p π(x)

]1/p

.

The total variation distance is then

‖µ− π‖TV =
1
2

∑

x∈Ω

|µ(x)− π(x)| = 1
2

∑

x∈Ω

∣∣∣∣1−
µ(x)
π(x)

∣∣∣∣ π(x) =
1
2

∥∥∥1− µ

π

∥∥∥
1,π

.

Cauchy-Schwartz shows that ‖f‖p,π ≤ ‖f‖q,π if q ≥ p, so in particular

‖µ− π‖TV ≤ 1
2

∥∥∥1− µ

π

∥∥∥
2,π

Finally, we can bound the variation distance.

Theorem 5.2. Given a reversible ergodic Markov chain then

4 ‖Pt(x, ·)− π‖2TV ≤
∥∥∥∥1− Pt(x, ·)

π(x)

∥∥∥∥
2

2,π

=
P2t(x, x)
π(x)

− 1 =
∑n
m=1 λ

2t
m (−→um)2

x

π(x)
− 1 ≤ 1− π(x)

π(x)
λ2t
max

where λmax = max{λ2, |λn|}.

Proof. From the definition it follows that

∥∥∥∥1− Pt(x, ·)
π

∥∥∥∥
2

2,π

=
∑

y∈Ω

π(y)− 2 Pt(x, ·) +
Pt(x, y)2

π(y)
=
∑

y∈Ω

Pt(x, y)
π(y)

− 1 .

To simplify further observe that

Pt(x, y)2

π(y)
=

Pt(x, y)π(x)Pt(x, y)
π(x)π(y)

=
Pt(x, y)π(y)Pt(x, y)

π(x)π(y)
=

Pt(x, y)Pt(y, x)
π(x)

where the second equality followed from π(x) Pt(x, y) = π(y) Pt(y, x) (use reversibility and induction).

Therefore, ∥∥∥∥1− Pt(x, ·)
π

∥∥∥∥
2

2,π

=
∑

y∈Ω

Pt(x, y)Pt(y, x)
π(x)

− 1 =
P2t(x, x)
π(x)

− 1

completing the first equality.

For the second equality apply Theorem 5.1.

For the final inequality we simplify the eigenvalue bounds.

n∑
m=1

λ2t
m (−→um)2

x = (−→u1)2
x +

n∑
m=2

λ2t
m (−→um)2

x ≤ (−→u1)2
x + λ2t

(
− (−→u1)2

x +
n∑

m=1

(−→um)2
x

)
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To finish, recall that (−→um) ∝ (−→vm)√
π

. It follows that (−→u1) ∝ π√
π

=
√
π. In fact,

√
π is a unit vector, so

(−→u1) =
√
π and in particular (−→u1)2

x = π(x). For the term in the sum, recall that U = ((−→u1) , (−→u2) , . . . , (−→un))
is an orthonormal matrix. It follows that U−1 = UT and so U UT = I. The matrix Uij = (−→uj)i and so it
follows that the dot product of row i with row j is 1 if i = j and 0 otherwise, in particular

∑n
m=1 (−→um)2

x = 1.
Substitution into the equation above finishes the proof.

Remark 5.3. A similar argument shows that

(
Pt
)
ij

=
√
πj
πi

n∑
m=1

λtm (−→um)i (−→um)j
t→∞−−−→

√
πj
πi

(√
πiπj + λtmax

)
= πj +

√
πj
πi
λtmax

Therefore λ also can be used to find the rate at which the t-step distribution approaches π.

Exercise 2. Compare the total variation bound for the uniform two-point space to the L2 bound and the
bound derived from λmax.
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