Lecture 5 - L^p distances and the Spectral Decomposition

Wednesday, August 25

In general it is difficult to determine the spectral decomposition, and even when possible it is non-trivial to write the *t*-step transition probabilities and turn this into a bound on variation distance. In this lecture we will focus first on relating the spectral decomposition to a quantitative bound on mixing time, and next on showing that the second largest (in magnitude) eigenvalue suffices.

First, consider a heuristic. Suppose that P can be diagonalized with eigenvalues λ_i and eigenbases $\vec{v_i}$ for $i = 1 \dots n$, where $n = |\Omega|$. Then

$$\mathbf{p}^{(0)} = \sum_{k=1}^{n} \frac{\langle \mathbf{p}^{(0)}, \overrightarrow{v_{i}} \rangle}{\langle \overrightarrow{v_{i}}, \overrightarrow{v_{i}} \rangle} \overrightarrow{v_{i}}$$

for the standard scalar product $\langle \overrightarrow{a}, \overrightarrow{b} \rangle = a \cdot b$. Then

$$\mathbf{p}^{(t)} = \sum_{k=1}^{n} \frac{\langle \mathbf{p}^{(0)}, \overrightarrow{v_{i}} \rangle}{\langle \overrightarrow{v_{i}}, \overrightarrow{v_{i}} \rangle} \lambda^{t} \overrightarrow{v_{i}}$$

$$\xrightarrow{t \to \infty} \frac{\langle \mathbf{p}^{(0)}, \overrightarrow{v_{1}} \rangle}{\langle \overrightarrow{v_{1}}, \overrightarrow{v_{1}} \rangle} \lambda_{1}^{t} \overrightarrow{v_{1}} + \frac{\langle \mathbf{p}^{(0)}, \overrightarrow{v_{2}} \rangle}{\langle \overrightarrow{v_{2}}, \overrightarrow{v_{2}} \rangle} \lambda_{2}^{t} \overrightarrow{v_{2}}$$

$$= \pi + \frac{\langle \mathbf{p}^{(0)}, \overrightarrow{v_{2}} \rangle}{\langle \overrightarrow{v_{2}}, \overrightarrow{v_{2}} \rangle} \lambda_{2}^{t} \overrightarrow{v_{2}}$$

if λ_2 is the second largest (in magnitude) eigenvalue. When $|\lambda_n| > \lambda_2$ then a similar bound holds with $\vec{v_2}$ replaced by $\vec{v_n}$ instead. In short, the second largest (in magnitude) eigenvalue will govern the mixing time.

In order to prove this we need a few preliminary steps.

Theorem 5.1. If P is reversible and ergodic then it has a spectral decomposition with eigenvalues $1 = \lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n \geq -1$ and moreover

$$\left(\mathsf{P}^{t}\right)_{ij} = \sqrt{\frac{\pi(j)}{\pi(i)}} \sum_{m=1}^{n} \lambda_{m}^{t} \ (\overrightarrow{u_{m}})_{i} \ (\overrightarrow{u_{m}})_{j}$$

where u_m is the m-th left eigenvector of the matrix $S = D P D^{-1}$ with $D = diag(\sqrt{\pi(1)}, \sqrt{\pi(2)}, \dots, \sqrt{\pi(n)})$.

Proof. Our argument is a simplification of one found in Chapter 3, Section 4 of Aldous and Fill's book [1].

Observe from the definition that $S_{ij} = \pi(i)^{1/2} \mathsf{P}_{ij} \pi(j)^{-1/2}$. It is easily verified that S is symmetric if P is reversible (check this yourself). Then S is a symmetric real matrix and so the Spectral theorem says that S ha a spectral decomposition

$$S = U \Lambda U^T$$

where the columns of U are the orthonormal left eigenvectors, and $\Lambda = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$ where λ_i are the eigenvalues of S.

Then the λ_i are eigenvalues of P as well, with left eigenvectors $(\overrightarrow{v_m})_i = \sqrt{\pi(i)} (\overrightarrow{u_m})_i$, i.e. $\sum_{i=1}^n (\overrightarrow{v_m})_i \mathsf{P}_{ij} = \lambda_m (\overrightarrow{v_m})_j$. (check this yourself)

Therefore,

$$\mathsf{P}^t = D^{-1} S^t D = D^{-1} U \Lambda^t U^T D$$

and the theorem follows by computing the elements $(\mathsf{P}^t)_{ij}$ in this expansion.

1

Exercise 1. Verify that this works on the uniform two-point example worked out earlier.

The upper bound on total variation distance will be done by bounding a different distance, which in turn upper bounds total variation distance. The L_p -norm of a function f is given by

$$||f||_{p,\pi} = \left[\sum_{x \in \Omega} |f(x)|^p \, \pi(x)\right]^{1/p}$$

The total variation distance is then

$$\|\mu - \pi\|_{TV} = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \pi(x)| = \frac{1}{2} \sum_{x \in \Omega} \left| 1 - \frac{\mu(x)}{\pi(x)} \right| \, \pi(x) = \frac{1}{2} \, \left\| 1 - \frac{\mu}{\pi} \right\|_{1,\pi} \, .$$

Cauchy-Schwartz shows that $||f||_{p,\pi} \le ||f||_{q,\pi}$ if $q \ge p$, so in particular

$$\boxed{\|\mu - \pi\|_{TV} \le \frac{1}{2} \|1 - \frac{\mu}{\pi}\|_{2,\pi}}$$

Finally, we can bound the variation distance.

Theorem 5.2. Given a reversible ergodic Markov chain then

$$4 \left\| \mathsf{P}^{t}(x,\cdot) - \pi \right\|_{TV}^{2} \le \left\| 1 - \frac{\mathsf{P}^{t}(x,\cdot)}{\pi(x)} \right\|_{2,\pi}^{2} = \frac{\mathsf{P}^{2t}(x,x)}{\pi(x)} - 1 = \frac{\sum_{m=1}^{n} \lambda_{m}^{2t} \left(\overrightarrow{u_{m}} \right)_{x}^{2}}{\pi(x)} - 1 \le \frac{1 - \pi(x)}{\pi(x)} \lambda_{max}^{2t}$$

where $\lambda_{max} = \max\{\lambda_2, |\lambda_n|\}.$

Proof. From the definition it follows that

$$\left\|1 - \frac{\mathsf{P}^t(x,\cdot)}{\pi}\right\|_{2,\pi}^2 = \sum_{y \in \Omega} \pi(y) - 2\,\mathsf{P}^t(x,\cdot) + \frac{\mathsf{P}^t(x,y)^2}{\pi(y)} = \sum_{y \in \Omega} \frac{\mathsf{P}^t(x,y)}{\pi(y)} - 1\,.$$

To simplify further observe that

$$\frac{\mathsf{P}^{t}(x,y)^{2}}{\pi(y)} = \frac{\mathsf{P}^{t}(x,y)\,\pi(x)\mathsf{P}^{t}(x,y)}{\pi(x)\pi(y)} = \frac{\mathsf{P}^{t}(x,y)\,\pi(y)\mathsf{P}^{t}(x,y)}{\pi(x)\pi(y)} = \frac{\mathsf{P}^{t}(x,y)\mathsf{P}^{t}(y,x)}{\pi(x)}$$

where the second equality followed from $\pi(x) \mathsf{P}^t(x, y) = \pi(y) \mathsf{P}^t(y, x)$ (use reversibility and induction). Therefore,

$$\left\|1 - \frac{\mathsf{P}^t(x,\cdot)}{\pi}\right\|_{2,\pi}^2 = \sum_{y \in \Omega} \frac{\mathsf{P}^t(x,y)\mathsf{P}^t(y,x)}{\pi(x)} - 1 = \frac{\mathsf{P}^{2t}(x,x)}{\pi(x)} - 1$$

completing the first equality.

For the second equality apply Theorem 5.1.

For the final inequality we simplify the eigenvalue bounds.

$$\sum_{m=1}^{n} \lambda_m^{2t} \ (\overrightarrow{u_m})_x^2 = (\overrightarrow{u_1})_x^2 + \sum_{m=2}^{n} \lambda_m^{2t} \ (\overrightarrow{u_m})_x^2 \le (\overrightarrow{u_1})_x^2 + \lambda^{2t} \ \left(- (\overrightarrow{u_1})_x^2 + \sum_{m=1}^{n} (\overrightarrow{u_m})_x^2 \right)$$

To finish, recall that $(\overrightarrow{u_m}) \propto \frac{(\overrightarrow{v_m})}{\sqrt{\pi}}$. It follows that $(\overrightarrow{u_1}) \propto \frac{\pi}{\sqrt{\pi}} = \sqrt{\pi}$. In fact, $\sqrt{\pi}$ is a unit vector, so $(\overrightarrow{u_1}) = \sqrt{\pi}$ and in particular $(\overrightarrow{u_1})_x^2 = \pi(x)$. For the term in the sum, recall that $U = ((\overrightarrow{u_1}), (\overrightarrow{u_2}), \ldots, (\overrightarrow{u_n}))$ is an orthonormal matrix. It follows that $U^{-1} = U^T$ and so $UU^T = I$. The matrix $U_{ij} = (\overrightarrow{u_j})_i$ and so it follows that the dot product of row *i* with row *j* is 1 if i = j and 0 otherwise, in particular $\sum_{m=1}^n (\overrightarrow{u_m})_x^2 = 1$. Substitution into the equation above finishes the proof.

Remark 5.3. A similar argument shows that

$$\left(\mathsf{P}^{t}\right)_{ij} = \sqrt{\frac{\pi_{j}}{\pi_{i}}} \sum_{m=1}^{n} \lambda_{m}^{t} \left(\overrightarrow{u_{m}}\right)_{i} \left(\overrightarrow{u_{m}}\right)_{j} \xrightarrow{t \to \infty} \sqrt{\frac{\pi_{j}}{\pi_{i}}} \left(\sqrt{\pi_{i}\pi_{j}} + \lambda_{max}^{t}\right) = \pi_{j} + \sqrt{\frac{\pi_{j}}{\pi_{i}}} \lambda_{max}^{t}$$

Therefore λ also can be used to find the rate at which the t-step distribution approaches π .

Exercise 2. Compare the total variation bound for the uniform two-point space to the L^2 bound and the bound derived from λ_{max} .

References

[1] D. Aldous and J. Fill. Reversible markov chains and random walks on graphs (book to appear). URL for draft http://www.stat.Berkeley.edu/users/aldous.