Lecture 6 - The mixing time of simple random walk on a cycle

Friday, August 27

To date the only Markov chain for which we know much about the mixing time is the walk on the uniform two-point space. Today we use Theorem 2 of the previous lecture to find the mixing time of a non-trivial Markov chain.

Consider the simple random walk on the cycle C_{ℓ} (equivalently, on \mathbb{Z}_{ℓ}). This has transition matrix

$$
\mathrm{P}(i, j)= \begin{cases}\frac{1}{2} & \text { if } j \equiv i \pm 1 \quad \bmod \ell \\ 0 & \text { otherwise }\end{cases}
$$

Fix some point on the cycle and label it as 0 , then number the remaining points in the clockwise direction up to $\ell-1$.

If ℓ is even then this walk is periodic and the Markov chain does not converge, so let us restrict our attention to the case when ℓ is odd. In this case the eigenvalue / eigenvector pairs are given by

eigenvalue	eigenvector(s)
1	constant
$\forall 1 \leq j \leq \frac{\ell-1}{2}: \cos \left(\frac{2 \pi j}{\ell}\right)$	$\cos \left(\frac{2 \pi j k}{\ell}\right), \sin \left(\frac{2 \pi j k}{\ell}\right)$

where $0 \leq k \leq \ell-1$ is the position around the cycle. This is easily verified to be a valid eigenbasis.
Now, in order to apply Theorem 2 we require orthonormal eigenvectors of the matrix given by $S_{i j}=$ $\sqrt{\frac{\pi(i)}{\pi(j)}} \mathrm{P}_{i j}$. But, π is uniform and so this reduces to $S=\mathrm{P}$ and the eigenvectors given above for P will suffice. In general, if π is uniform then $S=\mathrm{P}$.

It remains to make these orthonormal. Clearly the constant eigenvector should be $\overrightarrow{u_{1}}=1 / \sqrt{\ell}$. Also, eigenvectors with different eigenvalues are always orthogonal.

Now, consider the eigenvector $\vec{v}=\cos \left(\frac{2 \pi j k}{\ell}\right)$. This has norm

$$
\begin{aligned}
\vec{v} \cdot \vec{v} & =\sum_{k=0}^{\ell-1} \cos ^{2}\left(\frac{2 \pi j k}{\ell}\right)=\sum_{k=0}^{\ell-1} \frac{1+\cos \left(\frac{4 \pi j k}{\ell}\right)}{2} \\
& =\frac{\ell}{2}+\frac{1}{2} \sum_{k=0}^{\ell-1} \cos \left(\frac{4 \pi j k}{\ell}\right)=\frac{\ell}{2}+\frac{1}{2} \Re\left(\sum_{k=0}^{\ell-1} \exp \left(i \frac{4 \pi j k}{\ell}\right)\right)
\end{aligned}
$$

where the second equality used the identity $\cos ^{2} x=\frac{1+\cos 2 x}{2}$ and $\Re(x)$ denotes the real part of x. If $4 j$ and ℓ are relatively prime then this is a sum over the ℓ-th roots of unity $\xi_{1}, \xi_{2} \ldots, \xi_{\ell}$. But this is just zero if $\ell>1$, because

$$
x^{\ell}-1=\left(x-\xi_{1}\right)\left(x-\xi_{2}\right) \cdots\left(x-\xi_{\ell}\right)=x^{\ell}-\left(\sum_{i=1}^{\ell} \xi_{i}\right) x^{\ell-1}+\cdots+(-1)^{\ell} \prod_{i=1}^{\ell} \xi_{i}
$$

and the coefficient of $x^{\ell-1}$ is zero if $\ell-1>0$. If $4 j$ and ℓ are not relatively prime then the sum is $(4 j, \ell)$ times the sum of the $\frac{\ell}{(4 j, \ell)}$ roots of unity, and everything still adds to zero. In short, $\vec{v} \cdot \vec{v}=\ell / 2$.

A similar argument holds for the sinusoidal eigenvectors, using the identity $\sin ^{2} x=\frac{1-\cos 2 x}{2}$.

Finally, eigenvectors with the same eigenvalue satisfy $\sum_{k=0}^{\ell-1} \sin \left(\frac{2 \pi j k}{\ell}\right) \cos \left(\frac{2 \pi j k}{\ell}\right)=\frac{1}{2} \sum_{k=0}^{\ell-1} \sin \left(\frac{4 \pi j k}{\ell}\right)=$ $\frac{1}{2} \Im\left(\sum_{k=0}^{\ell-1} \exp \left(\frac{4 \pi j k}{\ell}\right)\right)=0$, where \Im denotes the imaginary part of the sum of roots of unity.

The orthonormal eigenbasis is then the basis given earlier, normalized by a factor of $\sqrt{2 / \ell}$.
Finally the L^{2} distance can be determined.

$$
\begin{aligned}
\left\|1-\frac{\mathrm{P}^{t}(x, \cdot)}{\pi(x)}\right\|_{2, \pi}^{2} & =\frac{\sum_{m=1}^{n} \lambda_{m}^{2 t}\left(\overrightarrow{u_{m}}\right)_{x}^{2}}{\pi(x)}-1 \\
& =\frac{1}{1 / \ell} \sum_{j=1}^{(\ell-1) / 2} \cos ^{2}\left(\frac{2 \pi j}{\ell}\right) \frac{2}{\ell}\left(\cos ^{2}\left(\frac{2 \pi j k}{\ell}\right)+\sin ^{2}\left(\frac{2 \pi j k}{\ell}\right)\right) \\
& =2 \sum_{j=1}^{\left\lfloor\frac{\ell-1}{4}\right\rfloor} \cos ^{2 t}\left(\frac{2 \pi j}{\ell}\right)+2 \sum_{j=1+\left\lfloor\frac{\ell-1}{4}\right\rfloor}^{(\ell-1) / 2} \cos ^{2 t}\left(\frac{2 \pi j}{\ell}\right) \\
& =2 \sum_{j=1}^{(\ell-1) / 2} \cos ^{2 t}\left(\frac{\pi j}{\ell}\right)=\left\|1-\frac{\mathrm{P}^{t}(x, \cdot)}{\pi(x)}\right\|_{2, \pi}^{2}
\end{aligned}
$$

The final equality applied the identity $\cos (\pi(1-x))=-\cos (\pi x)$ to the second sum.
This is our first non-trivial example where we could determine a distance exactly. However, in its current form this is not particularly useful since we have no notion of how large the sum is. We now simplify this via a procedure suggested in Diaconis' book [1].
Observe that $\cos x \leq e^{-x^{2} / 2}$ when $x \in[0, \pi / 2]$. This follows by letting $h(x)=\log \left(e^{-x^{2} / 2} \cos x\right)$, then $h^{\prime}(x)=x-\tan x \leq 0$ for $x \in[0, \pi / 2]$ and so $h(x) \leq h(0)=0$. It follows that

$$
\begin{aligned}
\sum_{j=1}^{(\ell-1) / 2} \cos ^{2 t}\left(\frac{\pi j}{\ell}\right) & \leq \sum_{j=1}^{(\ell-1) / 2} e^{-t \pi^{2} j^{2} / \ell^{2}} \\
& \leq e^{-\pi^{2} t / \ell^{2}} \sum_{j=1}^{\infty} e^{-\pi^{2}\left(j^{2}-1\right) t / \ell^{2}} \\
& \leq e^{-\pi^{2} t / \ell^{2}} \sum_{j=0}^{\infty} e^{-3 \pi^{2} j t / \ell^{2}} \\
& =\frac{e^{-\pi^{2} t / \ell^{2}}}{1-e^{-3 \pi^{2} t / \ell^{2}}}
\end{aligned}
$$

where the first inequality applied $\cos x \leq e^{-x^{2} / 2}$, the second factored out a term and extended the sum, the third used the inequality $j^{2}-1 \geq 3(j-1)$ for $j \in \mathbb{Z}_{>0}$ (the case $j=1$ is trivial, and $j \geq 2$ is simple algebra), and the final equality is because this was a geometric series.

For a final simplification observe that if $t \geq \frac{\ell^{2}}{3 \pi^{2}} \log 2 \approx \frac{\ell^{2}}{40}$ then $e^{-3 \pi^{2} t / \ell^{2}} \leq 1 / 2$. Therefore

$$
\left\|\mathrm{P}^{t}(x, \cdot)-\pi\right\|_{T V} \leq \frac{1}{2}\left\|1-\frac{\mathrm{P}^{t}(x, \cdot)}{\pi}\right\|_{2, \pi} \leq e^{-\pi^{2} t / 2 \ell^{2}} \text { if } t \geq \ell^{2} / 40
$$

To finish this off, solve $e^{-\pi^{2} t / \ell^{2}} \leq \epsilon$ to find that

$$
\tau(\epsilon) \leq \frac{2 \ell^{2}}{\pi^{2}} \log \frac{1}{\epsilon} \quad \text { if } \epsilon \leq e^{-\pi^{2} / 80} \approx 0.88
$$

In the next lecture we show a matching lower bound, showing that this upper bound is essentially correct.

References

[1] P. Diaconis. Group Representations in Probability and Statistics, volume 11 of Lecture Notes - Monograph Series. Institute of Mathematical Statistics, 1988.

