Lecture 6 - The mixing time of simple random walk on a cycle
Friday, August 27

To date the only Markov chain for which we know much about the mixing time is the walk on the uniform
two-point space. Today we use Theorem 2 of the previous lecture to find the mixing time of a non-trivial
Markov chain.

Consider the simple random walk on the cycle Cp (equivalently, on Z;). This has transition matrix

l . . — .
P, j) =42 ifj=i+1 mod /¢
0 otherwise

Fix some point on the cycle and label it as 0, then number the remaining points in the clockwise direction
up to £ — 1.
If 7 is even then this walk is periodic and the Markov chain does not converge, so let us restrict our attention

to the case when / is odd. In this case the eigenvalue / eigenvector pairs are given by

cigenvalue | eigenvector(s)
1| constant

Vi< < 15—71 : cos(zwj) cos (2”ij) , sin (%)

7
where 0 < k < ¢ — 1 is the position around the cycle. This is easily verified to be a valid eigenbasis.

Now, in order to apply Theorem 2 we require orthonormal eigenvectors of the matrix given by S;; =

% P;;. But, 7 is uniform and so this reduces to S = P and the eigenvectors given above for P will suffice.
In general, if 7 is uniform then S = P.

It remains to make these orthonormal. Clearly the constant eigenvector should be u; = 1/ Ve, Also,
eigenvectors with different eigenvalues are always orthogonal.

Now, consider the eigenvector v = cos (y) This has norm
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where the second equality used the identity cos? x = % and R(z) denotes the real part of z. If 45 and
¢ are relatively prime then this is a sum over the ¢-th roots of unity &1, & ..., &. But this is just zero if
¢ > 1, because

V4 4
1= (x—&)(z—&) - (x—&) =zt - <Z€Z> 93471+"'+(*1)KH§1
i=1 1=1

and the coefficient of 2/~! is zero if £ — 1 > 0. If 4j and ¢ are not relatively prime then the sum is (44, /)

times the sum of the —£—~ roots of unity, and everything still adds to zero. In short, ¥ - v = £/2.
(44,0)

A similar argument holds for the sinusoidal eigenvectors, using the identity sin® z = %



Flnally, eigenvectors with the same eigenvalue satisfy Z e 0 sin (2”2 k) cos (27” k) = E e 0 sin ( 'k) =

(Zk _0 €XP (4” k )) = 0, where & denotes the imaginary part of the sum of roots of unity.

The orthonormal eigenbasis is then the basis given earlier, normalized by a factor of /2/¢.

Finally the L? distance can be determined.
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The final equality applied the identity cos(w(1 — z)) = — cos(7 ) to the second sum.

2,

This is our first non-trivial example where we could determine a distance exactly. However, in its current
form this is not particularly useful since we have no notion of how large the sum is. We now simplify this
via a procedure suggested in Diaconis’ book [1].

Observe that cosz < e*°/2 when z € [0,7/2]. This follows by letting h(z) = log(e~*"/2 cosx), then
W(x) =2 —tanx <0 for z € [0,7/2] and so h(x) < h(0) = 0. It follows that
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where the first inequality applied cosz < P 2, the second factored out a term and extended the sum, the
third used the inequality j2—1 > 3(j — 1) for j € Z~¢ (the case j = 1 is trivial, and j > 2 is simple algebra),
and the final equality is because this was a geometric series.

For a final simplification observe that if ¢ > 3@% log 2 ~ ﬁ% then e—37"t/¢* < 1/2. Therefore
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To finish this off, solve e=™ /¢ < ¢ to find that
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In the next lecture we show a matching lower bound, showing that this upper bound is essentially correct.
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