
Lecture 7 - Exponential decay and lower bounding mixing time
Monday, August 30

Today we show a general method for lower bounding mixing time. This will be used to show that the upper
bound on the cycle walk from the previous lecture is essentially sharp.

First we need a definition and lemma.

Definition 7.1. Let ∆x(t) = ‖Pt(x, ·)− π‖TV and ∆(t) = maxx∈Ω ∆x(t).

Lemma 7.2. If t =
∑k
i=1 ti then

∆(t) ≤ 2k−1
k∏

i=1

∆(ti) .

Proof. Consider the case when t = t1 + t2. Then

2∆x(t1 + t2) =
∑

y∈Ω

∣∣Pt1+t2(x, y)− π(y)
∣∣

=
∑

y∈Ω

∣∣∣∣∣
∑

z∈Ω

Pt1(x, z) Pt2(z, y)− π(y)

∣∣∣∣∣

=
∑

y∈Ω

∣∣∣∣∣
∑

z∈Ω

(Pt1(x, z)− π(z))(Pt2(z, y)− π(y))

∣∣∣∣∣

≤
∑

y∈Ω

∑

z∈Ω

∣∣(Pt1(x, z)− π(z))(Pt2(z, y)− π(y))
∣∣

≤
∑

z∈Ω

∣∣Pt1(x, z)− π(z)
∣∣ ∑

y∈Ω

∣∣Pt2(z, y)− π(y)
∣∣

≤ 2∆x(t1) 2∆(t2)

The final equality can be checked by multiplying out terms and adding over z ∈ Ω (reversibility is not
needed). The first inequality was the triangle inequality |∑xi| ≤

∑ |xi|.
By induction 2∆x(

∑k
i=1 ti) ≤ 2∆x(t1)

∏k
i=2 2∆(ti). The lemma follows immediately.

In particular, we have

Corollary 7.3. For every δ < 1/2 the mixing time satisfies τ(ε) ≤ τ(δ) dlog 1
2δ

(1/2ε)e and in particular
τ(ε) ≤ τ(1/2e) dlog(1/2ε)e.

This shows that once the distance drops below 1/2 then it will subsequently drop exponentially fast.

Remark: The typical method for proving this is a coupling argument. I have always seen the bound stated
as τ(ε) ≤ τ(1/2e) dlog(1/ε)e. However, a careful look at the coupling proof shows that in fact a factor 2
improvement is possible and the coupling proof also shows τ(ε) ≤ τ(1/2e) dlog(1/2ε)e, as well as the more
general δ form given by Corollary 7.3.

We are now in a situation to prove the main result.

Theorem 7.4. A reversible ergodic Markov chain satisfies ∆(t) ≥ 1
2 λ

t
max, or equivalently

τ(ε) ≥ log(1/2ε)
log(1/λmax)

≥ λmax
1− λmax log(1/2ε) .
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Proof. Our proof is based on an argument of Sinclair [2]. If λmax = λ2 then let x be such that (−→u2)x 6= 0,
while if λmax = |λn| then let x be such that (−→un)x 6= 0. Clearly ∆x(2t) = 1

2

∑
y∈Ω |P2t(x, y) − π(y)| ≥

1
2 (P2t(x, x)− π(x)). From Theorem 5.2 it is known that P2t(x, x)− π(x) =

∑n
m=2 λ

2t
m (−→um)2

x and it follows
that

∆x(2t) ≥ c λ2t
max

for some c > 0 (in particular, c ≥ 1
2 (−→u2)2

x or 1
2 (−→un)2

x).

Now, let t = Aτ(ε). Then by Lemma 7.2 it follows that 1
2 (2ε)2A ≥ ∆x(2t) ≥ c λ

2Aτ(ε)
max Taking A → ∞ it

follows that 2ε ≥ λτ(ε)
max and so τ(ε) ≥ log(1/2ε)

log(1/λmax) . Finish by applying the approximation log(1/x) = − log x =
− log(1− (1− x)) ≤ 1−x

x when x ∈ (0, 1].

Now, let ε = ∆(t), observe that τ(ε) ≤ t and rearrange the lower bound on τ(ε) to show that ∆(t) = ε ≥
1
2 λ

τ(ε)
max ≥ 1

2 λ
t
max.

This theorem will be used in the seminar next Friday in which I go in the reverse direction and use upper
bounds on the mixing time to prove upper bounds on λmax.

Combining this with the upper bound of Theorem 5.2 gives

Theorem 7.5. A reversible ergodic Markov chain satisfies

⌈
log(1/2ε)

log(1/λmax)

⌉
≤ τ(ε) ≤

⌈
1
2 log 1−π∗

π∗
+ log(1/2ε)

log(1/λmax)

⌉

where π∗ = minx∈Ω π(x).

Observe that in the limit as ε → 0+ that the top and bottom bounds converge to the same order, so

τ(ε) ε→0+

−−−−→ (1 + o(1)) log(1/ε)
log(1/λmax) . Therefore λmax determines the asymptotic rate of convergence.

For the walk on the uniform two-point space the upper and lower bounds match at all ε and this implies
that τ(ε) =

⌈
log(1/2ε)

log(1/λmax)

⌉
. In fact, you can check that λmax = |2γ − 1| and so this gives exactly the same

bound we found earlier.

A more conventional form is

λmax
1− λmax log(1/2ε) ≤ τ(ε) ≤ 1

1− λmax

(
1
2

log(1/π∗) + log(1/2ε)
)

where it is understood that the upper bound should be rounded up.

We can now show the lower bound for the walk on the cycle.

Example 7.6. Consider the simple random walk on the cycle C` of odd length `. A quick look at the
eigenvalues given in the previous lecture shows that λmax = cos(π/`) ≥ 1 − π2

2`2 . The lower bound on τ(ε)

given above implies that τ(ε) ≥ 2`2

π2

(
1− π2

2`2

)
log(1/2ε). Combined with what was shown in the previous

lecture it follows that for this walk
(

2`2

π2
− 1
)

log(1/2ε) ≤ τ(ε) ≤ 2`2

π2
log(1/ε) if ε ≤ e−π2/80 ≈ 0.88

The difference between the upper and lower bounds is negligible.
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Alternatively, in terms of variation distance Theorem 7.4 implies ∆(t) ≥ 1
2 cost(π/`). But if x ≤ 1/2 then

cosx ≥ e−x2/2−x4/11 and so

1
2

exp
(
−π

2 t

2`2
− π4 t

11`4

)
≤ ∆(t) ≤ exp

(
−π

2 t

2`2

)

if ` ≥ 7 and t ≥ `2/40. The upper and lower bounds on variation distance differ by only a factor of two.

Armed with Theorem 7.5 we may now show upper and lower bounds on mixing time for a variety of Markov
chains.

Example 7.7. Consider the lazy random walk with loops on the binary cube 2d. This can be interpreted as a
walk on d-tuples in Zd2 = {0, 1}d, such ∀x, y ∈ 2d the transition probabilities are P(x, x) = 1/2, P(x, y) = 1/2d
if x and y differ in exactly one coordinate, and P(x, y) = 0 otherwise. It is known that λ2 = 1− 1/d for this
Markov chain. By Theorem 7.5 it follows that

(d− 1) log(1/2ε) ≤ τ(ε) ≤ log 2
2

d2 + d log(1/2ε) .

The correct mixing time is τ(ε) ≈ 1
2 d log d+ d log(1/2ε) [1]. Our asymptotic rate was of course correct, but

the “burn-in” (time to reach ε = 1/2e) is far too slow.

Example 7.8. Consider the walk on the complete graph Kn with laziness 1/2, that is ∀x 6= y ∈ Kn :
P(x, x) = 1/2, P(x, y) = 1/2(n− 1). The spectrum is λ1 = 1, λ2, . . . , λn = n−2

2(n−1) . Then

1
2

(
n− 2

2(n− 1)

)t
=

1
2
λtmax ≤ ∆(t) ≤ 1

2
∆2,π(t) ≤ 1

2

√
1− π∗
π∗

λtmax =
1
2
√
n− 1

(
n− 2

2(n− 1)

)t

where ∆2,π(t) = maxx∈V
∥∥∥1− Pt(x,·)

π

∥∥∥
2,π

. The correct bounds are ∆(t) =
(

n−2
2(n−1)

)t
(1−1/n) and ∆2,π(t) =

(
n−2

2(n−1)

)t √
n− 1. The lower bound was off by only a factor of two and the upper bound is correct.

However, ∆(t) � ∆2,π(t). This demonstrates that sometimes methods for bounding L2 distance will give
poor bounds on the total-variation distance. Generally this is not an issue, but we do still need methods for
bounding total-variation distance more directly.

In the next class we will discuss how to upper bound λmax. This makes it possible to bound mixing times
for a much larger range of problems.
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