
Lecture 8 - Dirichlet forms and comparison of spectral gap
Wednesday, September 1

In the past several lectures we have found that the mixing time is controlled by the second largest eigenvalue
in magnitude, λmax = max{λ2, |λn|}. A good method is now needed to upper bound λmax.

This will be much easier to cope with if λ2 ≥ |λn|. Suppose that ∀x ∈ Ω : P(x, x) ≥ γ for some γ ∈ [0, 1).
Then observe that

P = (1− γ) P̃ + (1− (1− γ)) I where P̃ =
1

1− γ P +
(

1− 1
1− γ

)
I

is the Markov chain sped up by a factor of 1 − γ. The matrix P̃ is still a transition matrix for a Markov
chain and so λ̃n ≥ −1. Moreover, the eigenvalues λi of P satisfy

λi = (1− γ) λ̃i + (1− (1− γ)) with eigenvector ui = ũi

where λ̃i are the eigenvalues of P̃ and ũi are the eigenvectors. Then λn ≥ (1− γ)(−1) + γ = −1 + 2γ and so
|λn| ≤ min{λ2, 1− 2γ}.
Remark 8.1. From the discussion above it follows that

• If P is lazy then λmax = λ2.

• The transition matrix P̂ = 1
2 (I + P) has λ̂max = λ̂2 = 1

2 (1 + λ2).

• If P has laziness γ and c ≥ λ2 is some upper bound on λ2 with c ≥ 1− 2γ then λmax ≤ c.
Example 8.2. Consider the walk on the binary cube 2d given by P(x, y) = 1

d+1 if y ∼ x or y = x. Then
γ = 1

d+1 and λ2 = 1 − 2
d+1 (use the fact that λ2 = 1 − 1/d for the lazy chain, given last class, to show the

value for the new walk P). Then λmax ≤ max{1− 2γ, λ2} = 1− 1
d+1 . In fact, every upper bound c ≥ λ2 will

satisfy c ≥ 1− 2
d+1 = 1− 2γ, so no matter how bad the estimate it will always happen that λmax ≤ c.

Remark 8.3 (Issues in implementation). Suppose that P has laziness γ and we want to run the Markov
chain for τ(E) steps. Then it is faster to first generate t = Binomial(τ(ε), 1 − γ) and then take t steps of
the Markov chain P̂ = 1

1−γ P +
(

1− 1
1−γ

)
I. The expected number of steps Et = (1− γ)τ(ε) is smaller by a

factor (1− γ).

Observe that “slowing down” the Markov chain by a factor of two in taking P̂ = 1
2 (I + P) at worst halves

the value of 1− λmax, that is 1− λ̂max = 1− λ̂2 = 1
2 (1− λ2) ≥ 1

2 (1− λmax) and therefore the mixing time
bound τ(E) ≤ 1

1−λmax log 1
2ε
√
π∗

worsens by at most a factor of 2. However, Et = (1 − γ)τ(ε) and so this
factor of two is regained by the binomial argument.

In short making a Markov chain lazy does not effect the number of steps it takes to generate a good sample
(at least via the λmax bound). However it makes it possible to guarantee λmax = λ2, so we may as well
assume that λmax = λ2 always.

The goal of the remainder of the lecture is to upper bound λ2.

Lemma 8.4. For a reversible Markov chain

1− λ2 = inf
f : Ω→R,

f 6=constant

E(f, f)
V arπ(f)

= inf
f 6=constant

1
2

∑
x,y∈Ω(f(x)− f(y))2 π(x)P(x, y)

1
2

∑
x,y∈Ω(f(x)− f(y))2 π(x)π(y)

1



Proof. This is not particularly hard to prove but due to time constraints I will skip it. See Lecture 12 of
Sinclair’s notes [2].

The quantity E(f, f) is known as a Dirichlet form. More generally,

E(f, g) =
1
2

∑

x,y∈Ω

(f(x)− f(y)) (g(x)− g(y))2 π(x)P(x, y) .

The quantity λ = 1− λ2 is known as the spectral gap.

Example 8.5. Consider the lazy walk on the complete graph Kn. Then π(x) = 1/n for all x ∈ Ω, and
π(x) P(x, y) = 1

n
1

2(n−1) for all y 6= x ∈ Ω. It follows that

1− λ2 =
1
n

1
2(n−1)

1
n

1
n

inf
f 6=constant

∑
x,y∈Ω(f(x)− f(y))2

∑
x,y∈Ω(f(x)− f(y))2

=
n

2(n− 1)

and so λ2 = 1− n
2(n−1) = n−2

2(n−1) .

Also, for an arbitrary probability distribution π on Kn let P(x, y) = π(y) (the single-step-to-stationary walk).
Then E(f, f) = V arπ(f) and therefore 1− λ2 = 1 and λ2 = 0.

We now show how to bound 1 − λ2 by comparing the Dirichlet forms of two Markov chains, one M′ with
known spectral gap and the other M with unknown gap.

Let M and M′ be Markov chains on the same state space Ω. For every edge e = (x, y) ∈ E′ (the edge set
of M′, i.e. pairs (x,y) with P′(x, y) > 0) associate a path in E (the edge set of M) from x to y. Preferably
not too many paths should intersect at any given edge.

Theorem 8.6 (Comparison Theorem).

E(f, f) ≥ E
′(f, f)
A

where A = max
e=(a,b)∈E

1
Q(e)

∑
γxy3e

Q′(x, y) |γxy|

and Q(e = (a, b)) = π(a)P(a, b), likewise Q′(e = (x, y)) = π(x)P(x, y).

Proof. The proof is surprisingly simple. It was first observed by Diaconis and Saloff-Coste [1].

E ′(f, f) =
1
2

∑

x,y∈Ω

(f(x)− f(y))2 π′(x)P′(x, y)

=
1
2

∑

x,y∈Ω


 ∑

e=(a,b)∈γxy
f(a)− f(b)




2

π′(x)P′(x, y)

≤ 1
2

∑

x,y∈Ω


 ∑

e=(a,b)∈γxy
(f(a)− f(b))2 |γxy|


 π′(x)P′(x, y)

=
1
2

∑

e=(a,b)∈E
(f(a)− f(b))2 π(a)P(a, b)


 1
π(a)P(a, b)

∑
γxy3e

π(x)P(x, y) |γxy|



≤ A E(f, f)

The first inequality followed from Cauchy-Schwartz.
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This theorem can be a bit better understood by letting ` = max |γxy| denote the length of the longest path.
Then

A ≤ A` where A = max
e=(a,b)∈E

1
Q(e)

∑
γxy3e

Q′(x, y) .

To interpret A, suppose that the Markov chain represents a transportation network. To every pair of vertices
(x, y) send a total of Q′(x, y) units from x to y along the path inM, where each edge e = (a, b) has capacity
Q(e). Then A measures the congestion at the worst place in the network. Now, the known Markov chain
M′ sent a total of Q′(x, y) units directly from x to y along the edge (x, y). If A is close to 1 then this shows
that sending these units along M is not much harder than what happened in M′, so the Dirichlet forms
won’t differ too much.

Observe that if π = π′ then the variances satisfy V arπ(f) = V arπ′(f).

Corollary 8.7. If M and M′ have the same stationary distributions, that is π′ = π, then

1− λ2 ≥ 1− λ′2
A

.

Next class we will see how to apply this theorem to more examples.
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