Lecture 8 - Dirichlet forms and comparison of spectral gap
Wednesday, September 1

In the past several lectures we have found that the mixing time is controlled by the second largest eigenvalue
in magnitude, A\ = max{Az, |A\n|}. A good method is now needed to upper bound A,qz-

This will be much easier to cope with if Ay > |\,|. Suppose that Vo € Q : P(z,z) > ~ for some v € [0,1).
Then observe that

~ ~ 1 1
P=(1-7)P+(1—-(1-9)I where P=—P+(1—-—— )1
(1=9)P+ (== where P= =P (1- 2]

is the Markov chain sped up by a factor of 1 —~. The matrix P is still a transition matrix for a Markov
chain and so A\, > —1. Moreover, the eigenvalues \; of P satisfy

ANi=0—9) A+ (1—(1—-7) with eigenvector u; = i;

where ); are the eigenvalues of P and @; are the eigenvectors. Then A, > (1 —~)(—1) +~ = —1 + 2y and so
[An| < min{Ag, 1 — 2v}.

Remark 8.1. From the discussion above it follows that
o IfP is lazy then Aoz = A2.
e The transition matriz P = % (I +P) has Amaz = Ao = % (1+ A2).

o If P has laziness v and ¢ > Ao is some upper bound on Ao with ¢ > 1 — 27y then Anasr < c.

Example 8.2. Consider the walk on the binary cube 2¢ given by P(z,y) = d%rl if y ~x or y=x. Then
2

Py (use the fact that A = 1 — 1/d for the lazy chain, given last class, to show the

value for the new walk P). Then \jqp < max{l—2y, A2} =1— ﬁ. In fact, every upper bound ¢ > Ay will

satisfy ¢ > 1 — TQH = 1 — 27, so no matter how bad the estimate it will always happen that A,.. < c.

vzﬁand)\gzl—

Remark 8.3 (Issues in implementation). Suppose that P has laziness v and we want to run the Markov
chain for 7(E) steps. Then it is faster to first generate t = Binomial((€), 1 — ) and then take t steps of

the Markov chain P = ﬁ P+ (1 — ﬁ) I. The expected number of steps Et = (1 — v)7(€) is smaller by a
factor (1 — ).

Observe that “slowing down” the Markov chain by a factor of two in taking P = %(I + P) at worst halves
the value of 1 — \jpaz, that is 1 — Mgz =1 — Ao = % (I1=X9) > % (1 = Apmaz) and therefore the mizing time
bound (&) < 1—/\1maz log 26\1/7?* worsens by at most a factor of 2. However, Et = (1 — v)7(¢) and so this
factor of two is regained by the binomial argument.

In short making a Markov chain lazy does not effect the number of steps it takes to generate a good sample
(at least via the \pqe bound). However it makes it possible to guarantee Aoz = A2, s0 we may as well
assume that Apmaz = A2 always.

The goal of the remainder of the lecture is to upper bound As.

Lemma 8.4. For a reversible Markov chain

e o EED 2 Xegeal@) - fW) ()P y)
i oo Vare(f) - speonstant 3 3%, eq(f(@) = f(9))* 7(@)m(y)



Proof. This is not particularly hard to prove but due to time constraints I will skip it. See Lecture 12 of
Sinclair’s notes [2]. O

The quantity E(f, f) is known as a Dirichlet form. More generally,

E(f,9) = % > (@) = ) (9(x) = g(y)* m(@)P(z,y) .

T,y
The quantity A =1 — Ao is known as the spectral gap.

Example 8.5. Consider the lazy walk on the complete graph K,,. Then w(z) = 1/n for all z € Q, and

m(z) P(z,y) = % ﬁ for all y # x € Q. It follows that

%2(7;1 1) Zz,yé(l(f(‘r) - f)? n

Freomstant S, o[ — FW)E ~ 2(n—1)

andsokgzl—ﬁ:#f).
Also, for an arbitrary probability distribution 7 on K, let P(x,y) = m(y) (the single-step-to-stationary walk).
Then E(f, f) = Var,(f) and therefore 1 — Ao =1 and A2 = 0.

We now show how to bound 1 — Ay by comparing the Dirichlet forms of two Markov chains, one M’ with
known spectral gap and the other M with unknown gap.

Let M and M’ be Markov chains on the same state space ). For every edge e = (z,y) € F’ (the edge set
of M’, i.e. pairs (x,y) with P’(x,y) > 0) associate a path in E (the edge set of M) from x to y. Preferably
not too many paths should intersect at any given edge.

Theorem 8.6 (Comparison Theorem).

£(f.5) L I
E(f. f) = 7 where A = ,_max Qe W;eQ (2, 9) [Vay|

and Q(e = (a,b)) = w(a)P(a,b), likewise Q' (e = (z,y)) = m(x)P(x,y).

Proof. The proof is surprisingly simple. It was first observed by Diaconis and Saloff-Coste [1].
1

E) = 5 D (F@) = fw)* ' (@)P(z.y)
z,ye)
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The first inequality followed from Cauchy-Schwartz. O



This theorem can be a bit better understood by letting £ = max |7y, | denote the length of the longest path.
Then )

A /

A< Al where A= ez{g’als(eE W@ Z Q'(z,y) .
Yay €
To interpret A, suppose that the Markov chain represents a transportation network. To every pair of vertices
(z,y) send a total of Q'(z,y) units from z to y along the path in M, where each edge e = (a, b) has capacity
Q(e). Then A measures the congestion at the worst place in the network. Now, the known Markov chain
M’ sent a total of Q'(z,y) units directly from x to y along the edge (z,y). If A is close to 1 then this shows
that sending these units along M is not much harder than what happened in M’, so the Dirichlet forms
won’t differ too much.

Observe that if 7 = 7’ then the variances satisfy Var,(f) = Vara (f).
Corollary 8.7. If M and M’ have the same stationary distributions, that is ™ = w, then

11—\
T—dg > 22,
A

Next class we will see how to apply this theorem to more examples.
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