Lecture 8 - Dirichlet forms and comparison of spectral gap

Wednesday, September 1

In the past several lectures we have found that the mixing time is controlled by the second largest eigenvalue in magnitude, $\lambda_{max} = \max{\{\lambda_2, |\lambda_n|\}}$. A good method is now needed to upper bound λ_{max} .

This will be much easier to cope with if $\lambda_2 \ge |\lambda_n|$. Suppose that $\forall x \in \Omega : \mathsf{P}(x, x) \ge \gamma$ for some $\gamma \in [0, 1)$. Then observe that

$$\mathsf{P} = (1 - \gamma) \,\tilde{\mathsf{P}} + (1 - (1 - \gamma)) \,I \quad \text{where} \quad \tilde{\mathsf{P}} = \frac{1}{1 - \gamma} \,\mathsf{P} + \left(1 - \frac{1}{1 - \gamma}\right) \,I$$

is the Markov chain sped up by a factor of $1 - \gamma$. The matrix $\tilde{\mathsf{P}}$ is still a transition matrix for a Markov chain and so $\tilde{\lambda}_n \geq -1$. Moreover, the eigenvalues λ_i of P satisfy

$$\lambda_i = (1 - \gamma) \, \hat{\lambda}_i + (1 - (1 - \gamma))$$
 with eigenvector $u_i = \tilde{u}_i$

where $\tilde{\lambda}_i$ are the eigenvalues of $\tilde{\mathsf{P}}$ and \tilde{u}_i are the eigenvectors. Then $\lambda_n \ge (1-\gamma)(-1) + \gamma = -1 + 2\gamma$ and so $|\lambda_n| \le \min\{\lambda_2, 1-2\gamma\}$.

Remark 8.1. From the discussion above it follows that

- If P is lazy then $\lambda_{max} = \lambda_2$.
- The transition matrix $\hat{\mathsf{P}} = \frac{1}{2} (I + \mathsf{P})$ has $\hat{\lambda}_{max} = \hat{\lambda}_2 = \frac{1}{2} (1 + \lambda_2)$.
- If P has laziness γ and $c \geq \lambda_2$ is some upper bound on λ_2 with $c \geq 1 2\gamma$ then $\lambda_{max} \leq c$.

Example 8.2. Consider the walk on the binary cube 2^d given by $\mathsf{P}(x, y) = \frac{1}{d+1}$ if $y \sim x$ or y = x. Then $\gamma = \frac{1}{d+1}$ and $\lambda_2 = 1 - \frac{2}{d+1}$ (use the fact that $\lambda_2 = 1 - 1/d$ for the lazy chain, given last class, to show the value for the new walk P). Then $\lambda_{max} \leq \max\{1 - 2\gamma, \lambda_2\} = 1 - \frac{1}{d+1}$. In fact, every upper bound $c \geq \lambda_2$ will satisfy $c \geq 1 - \frac{2}{d+1} = 1 - 2\gamma$, so no matter how bad the estimate it will always happen that $\lambda_{max} \leq c$.

Remark 8.3 (Issues in implementation). Suppose that P has laziness γ and we want to run the Markov chain for $\tau(\mathcal{E})$ steps. Then it is faster to first generate $t = Binomial(\tau(\epsilon), 1 - \gamma)$ and then take t steps of the Markov chain $\hat{\mathsf{P}} = \frac{1}{1-\gamma} \mathsf{P} + \left(1 - \frac{1}{1-\gamma}\right) I$. The expected number of steps $\mathsf{E}t = (1 - \gamma)\tau(\epsilon)$ is smaller by a factor $(1 - \gamma)$.

Observe that "slowing down" the Markov chain by a factor of two in taking $\hat{\mathsf{P}} = \frac{1}{2}(I + \mathsf{P})$ at worst halves the value of $1 - \lambda_{max}$, that is $1 - \hat{\lambda}_{max} = 1 - \hat{\lambda}_2 = \frac{1}{2}(1 - \lambda_2) \ge \frac{1}{2}(1 - \lambda_{max})$ and therefore the mixing time bound $\tau(\mathcal{E}) \le \frac{1}{1 - \lambda_{max}} \log \frac{1}{2\epsilon\sqrt{\pi_*}}$ worsens by at most a factor of 2. However, $\mathsf{E}t = (1 - \gamma)\tau(\epsilon)$ and so this factor of two is regained by the binomial argument.

In short making a Markov chain lazy does not effect the number of steps it takes to generate a good sample (at least via the λ_{max} bound). However it makes it possible to guarantee $\lambda_{max} = \lambda_2$, so we may as well assume that $\lambda_{max} = \lambda_2$ always.

The goal of the remainder of the lecture is to upper bound λ_2 .

Lemma 8.4. For a reversible Markov chain

$$1 - \lambda_2 = \inf_{\substack{f: \Omega \to \mathbb{R}, \\ f \neq constant}} \frac{\mathcal{E}(f, f)}{Var_{\pi}(f)} = \inf_{f \neq constant} \frac{\frac{1}{2} \sum_{x, y \in \Omega} (f(x) - f(y))^2 \pi(x) \mathsf{P}(x, y)}{\frac{1}{2} \sum_{x, y \in \Omega} (f(x) - f(y))^2 \pi(x) \pi(y)}$$

Proof. This is not particularly hard to prove but due to time constraints I will skip it. See Lecture 12 of Sinclair's notes [2]. \Box

The quantity $\mathcal{E}(f, f)$ is known as a *Dirichlet form*. More generally,

$$\mathcal{E}(f,g) = \frac{1}{2} \sum_{x,y \in \Omega} (f(x) - f(y)) (g(x) - g(y))^2 \pi(x) \mathsf{P}(x,y) \,.$$

The quantity $\lambda = 1 - \lambda_2$ is known as the *spectral gap*.

Example 8.5. Consider the lazy walk on the complete graph K_n . Then $\pi(x) = 1/n$ for all $x \in \Omega$, and $\pi(x) \mathsf{P}(x, y) = \frac{1}{n} \frac{1}{2(n-1)}$ for all $y \neq x \in \Omega$. It follows that

$$1 - \lambda_2 = \frac{\frac{1}{n} \frac{1}{2(n-1)}}{\frac{1}{n} \frac{1}{n}} \inf_{f \neq constant} \frac{\sum_{x,y \in \Omega} (f(x) - f(y))^2}{\sum_{x,y \in \Omega} (f(x) - f(y))^2} = \frac{n}{2(n-1)}$$

and so $\lambda_2 = 1 - \frac{n}{2(n-1)} = \frac{n-2}{2(n-1)}$.

Also, for an arbitrary probability distribution π on K_n let $\mathsf{P}(x, y) = \pi(y)$ (the single-step-to-stationary walk). Then $\mathcal{E}(f, f) = Var_{\pi}(f)$ and therefore $1 - \lambda_2 = 1$ and $\lambda_2 = 0$.

We now show how to bound $1 - \lambda_2$ by comparing the Dirichlet forms of two Markov chains, one \mathcal{M}' with known spectral gap and the other \mathcal{M} with unknown gap.

Let \mathcal{M} and \mathcal{M}' be Markov chains on the same state space Ω . For every edge $e = (x, y) \in E'$ (the edge set of \mathcal{M}' , i.e. pairs (x,y) with $\mathsf{P}'(x,y) > 0$) associate a path in E (the edge set of \mathcal{M}) from x to y. Preferably not too many paths should intersect at any given edge.

Theorem 8.6 (Comparison Theorem).

$$\mathcal{E}(f,f) \ge \frac{\mathcal{E}'(f,f)}{\overline{A}} \quad where \quad \overline{A} = \max_{e=(a,b)\in E} \frac{1}{\mathsf{Q}(e)} \sum_{\gamma_{xy} \ni e} \mathsf{Q}'(x,y) |\gamma_{xy}|$$

and $\mathsf{Q}(e = (a, b)) = \pi(a)\mathsf{P}(a, b)$, likewise $\mathsf{Q}'(e = (x, y)) = \pi(x)\mathsf{P}(x, y)$.

Proof. The proof is surprisingly simple. It was first observed by Diaconis and Saloff-Coste [1].

$$\begin{aligned} \mathcal{E}'(f,f) &= \frac{1}{2} \sum_{x,y \in \Omega} (f(x) - f(y))^2 \pi'(x) \mathsf{P}'(x,y) \\ &= \frac{1}{2} \sum_{x,y \in \Omega} \left(\sum_{e=(a,b) \in \gamma_{xy}} f(a) - f(b) \right)^2 \pi'(x) \mathsf{P}'(x,y) \\ &\leq \frac{1}{2} \sum_{x,y \in \Omega} \left[\sum_{e=(a,b) \in \gamma_{xy}} (f(a) - f(b))^2 |\gamma_{xy}| \right] \pi'(x) \mathsf{P}'(x,y) \\ &= \frac{1}{2} \sum_{e=(a,b) \in E} (f(a) - f(b))^2 \pi(a) \mathsf{P}(a,b) \left[\frac{1}{\pi(a) \mathsf{P}(a,b)} \sum_{\gamma_{xy} \ni e} \pi(x) \mathsf{P}(x,y) |\gamma_{xy}| \right] \\ &\leq A \mathcal{E}(f,f) \end{aligned}$$

The first inequality followed from Cauchy-Schwartz.

This theorem can be a bit better understood by letting $\ell = \max |\gamma_{xy}|$ denote the length of the longest path. Then

$$\overline{A} \le A \,\ell$$
 where $A = \max_{e=(a,b)\in E} \frac{1}{\mathsf{Q}(e)} \sum_{\gamma_{xy} \ni e} \mathsf{Q}'(x,y)$.

To interpret A, suppose that the Markov chain represents a transportation network. To every pair of vertices (x, y) send a total of Q'(x, y) units from x to y along the path in \mathcal{M} , where each edge e = (a, b) has capacity Q(e). Then A measures the congestion at the worst place in the network. Now, the known Markov chain \mathcal{M}' sent a total of Q'(x, y) units directly from x to y along the edge (x, y). If A is close to 1 then this shows that sending these units along \mathcal{M} is not much harder than what happened in \mathcal{M}' , so the Dirichlet forms won't differ too much.

Observe that if $\pi = \pi'$ then the variances satisfy $Var_{\pi}(f) = Var_{\pi'}(f)$.

Corollary 8.7. If \mathcal{M} and \mathcal{M}' have the same stationary distributions, that is $\pi' = \pi$, then

$$1 - \lambda_2 \ge \frac{1 - \lambda_2'}{\overline{A}} \,.$$

Next class we will see how to apply this theorem to more examples.

References

- P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible markov chains. The Annals of Applied Probability, 3(3):696-730, 1993.
- [2] A. Sinclair. Notes for cs294-2: Markov chain monte carlo. UC Berkeley, 2002.