Lecture 8 - Dirichlet forms and comparison of spectral gap

Wednesday, September 1

In the past several lectures we have found that the mixing time is controlled by the second largest eigenvalue in magnitude, $\lambda_{\max }=\max \left\{\lambda_{2},\left|\lambda_{n}\right|\right\}$. A good method is now needed to upper bound $\lambda_{\max }$.

This will be much easier to cope with if $\lambda_{2} \geq\left|\lambda_{n}\right|$. Suppose that $\forall x \in \Omega: \mathrm{P}(x, x) \geq \gamma$ for some $\gamma \in[0,1)$. Then observe that

$$
\mathrm{P}=(1-\gamma) \tilde{\mathrm{P}}+(1-(1-\gamma)) I \quad \text { where } \quad \tilde{\mathrm{P}}=\frac{1}{1-\gamma} \mathrm{P}+\left(1-\frac{1}{1-\gamma}\right) I
$$

is the Markov chain sped up by a factor of $1-\gamma$. The matrix $\tilde{\mathrm{P}}$ is still a transition matrix for a Markov chain and so $\tilde{\lambda}_{n} \geq-1$. Moreover, the eigenvalues λ_{i} of P satisfy

$$
\lambda_{i}=(1-\gamma) \tilde{\lambda}_{i}+(1-(1-\gamma)) \quad \text { with eigenvector } \quad u_{i}=\tilde{u}_{i}
$$

where $\tilde{\lambda}_{i}$ are the eigenvalues of $\tilde{\mathrm{P}}$ and \tilde{u}_{i} are the eigenvectors. Then $\lambda_{n} \geq(1-\gamma)(-1)+\gamma=-1+2 \gamma$ and so $\left|\lambda_{n}\right| \leq \min \left\{\lambda_{2}, 1-2 \gamma\right\}$.
Remark 8.1. From the discussion above it follows that

- If P is lazy then $\lambda_{\max }=\lambda_{2}$.
- The transition matrix $\hat{\mathrm{P}}=\frac{1}{2}(I+\mathrm{P})$ has $\hat{\lambda}_{\max }=\hat{\lambda}_{2}=\frac{1}{2}\left(1+\lambda_{2}\right)$.
- If P has laziness γ and $c \geq \lambda_{2}$ is some upper bound on λ_{2} with $c \geq 1-2 \gamma$ then $\lambda_{\max } \leq c$.

Example 8.2. Consider the walk on the binary cube 2^{d} given by $\mathrm{P}(x, y)=\frac{1}{d+1}$ if $y \sim x$ or $y=x$. Then $\gamma=\frac{1}{d+1}$ and $\lambda_{2}=1-\frac{2}{d+1}$ (use the fact that $\lambda_{2}=1-1 / d$ for the lazy chain, given last class, to show the value for the new walk P). Then $\lambda_{\max } \leq \max \left\{1-2 \gamma, \lambda_{2}\right\}=1-\frac{1}{d+1}$. In fact, every upper bound $c \geq \lambda_{2}$ will satisfy $c \geq 1-\frac{2}{d+1}=1-2 \gamma$, so no matter how bad the estimate it will always happen that $\lambda_{\max } \leq c$.

Remark 8.3 (Issues in implementation). Suppose that P has laziness γ and we want to run the Markov chain for $\tau(\mathcal{E})$ steps. Then it is faster to first generate $t=\operatorname{Binomial}(\tau(\epsilon), 1-\gamma)$ and then take t steps of the Markov chain $\hat{\mathrm{P}}=\frac{1}{1-\gamma} \mathrm{P}+\left(1-\frac{1}{1-\gamma}\right)$. The expected number of steps $\mathrm{E} t=(1-\gamma) \tau(\epsilon)$ is smaller by a factor $(1-\gamma)$.

Observe that "slowing down" the Markov chain by a factor of two in taking $\hat{\mathrm{P}}=\frac{1}{2}(I+\mathrm{P})$ at worst halves the value of $1-\lambda_{\text {max }}$, that is $1-\hat{\lambda}_{\max }=1-\hat{\lambda}_{2}=\frac{1}{2}\left(1-\lambda_{2}\right) \geq \frac{1}{2}\left(1-\lambda_{\max }\right)$ and therefore the mixing time bound $\tau(\mathcal{E}) \leq \frac{1}{1-\lambda_{\max }} \log \frac{1}{2 \epsilon \sqrt{\pi_{*}}}$ worsens by at most a factor of 2 . However, $\mathrm{E} t=(1-\gamma) \tau(\epsilon)$ and so this factor of two is regained by the binomial argument.

In short making a Markov chain lazy does not effect the number of steps it takes to generate a good sample (at least via the $\lambda_{\max }$ bound). However it makes it possible to guarantee $\lambda_{\max }=\lambda_{2}$, so we may as well assume that $\lambda_{\max }=\lambda_{2}$ always.

The goal of the remainder of the lecture is to upper bound λ_{2}.
Lemma 8.4. For a reversible Markov chain

$$
1-\lambda_{2}=\inf _{\substack{f: \Omega \rightarrow \mathbb{R}, f \neq \text { constant }}} \frac{\mathcal{E}(f, f)}{\operatorname{Var}_{\pi}(f)}=\inf _{f \neq \text { constant }} \frac{\frac{1}{2} \sum_{x, y \in \Omega}(f(x)-f(y))^{2} \pi(x) \mathrm{P}(x, y)}{\frac{1}{2} \sum_{x, y \in \Omega}(f(x)-f(y))^{2} \pi(x) \pi(y)}
$$

Proof. This is not particularly hard to prove but due to time constraints I will skip it. See Lecture 12 of Sinclair's notes [2].

The quantity $\mathcal{E}(f, f)$ is known as a Dirichlet form. More generally,

$$
\mathcal{E}(f, g)=\frac{1}{2} \sum_{x, y \in \Omega}(f(x)-f(y))(g(x)-g(y))^{2} \pi(x) \mathrm{P}(x, y)
$$

The quantity $\lambda=1-\lambda_{2}$ is known as the spectral gap.
Example 8.5. Consider the lazy walk on the complete graph K_{n}. Then $\pi(x)=1 / n$ for all $x \in \Omega$, and $\pi(x) \mathrm{P}(x, y)=\frac{1}{n} \frac{1}{2(n-1)}$ for all $y \neq x \in \Omega$. It follows that

$$
1-\lambda_{2}=\frac{\frac{1}{n} \frac{1}{2(n-1)}}{\frac{1}{n} \frac{1}{n}} \inf _{f \neq \text { constant }} \frac{\sum_{x, y \in \Omega}(f(x)-f(y))^{2}}{\sum_{x, y \in \Omega}(f(x)-f(y))^{2}}=\frac{n}{2(n-1)}
$$

and so $\lambda_{2}=1-\frac{n}{2(n-1)}=\frac{n-2}{2(n-1)}$.
Also, for an arbitrary probability distribution π on K_{n} let $\mathrm{P}(x, y)=\pi(y)$ (the single-step-to-stationary walk).
Then $\mathcal{E}(f, f)=\operatorname{Var}_{\pi}(f)$ and therefore $1-\lambda_{2}=1$ and $\lambda_{2}=0$.
We now show how to bound $1-\lambda_{2}$ by comparing the Dirichlet forms of two Markov chains, one \mathcal{M}^{\prime} with known spectral gap and the other \mathcal{M} with unknown gap.

Let \mathcal{M} and \mathcal{M}^{\prime} be Markov chains on the same state space Ω. For every edge $e=(x, y) \in E^{\prime}$ (the edge set of \mathcal{M}^{\prime}, i.e. pairs (x, y) with $\mathrm{P}^{\prime}(x, y)>0$) associate a path in E (the edge set of \mathcal{M}) from x to y. Preferably not too many paths should intersect at any given edge.

Theorem 8.6 (Comparison Theorem).

$$
\mathcal{E}(f, f) \geq \frac{\mathcal{E}^{\prime}(f, f)}{\bar{A}} \quad \text { where } \quad \bar{A}=\max _{e=(a, b) \in E} \frac{1}{\mathrm{Q}(e)} \sum_{\gamma_{x y} \ni e} \mathrm{Q}^{\prime}(x, y)\left|\gamma_{x y}\right|
$$

and $\mathrm{Q}(e=(a, b))=\pi(a) \mathrm{P}(a, b)$, likewise $\mathrm{Q}^{\prime}(e=(x, y))=\pi(x) \mathrm{P}(x, y)$.
Proof. The proof is surprisingly simple. It was first observed by Diaconis and Saloff-Coste [1].

$$
\begin{aligned}
\mathcal{E}^{\prime}(f, f) & =\frac{1}{2} \sum_{x, y \in \Omega}(f(x)-f(y))^{2} \pi^{\prime}(x) \mathrm{P}^{\prime}(x, y) \\
& =\frac{1}{2} \sum_{x, y \in \Omega}\left(\sum_{e=(a, b) \in \gamma_{x y}} f(a)-f(b)\right)^{2} \pi^{\prime}(x) \mathrm{P}^{\prime}(x, y) \\
& \leq \frac{1}{2} \sum_{x, y \in \Omega}\left[\sum_{e=(a, b) \in \gamma_{x y}}(f(a)-f(b))^{2}\left|\gamma_{x y}\right|\right] \pi^{\prime}(x) \mathrm{P}^{\prime}(x, y) \\
& =\frac{1}{2} \sum_{e=(a, b) \in E}(f(a)-f(b))^{2} \pi(a) \mathrm{P}(a, b)\left[\frac{1}{\pi(a) \mathrm{P}(a, b)} \sum_{\gamma_{x y} \ni e} \pi(x) \mathrm{P}(x, y)\left|\gamma_{x y}\right|\right] \\
& \leq A \mathcal{E}(f, f)
\end{aligned}
$$

The first inequality followed from Cauchy-Schwartz.

This theorem can be a bit better understood by letting $\ell=\max \left|\gamma_{x y}\right|$ denote the length of the longest path. Then

$$
\bar{A} \leq A \ell \quad \text { where } \quad A=\max _{e=(a, b) \in E} \frac{1}{\mathrm{Q}(e)} \sum_{\gamma_{x y} \ni e} \mathrm{Q}^{\prime}(x, y)
$$

To interpret A, suppose that the Markov chain represents a transportation network. To every pair of vertices (x, y) send a total of $\mathrm{Q}^{\prime}(x, y)$ units from x to y along the path in \mathcal{M}, where each edge $e=(a, b)$ has capacity $\mathrm{Q}(e)$. Then A measures the congestion at the worst place in the network. Now, the known Markov chain \mathcal{M}^{\prime} sent a total of $\mathrm{Q}^{\prime}(x, y)$ units directly from x to y along the edge (x, y). If A is close to 1 then this shows that sending these units along \mathcal{M} is not much harder than what happened in \mathcal{M}^{\prime}, so the Dirichlet forms won't differ too much.

Observe that if $\pi=\pi^{\prime}$ then the variances satisfy $\operatorname{Var}_{\pi}(f)=\operatorname{Var}_{\pi^{\prime}}(f)$.
Corollary 8.7. If \mathcal{M} and \mathcal{M}^{\prime} have the same stationary distributions, that is $\pi^{\prime}=\pi$, then

$$
1-\lambda_{2} \geq \frac{1-\lambda_{2}^{\prime}}{\bar{A}} .
$$

Next class we will see how to apply this theorem to more examples.

References

[1] P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible markov chains. The Annals of Applied Probability, 3(3):696-730, 1993.
[2] A. Sinclair. Notes for cs294-2: Markov chain monte carlo. UC Berkeley, 2002.

