Lecture 9 - Canonical Paths

In the previous class we showed how to compare Dirichlet forms. The most important corollary of this was shown by Diaconis and Stroock [1] and Sinclair [2].

Corollary 9.1 (Canonical Paths). Given a reversible Markov chain \mathcal{M}, to every pair of states $x \neq y \in \Omega$ associate a path from x to y along edges ("canonical paths"). Then

$$
1-\lambda_{2} \geq 1 / \bar{\rho} \quad \text { where } \quad \bar{\rho}=\max _{(a, b) \in E} \frac{1}{\pi(a) \mathrm{P}(a, b)} \sum_{\gamma_{x y} \ni(a, b)} \pi(x) \pi(y)\left|\gamma_{x y}\right| .
$$

Proof. Consider the Markov chain \mathcal{M}^{\prime} with stationary distribution $\pi^{\prime}=\pi$ and transitions $\mathrm{P}^{\prime}(x, y)=\pi(y)$. It was shown last class that $1-\lambda_{2}^{\prime}=1$. To every edge (x, y) in \mathcal{M}^{\prime} associate the canonical path given in the problem. Then the comparison theorem applies and $\bar{A}=\bar{\rho}$.

This is correct for the walk on the uniform two-point space, as $\bar{\rho}=1 / 2(1-\gamma)$ which implies $1-\lambda_{2} \geq 2(1-\gamma)$, the correct value.

As with the comparison case, the easiest way to find $\bar{\rho}$ is typically to use the bound

$$
\bar{\rho} \leq \rho \ell \quad \text { where } \quad \rho=\max _{(a, b) \in E} \frac{1}{\pi(a) \mathrm{P}(a, b)} \sum_{\gamma_{x y} \ni(a, b)} \pi(x) \pi(y)
$$

where ℓ is again the length of the longest path. In most applications the stationary distribution is uniform $\pi=$ $1 /|\Omega|$ and the transition probabilities are constant with $\mathrm{P}(a, b)=0$ or \wp. Then $\left.\rho=\frac{1}{|\Omega| \wp \wp} \max _{(a, b) \in E} \right\rvert\,\{(x, y) \in$ $\left.\Omega \times \Omega: \gamma_{x y} \ni(a, b)\right\} \mid$ and it suffices to find which edge has the most paths through it.
Example 9.2 (Odd Cycle). Consider the simple random walk on a cycle C_{n} of odd length, as discussed before.

Given a pair of states $x, y \in[1 \ldots n]$ a natural choice of path is to take the shortest route around the cycle. The longest path is of length $\frac{n-1}{2}$, the stationary distribution is uniform at $\pi=1 / n$, and the transitions are all 0 or $1 / 2$, so it suffices to know the number of paths through a single edge. To count the number of paths through an edge e suppose the edge is $e=(a-1, a)$ and observe that the paths with an endpoint at $a+i$ must have begun somewhere from $a+i-\frac{n-1}{2}$ to $a-1$, i.e. there are $a-1-a-i+\frac{n-1}{2}+1=\frac{n-1}{2}-i$ such paths, for a total of

$$
\# \text { paths }=\sum_{i=0}^{(n-1) / 2} \frac{n-1}{2}-i=\frac{(n-1)(n+1)}{8}
$$

Then

$$
\bar{\rho} \leq \frac{n-1}{2} \frac{1}{n(1 / 2)} \frac{(n-1)(n+1)}{8}=\frac{(n-1)^{2}(n+1)}{8 n}<\frac{n^{2}}{8}
$$

and so

$$
1-\lambda_{2} \geq \frac{1}{\bar{\rho}} \geq \frac{8}{n^{2}}
$$

Recall from Lecture 6 that $1-\lambda_{2}=1-\cos (2 \pi / n) \approx \frac{2 \pi^{2}}{n^{2}}$. The canonical path bound was of the correct order, and off by only a factor of $\frac{\pi^{2}}{4} \approx 2.5$.
It is not hard to compute $\bar{\rho}$ directly for this problem. It is $\bar{\rho}=\frac{1}{n(1 / 2)} \sum_{i=1}^{(n-1) / 2} i^{2}=\frac{(n-1)(n+1)}{12}<\frac{n^{2}}{12}$. The bound $1-\lambda_{2} \geq \frac{12}{n^{2}}$ is off by only a factor of $\frac{\pi^{2}}{6} \approx 1.6$.

Example 9.3 (Boolean cube). Consider again the lazy walk on the boolean cube 2^{d}. This can be considered as a walk on $\{0,1\}^{d}$ with transitions given by choosing a coordinate uniformly at random and flipping it with probability $1 / 2$.

Canonical paths can be defined as follows. If $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, \ldots, y_{d}\right)$ then match the coordinates one at a time, that is follow the path

$$
\left(x_{1}, x_{2}, \ldots, x_{d}\right) \rightarrow\left(y_{1}, x_{2}, \ldots, x_{d}\right) \rightarrow\left(y_{1}, y_{2}, \ldots, x_{d}\right) \rightarrow \cdots \rightarrow\left(y_{1}, y_{2}, \ldots, y_{d}\right)
$$

Once again the transition probabilities are a constant $\wp=1 / 2 d$, the stationary distribution $\pi=1 /|\Omega|=2^{-d}$, and the paths have max length d. To count paths, suppose that coordinate i is being changed. Then the paths through this edge may have started at anything in coordinates 1 to $i-1$ (for 2^{i-1} choices), and may be going to anything in coordinates $i+1$ to d (for 2^{d-i} choices). In total 2^{d-1} paths may pass through any particular edge.

Therefore

$$
\bar{\rho} \leq \ell \rho \leq d \frac{1}{2^{d}(1 / 2 d)} 2^{d-1}=d^{2}
$$

and so

$$
1-\lambda_{2} \geq 1 / d^{2}
$$

The actual value is $1-\lambda_{2}=1 / d$, so our bound is not too great.
Example 9.4 (Metropolis). As our final example consider the Metropolis method discussed earlier to generate from a distribution π. Recall that a different Markov chain \mathcal{M}^{\prime} makes transitions, and then these are accepted with some probability, so that $\mathrm{P}(x, y)=\mathrm{P}^{\prime}(x, y) \min \left\{1, \frac{\pi(y)}{\pi(x)}\right\}$.
This is a natural problem for comparison, to find $1-\lambda_{2}$ in terms of the spectral gap $1-\lambda_{2}^{\prime}$ of the base chain \mathcal{M}^{\prime}. The easiest choice of paths is that if (a, b) is an edge in E^{\prime} then simply take the path $\gamma_{a b}=(a, b)$ in E to be exactly the same edge. Then

$$
\begin{aligned}
\bar{A} & =\max _{e=(a, b) \in E} \frac{\pi^{\prime}(a) \mathrm{P}^{\prime}(a, b)}{\pi(a) \mathrm{P}(a, b)}=\max _{e=(a, b) \in E} \frac{\pi^{\prime}(a) \mathrm{P}^{\prime}(a, b)}{\pi(a) \mathrm{P}^{\prime}(a, b) \min \{1, \pi(b) / \pi(a)\}} \\
& =\max _{e=(a, b) \in E} \frac{\pi^{\prime}(a)}{\min \{\pi(a), \pi(b)\}}=\left(\min _{a \in \Omega} \frac{\pi(a)}{1 /|\Omega|}\right)^{-1}
\end{aligned}
$$

just measures how much smaller the Metropolis distribution may be compared to the uniform distribution of \mathcal{M}^{\prime}. It follows that $\mathcal{E}(f, f) \geq \mathcal{E}^{\prime}(f, f) / \bar{A}$.

To bound the spectral gap, observe that

$$
\begin{aligned}
\operatorname{Var}_{\pi}(f) & =\frac{1}{2} \sum_{x, y \in \Omega}(f(x)-f(y))^{2} \pi(x) \pi(y) \\
& \leq\left(\max _{a \in \Omega} \frac{\pi(a)}{1 /|\Omega|}\right)^{2} \frac{1}{2} \sum_{x, y \in \Omega}(f(x)-f(y))^{2} \frac{1}{|\Omega|} \frac{1}{|\Omega|} \\
& =\left(\max _{a \in \Omega} \frac{\pi(a)}{1 /|\Omega|}\right)^{2} \operatorname{Var}_{\pi^{\prime}}(f)
\end{aligned}
$$

It follows that

$$
1-\lambda_{2}=\sup _{f \neq \text { constant }} \frac{\mathcal{E}(f, f)}{\operatorname{Var}_{\pi}(f)} \geq \frac{\min _{a \in \Omega} \frac{\pi(a)}{1 /|\Omega|}}{\left(\max _{a \in \Omega} \frac{\pi(a)}{1 /|\Omega|}\right)^{2}}\left(1-\lambda_{2}^{\prime}\right)
$$

If Metroplis changes the distribution by at most a factor of k then the Markov chain slows by at most a factor of k^{3}. Why does increasing $\pi(a)$ from uniform causes a much bigger penalty than decreasing $\pi(a)$?

Canonical paths is one of the most widely used methods for studying the mixing time of Markov chains. Numerous applications can be found in the literature. Week 7 of Eric Vigoda's notes covers Approximating the Permanent (one of the most important results in "rapid mixing"), while Sinclair's notes 13 to 17 cover various applications such as Monomer-Dimer systems.

References

[1] P. Diaconis and D. Stroock. Geometric bounds for eigenalues of markov chains. The Annals of Applied Probability, 1:36-61, 1991.
[2] A. Sinclair. Improved bounds for mixing rates of markov chains and multicommodity flow. Combinatorics, Probability and Computing, 1(4):351-370, 1992.

