
Lecture 9 - Canonical Paths
Friday, September 3

In the previous class we showed how to compare Dirichlet forms. The most important corollary of this was
shown by Diaconis and Stroock [1] and Sinclair [2].

Corollary 9.1 (Canonical Paths). Given a reversible Markov chain M, to every pair of states x 6= y ∈ Ω
associate a path from x to y along edges (“canonical paths”). Then

1− λ2 ≥ 1/ρ where ρ = max
(a,b)∈E

1
π(a)P(a, b)

∑

γxy3(a,b)

π(x)π(y) |γxy| .

Proof. Consider the Markov chain M′ with stationary distribution π′ = π and transitions P′(x, y) = π(y).
It was shown last class that 1−λ′2 = 1. To every edge (x, y) inM′ associate the canonical path given in the
problem. Then the comparison theorem applies and A = ρ.

This is correct for the walk on the uniform two-point space, as ρ = 1/2(1−γ) which implies 1−λ2 ≥ 2(1−γ),
the correct value.

As with the comparison case, the easiest way to find ρ is typically to use the bound

ρ ≤ ρ ` where ρ = max
(a,b)∈E

1
π(a)P(a, b)

∑

γxy3(a,b)

π(x)π(y)

where ` is again the length of the longest path. In most applications the stationary distribution is uniform π =
1/|Ω| and the transition probabilities are constant with P(a, b) = 0 or ℘. Then ρ = 1

|Ω|℘ max(a,b)∈E |{(x, y) ∈
Ω× Ω : γxy 3 (a, b)}| and it suffices to find which edge has the most paths through it.

Example 9.2 (Odd Cycle). Consider the simple random walk on a cycle Cn of odd length, as discussed
before.

Given a pair of states x, y ∈ [1 . . . n] a natural choice of path is to take the shortest route around the cycle.
The longest path is of length n−1

2 , the stationary distribution is uniform at π = 1/n, and the transitions are
all 0 or 1/2, so it suffices to know the number of paths through a single edge. To count the number of paths
through an edge e suppose the edge is e = (a − 1, a) and observe that the paths with an endpoint at a + i
must have begun somewhere from a+ i− n−1

2 to a− 1, i.e. there are a− 1− a− i+ n−1
2 + 1 = n−1

2 − i such
paths, for a total of

# paths =
(n−1)/2∑

i=0

n− 1
2
− i =

(n− 1)(n+ 1)
8

.

Then

ρ ≤ n− 1
2

1
n (1/2)

(n− 1)(n+ 1)
8

=
(n− 1)2(n+ 1)

8n
<
n2

8
and so

1− λ2 ≥ 1
ρ
≥ 8
n2

.

Recall from Lecture 6 that 1 − λ2 = 1 − cos(2π/n) ≈ 2π2

n2 . The canonical path bound was of the correct
order, and off by only a factor of π2

4 ≈ 2.5.

It is not hard to compute ρ directly for this problem. It is ρ = 1
n (1/2)

∑(n−1)/2
i=1 i2 = (n−1)(n+1)

12 < n2

12 . The

bound 1− λ2 ≥ 12
n2 is off by only a factor of π2

6 ≈ 1.6.
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Example 9.3 (Boolean cube). Consider again the lazy walk on the boolean cube 2d. This can be
considered as a walk on {0, 1}d with transitions given by choosing a coordinate uniformly at random and
flipping it with probability 1/2.

Canonical paths can be defined as follows. If ~x = (x1, x2, . . . , xd) and ~y = (y1, y2, . . . , yd) then match the
coordinates one at a time, that is follow the path

(x1, x2, . . . , xd)→ (y1, x2, . . . , xd)→ (y1, y2, . . . , xd)→ · · · → (y1, y2, . . . , yd)

Once again the transition probabilities are a constant ℘ = 1/2d, the stationary distribution π = 1/|Ω| = 2−d,
and the paths have max length d. To count paths, suppose that coordinate i is being changed. Then the
paths through this edge may have started at anything in coordinates 1 to i− 1 (for 2i−1 choices), and may
be going to anything in coordinates i+ 1 to d (for 2d−i choices). In total 2d−1 paths may pass through any
particular edge.

Therefore
ρ ≤ ` ρ ≤ d 1

2d (1/2d)
2d−1 = d2

and so
1− λ2 ≥ 1/d2 .

The actual value is 1− λ2 = 1/d, so our bound is not too great.

Example 9.4 (Metropolis). As our final example consider the Metropolis method discussed earlier to
generate from a distribution π. Recall that a different Markov chain M′ makes transitions, and then these
are accepted with some probability, so that P(x, y) = P′(x, y) min{1, π(y)

π(x)}.
This is a natural problem for comparison, to find 1−λ2 in terms of the spectral gap 1−λ′2 of the base chain
M′. The easiest choice of paths is that if (a, b) is an edge in E′ then simply take the path γab = (a, b) in E
to be exactly the same edge. Then

A = max
e=(a,b)∈E

π′(a)P′(a, b)
π(a)P(a, b)

= max
e=(a,b)∈E

π′(a)P′(a, b)
π(a)P′(a, b) min{1, π(b)/π(a)}

= max
e=(a,b)∈E

π′(a)
min{π(a), π(b)} =

(
min
a∈Ω

π(a)
1/|Ω|

)−1

just measures how much smaller the Metropolis distribution may be compared to the uniform distribution
of M′. It follows that E(f, f) ≥ E ′(f, f)/A.

To bound the spectral gap, observe that

V arπ(f) =
1
2

∑

x,y∈Ω

(f(x)− f(y))2 π(x)π(y)

≤
(

max
a∈Ω

π(a)
1/|Ω|

)2 1
2

∑

x,y∈Ω

(f(x)− f(y))2 1
|Ω|

1
|Ω|

=
(

max
a∈Ω

π(a)
1/|Ω|

)2

V arπ′(f)

It follows that

1− λ2 = sup
f 6=constant

E(f, f)
V arπ(f)

≥
mina∈Ω

π(a)
1/|Ω|(

maxa∈Ω
π(a)
1/|Ω|

)2 (1− λ′2)
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If Metroplis changes the distribution by at most a factor of k then the Markov chain slows by at most a
factor of k3. Why does increasing π(a) from uniform causes a much bigger penalty than decreasing π(a)?

Canonical paths is one of the most widely used methods for studying the mixing time of Markov chains.
Numerous applications can be found in the literature. Week 7 of Eric Vigoda’s notes covers Approximating
the Permanent (one of the most important results in “rapid mixing”), while Sinclair’s notes 13 to 17 cover
various applications such as Monomer-Dimer systems.
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