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ABSTRACT

We show how to bound the mixing time and log-Sobolev con-

stants of Markov chains by bounding the edge-isoperimetry

of their underlying graphs. To do this we use two recent

techniques, one involving Average Conductance and the other
log-Sobolev constants. We show a sort of strong conduc-

tance bound on a family of geometric Markov chains, give

improved bounds for the mixing time of a Markov chain on

balanced matroids, and in both cases find lower bounds on

the log-Sobolev constants of these chains.

1. INTRODUCTION

Given a Markov chain M such as a random walk on a
graph we are are interested in showing rapid mizing, that
the chain approaches the steady state distribution after a
polynomial number of steps. An early result in this area was
by Sinclair and Jerrum [16] who used the notion of conduc-
tance to show rapid mixing on several combinatorial Markov
chains.

Dyer, Frieze, and Kannan [6] adapted this technique to
give the first provably polynomial time algorithm to approx-
imate the volume of a convex body. Developments related
to the volume problem were sometimes applied back to the
original problem of rapid mixing on combinatorial Markov
chains. In one case Karzanov and Khachiyan [12] used geo-
metric properties of the underlying graphs through isoperi-
metric inequalities to show rapid mixing on a Markov chain
related to counting linear extensions.

In all these early techniques the key to bounding conduc-
tance was finding a lower bound on the cutset expansion,
the infinum info|s<|v /2 |Cut(S)|/|S| where Cut(S) is the
set of edges from S to S°. A related concept is the edge-
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isoperimetry, a bound on infoc|gj<zv||Cut(S)|/|S| when
z < 1/2. The extra information given by varying z allows
us to find lower bounds on the conductance function, which
measures how well one step redistributes probabilities con-
ditional on the set being a certain size. Significantly, this is
all that is needed to use two recent techniques for bounding
mixing time, Average Conductance [14] and isoperimetric
bounds on log-Sobolev constants [9].

In our first result we re-visit Karzanov and Khachiyan’s
work on geometric Markov chains and show a “strong ver-
sion” of Sinclair and Jerrum’s theorem, that the mixing time
7 = O(1/®?%) when ® is bounded geometrically. In par-
ticular this strengthens previous conductance based results
on rapid mixing for a Markov chain on linear extensions to
7 = O(n"), which even outperforms a path coupling / com-
parison technique [2] and is close to the correct bound [17]
of 7 = 0(n?logn).

In our second result we extend work of Feder and Mihail
[7] to bound the edge-isoperimetry of a random walk on bal-
anced matroids. In the case of the natural bases-exchange
walk, this strengthens their upper bound for the mixing time
from 7 = O(mn® logm) to 7 = O(m*/?n? logn), an im-
provement for all regular matroids with a constant number
of parallel elements (eg. graphic matroids with few multiple
edges). The most interesting point in this proof is that our
improved bound is found by lower bounding the log-Sobolev
constant of the Markov chain, making this one of the more
complicated problems solved with log-Sobolev constants.

These two results partially answer a question of [14] as
to how Average Conductance can be applied to combina-
torial problems. We have shown how to extend two meth-
ods of bounding conductance, geometry and induction, to
bound Average Conductance. The third and most common
method of bounding conductance involves canonical paths,
however when canonical paths are available they can be used
to bound the mixing time more directly through eigenval-
ues [15] and so conductance is generally not used in this
case. Moreover, eigenvalue bounds on the mixing time are
usually better than 1/®* while Average Conductance gives
1/ ®? at best, so it seems unlikely Average Conductance will
give useful results for canonical paths problems.

In Section 2 we introduce notation and theorems used
throughout this paper. In Section 3 we show how to use
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same on balanced matroids. Section 5 poses some problems
for future study and the Appendix contains proofs of some
theorems we use.



2. PRELIMINARIES

In this paper we consider finite state Markov chains M
with state space V and transition probabilities p;;. We as-
sume that our chains are aperiodic and connected and so
have a steady state distribution 7. Moreover all chains will
be assumed to be time reversible, that is if ¢;; = m;p;; is the
flow from 4 to j then ¢;; = g;; for every pair of states (i, 7).

For probability distributions o and 7 on V' the variation
distance is

lo = 7llzv = 5 3" lo(w) = 7(v)

veV

This is a measure of how far ¢ and 7 are from equality.
The mizing time 7(e) measures how many steps it takes a
Markov chain to come close to the uniform distribution.

= i : - <
7(€) riréa‘icmln{t |P/ — x| <€}

where P; is the probability distribution with mass 1 on %
and 0 elsewhere, and Pf is the distribution after t steps of
the Markov chain. By convention we will define the mizing
time 7 to be T(e™1).

A common technique for bounding the mixing time on
complicated Markov chains involves conductance. For dis-
joint sets A, B C V we define the flow from A to B by
Q(A,B) = ZieA,jGB mipij. The conductance function of M
is defined in terms of the flow,

Q(8,9)

wogI?(Hsl)gz w(S)

O(z) =

where 1o = min,ev 7y and mo < x < 1/2. Also, the conduc-
tance ® is defined by ® = &(1/2).

If a finite state Markov chain has a uniform (ie. constant)
stationary distribution and all transition probabilities are ei-
ther a constant p or 0 then bounding the conductance func-
tion is equivalent to bounding the edge-isoperimetry, as the
following reduction makes clear

. Q(S,S) . |Cut(S)|
PO = BT PoBBy Y
Likewise bounding the conductance is equivalent to bound-
ing cutset expansion.

The following two theorems can be used to bound the

mixing time 7

THEOREM 2.1  (SINCLAIR & JERRUM). The mizing time
7 of any Markov chain is bounded by

7 < 21+ log(1/m))

THEOREM 2.2  (AVERAGE CONDUCTANCE). (LovAsz &
KANNAN) The mizing time 7 of any Markov chain is bounded

by
2 gy 4
<K|14 —
T= ( /ﬂo x®(x)? + @)

where K is a constant independent of the Markov Chain.

Theorem 2.2 is essentially that given in [14], however we
have corrected a minor mistake in their theorem (the 4/®
term was omitted) and have adjusted the constants to take
into account the fact that our conductance function differs
from theirs by roughly a factor of 2.

Many proofs of rapid mixing use the spectral gap A or the
log-Sobolev constant p.

A= inf £(¢.¢) and

© Var(¢)#0 Var(g)

_ o £0.9)
P= B L)

where Var(¢) is the variance of ¢, £ is the Dirichlet form,
and L is the entropy

E(6,6) = 5 3_(6(y) — 6(2)*x(x) Plr,y)

Var(9) = 5 3(6(y) — 6(2)*n(y)m(x)

L(9) = |6()* log(|o()[*/|¢]l2)m(x)

Some examples of log-Sobolev constants can be found in [4].
In particular it is shown that

THEOREM 2.3. The mixing time T of any Markov chain
can be bounded by

T <

< %(2 + loglog(1/mo))

where p is the log-Sobolev constant of the chain.

Until now it was extremely difficult to lower bound the
log-Sobolev constants of complicated chains, but recent work
[9] makes it no harder than bounding the conductance func-
tion. We rewrite the definitions from [9] in a form which is
equivalent but where the relation to our current techniques
is clearer.

g = inf G T= inf _®@) (2)
mo<z<1/2 4 /log(1/x) mo<z<1/2 log(1/x)

THEOREM 2.4 (HOUDRE). Let M be a Markov chain
and let g1 and £ be as in (2). Then the log-Sobolev constant
p is bounded by

+
G @) > 20

VLF
>
(VA+20f) = 12

where we simplified the final inequality by using the fact
2\ > @2 > (¢] log 2)2.

Observe that Theorem’s 2.3 and 2.4 (i) improve pure con-
ductance bounds when g ~ ® and from our simplification
of part (ii) we see the second log-Sobolev bound will improve
on the spectral gap bound when X ~ ®2 and 0~ .

3. GEOMETRY AND EDGE-ISOPERIMETRY
ON LINEAR EXTENSIONS

The first case in which we use edge-isoperimetry to show
faster mixing are Markov chains whose underlying graphs
(G,V) have a natural geometric structure. The key to ex-
ploiting this geometric structure will be a type of isoperi-
metric inequality first used in [12], strengthened in [5] and
to be further strengthened in this paper.



3.1 Isoperimetry

The key to bounding the edge isoperimetry is an isoperi-
metric inequality relating the surface area of a cut to the
volume it encloses. First a few definitions.

DEFINITION 3.1. Let F be a real-valued function on a con-
ver set K. We say that F is log-concave if log F' is a con-
cave function on K. In particular concave functions are
log-concave.

DEFINITION 3.2. Given a norm || -|| define the dual norm
1" by - llzll” = max{az : ||al| = 1}

Previous uses of isoperimetry to bound conductance used
the following Theorem of [5].

THEOREM 3.1 (DYER & FRIEZE). Let K C R" be a
convex body and F a log-concave function on int K. Let
S C K, with u(S) < 3u(K), be such that 8S \ 0K is a
piecewise smooth surface o, with u(x) the Euclidean unit

normal too atx € o. If y/'(S) = [ F(x)||lu(z)||*dr and
= [ F(x)dz then
ZIC)) < fdzamK
p'(S) — 2

where the diameter diam K is measured with respect to || -||.

When F =1 and ||u(z)||* isn’t too big then the theorem
says roughly that when K is cut by a surface S then the
ratio of the Volume of S to the Surface Area of S is
bounded above by %diam K. For the problems we consider
the surface area will be related to |Cut(S)| and the volume
will be related to |S| so this theorem will give a method of
bounding @ by (1).

To bound ®(z) it will be necessary to bound |Cut(S)| con-
ditioned on the |S]| (as |S| < z|V|), i.e. we need to find an
edge-isoperimetric inequality. Lovész & Kannan [14] gave
a result that amounts to a one dimensional generalization
of Theorem 3.1 and used it to bound the conductance func-
tion of a random walk on convex sets. We require the n-
dimensional form of their theorem.

THEOREM 3.2. Suppose the conditions of Theorem 3.1 are
satisfied and moreover u(S) < xu(K) where x < 1/2. Then

ns) 1
w'(S) = 1+log(1l/x)

Proof This can be proven by a method similar to the
proof in [5] or by using the Localization Lemma of [13]. We
omit the proof as the details would distract us from our
main goal of applying geometry to bound the conductance
function.

The interested reader will find that the slightly weaker
u((?) < gm diam K can be proven by slightly mod-
ifying the proof of [5]. The modified proof will require
Lemma 3.3 in [14] and the initial “trivial” case is when
w(B) > 2 pu(K) which follows from Theorem 3.1. O

This is tight to within a constant factor, for as Example
3.3 will show, edge-isoperimetric inequalities on [k]™ found in
[3] show that any inequality of the form C/log(1/x) cannot
do better than e~ /log(1/z).

The connection between Theorem 3.2 and edge-isoperimetry
can be seen clearly by an example. This is done by associat-
ing vertices of graphs with simplexes such that two vertices

diam K

are adjacent exactly when their associated simplexes share
a face. The technique is similar to that developed in [5, 12]
to bound the conductance of a graph, our contribution is in
extending these inequalities to edge-isoperimetry.
Example 3.3 : Let G be the grid [k]”, the n-dimensional
cube of side length k, and write the vertices of G in Cartesian
product form so that

sun) tvs €[1,.. ., K]}
To each vertex v € GG associate the polytope
Pw)={z €R":v;—1<a; <wv; foralliell,...n]}

and denote the image of G by Q = |J,c¢ P(v) = [0,k]" C R™.

Properties such as adjacency and cut size in G carry over
well to Q. Cuts S of G with |S|/|G| < x map to cuts P(S5)
of Q with

G ={v=(v1,v2,...

volp, P(S) /vol 2 = |S|/|G| < z

Two vertices v',v? € G are adjacent if and only if P(v')

and P(v?) intersect at a face, and
|Cut(S)| = voln—1 (OP(S) Nint($2)) (3)
The right hand side of (3) is just p'(P(S)) when F = 1

(observe [jul|* = 1 for F' = 1), while pu(P(S)) = vol, P(S).
This suggests the use of Theorem 3.2 to bound |Cut(S)].

n(P(S)) vol, P(S) < diamoc§) (@)
w(P(S)) — wolp—1 (OP(S) Nint()) ~ 1+ log(1/x)
Algebraic manipulation of (3) and (4), along with diam.Q =
k and vol, P(S) = |S| give
|Cut(S)| 1

5 k‘(l +log(1/z)) when |S| < z|G]| (5)
This is within a factor e of the correct inequality [3].

The properties important for use of the isoperimetric in-
equality in the previous example are captured by the follow-
ing definition. The interested reader can make the definition
more precise but we simplify it for clarity.

DEFINITION 3.3. We say a graph (G,V) is geometrically
constructible if there is a 1-1 mapping

¢ : V — Simplexes in R"

such that adjacency is preserved, all stmplexes have the same
volume, the image of V is a convex body, and the l2-unit-
normal along the boundary of the polytopes is a constant.

These conditions can be weakened somewhat without sig-
nificantly affecting the results of this section. With this we
can generalize the result of Example 3.3.

THEOREM 3.4. Let (G, V) be a geometrically constructible
graph. Suppose the method of Example 3.3 with the isoperi-
metric inequality of Dyer & Frieze gives cutset expansion

N whens] < V12
Then the graph has edge-isoperimetric inequality
% > (1t log(1/2))  when |S] < x|V| < [V]/2
Proof The only difference in the two approaches is

the Theorem used at (4). Theorem 3.2 differs from the the-
orem of Dyer & Frieze by (1+1log(1/z))/2 and so the cutset
expansion and edge-isoperimetric inequalities differ by this
same amount. O



3.2 Rapid Mixing

We are now in a position to apply the theorems from the
preliminaries to obtain bound on the mixing time and log-
Sobolev constants of these geometric Markov chains. The
family of geometric Markov chains we will consider is :

DEFINITION 3.4. A Markov chain M is called geometri-
cally constructible if the underlying graph is geometrically
constructible, it has uniform stationary distribution, and all
transition probabilities are equal (ie. 0 or p for some con-
stant p).

As before, all three conditions can be weakened somewhat
without effecting the results significantly.
Example 3.5 : Consider the grid [k]" of Example 3.3.
Define a random walk on this graph with equal transition
probability 1/(4n) to any neighbor. This Markov chain is
geometrically constructible with p = 1/(4n), so by (1) and
(5) ®(z) > (1 + log(1/x))/(4nk). Applying the Average
Conductance Theorem with ® = ®(1/2) we get

V2 dy 4 2 2 2 2
< - — < =
T_K<14/7r0 xq;(l-)2+q>>—260Kkn O(kn)

This is not far from the correct bound of O(k*nlogn).

As before, we can extend this technique to general geo-
metric Markov chains. Note that from here on we will use
the notation ®4 to denote the lower bound on conductance
found by the approach of Examples 3.3, 3.5.

THEOREM 3.6. Let M be a geometrically constructible
Markov chain. Suppose the method of Examples 3.3, 3.5 with
the isoperimetric inequality of Theorem 3.1 shows ® > .
Then

o(z) > %%(1 Flog(l/z)); < 38K/®°
and
() p>®2/36  (if) p> VA By/24
Proof Let v be as in Theorem 3.4. Then (1) and

Theorem 3.4 give
|Cut(S)]

min —_—
p0<\S|§w|V| |S|

P01+ log(1/2) = 30,1 + log(1/2))

D(z)

\%

The bound on 7 follows by substituting this expression
and & > &, into the Average Conductance Theorem. The
second bound on p follows by using the lower bound on ®(x)
to bound ¢ and substituting this into Theorem 2.4. The
first bound on p comes from substituting A > ®2/2 into the
second bound (or with a weaker constant if Theorem 2.4 (i)
is used). O

Observe that Theorem 3.6 can do better than spectral
gap, whereas conductance alone in Theorem 2.1 cannot. To
see this notice that in Example 3.5 the mixing time was
found to be 7 = O(k*n?), on the other hand the spectral
gap is A = Q(1/k*n) so 7 = O(k* n” log k) which is a weaker
result.

Example 3.7 : One Markov chain where geometry has been
used to find upper bounds on the mixing time is a random
walk on Linear Extensions [10, 12]. Given a partially ordered

set (V, <), V = [n] the set of linear extensions of < is defined
by

Q={geSymV :g9(i) <g(j)=i<j, foralli,j eV}

ie. the set of permutations on V that preserve the partial
ordering.

Sample from  u.a.r. as follows. If X, is the current
state choose a transposition (i,i 4+ 1) uw.a.r., if X; o (¢,4 +
1) € Q then with probability 1/2 set X;+1 = Xt o (4,4 + 1),
otherwise X¢y+1 = X:. This Markov chain is time reversible
and symmetric so it has the uniform stationary distribution
and all edges (7, j) have identical weight 1/(n|Q]).

It was found in [10] that &4 = 1/(2n(n — 1)). Thus

T <152 K n’(n—1)* = O(n?)

and p>1/(144n*(n — 1)%) = Q(1/n")

This is a large improvement over the previous conductance
bound of 7 = O(n®logn) and even beats the path-coupling
and comparison bound [2] of 7 = O(n*log®n). Tt is also
quite close to the correct bound [17] of @(n®logn).

4. INDUCTIONAND EDGE-ISOPERIMETRY
ON BALANCED MATROIDS

A second means for bounding the cutset expansion is by
induction, in particular we will use an inductive argument
similar to [7] to bound the cutset expansion of balanced
matroids.

There are many equivalent definitions of matroids. Here
we follow a description given in [11]. A matroid M on
a ground set E(M) is entirely defined by its set of bases
B(M) C 28 and the following two conditions: 1) all bases
have the same size, namely the rank of M, 2) for every pair
of bases X,Y € B(M) and every element e € X, there ex-
ists an element f € Y s.t. (X U{f}) \ {e} € B(M). The
bases-exchange graph G(M) of M has as vertex set B(M)
and two bases are connected by an edge if they differ in ex-
actly one element (see condition 2). Two basic operations
on matroids are contraction and deletion. If e € E(M),
then the matroid M \ e obtained by deleting e has ground
set E(M \ e) = E(M) \ {e} and bases B(M \ e) = {X C
E(M\e)| X € B(M)}. The matroid M /e obtained by con-
tracting e has ground set E(M/e) = E(M) \ {e} and bases
B(M/e) = {X C E(M/e) | XU {e} € B(M)}. Any ma-
troid obtained from a series of contractions and deletions is
a minor of M.

If X is a basis uniformly chosen at random from B(M) and
e is an element of E(M), let by abuse of notation e denote
the event e € X, i.e. e is in the chosen basis. A matroid
M is negatively correlated if for all pairs of distinct elements
e,f € E(M) the inequality Prlef] <Prle]Pr[f] holds. A
matroid M is said to be balanced if itself and all its minors
are negatively correlated.

We define a Markov chain on the bases exchange graph as
follows. Suppose the current state is X € B(M), then choose
a basis element b € X and an edge e € E(M) uniformly at
random. If X' = (X \ bUe) € B(M) then move to X' with
probability 1/2; otherwise stay at X.

This Markov chain has been shown to mix rapidly by sev-
eral authors, the strongest bounds on the mixing time were
shown in [7]. We will apply Average Conductance and log-
Sobolev techniques to these problems to obtain new mixing
time bounds.



4.1 Edge-Isoperimetry

As in the geometric case, we first need an edge-
isoperimetric inequality for cuts in balanced matroids. Sim-
ilar to the proof of lemma 3.2 in [7], the proof of this in-
equality is done in an inductive fashion.

THEOREM 4.1  (MATROID EDGE-ISOPERIMETRY). Let
G(M) be the bases-exchange graph of any balanced matroid
M with bases B. For all subsets S C V(G(M)) such that
0 <|8| < [V(G(M))]/2

Cut(S) <\B|)
>log, | = | -
|S] NN

Proof We proceed by induction on the size of the
ground set of M. For the base-case, |M| = 1,2, the hypoth-
esis is trivially true. Induction step, |[M| > 2: Let S C B be
a collection of bases, with |S| < |B|/2, defining a cut in the
bases-exchange graph of M. Let Sc = SNB. and Sg = SNBe,
where «|B| and (1 — «)|B|, a € [0,1], are the sizes of Be
and Bz respectively, and define z,y by |Se| = z|B.| and
|Se| = y|Be|, z,y € [0,1]. The edges forming the cut are
of three kinds: (i) those whose endpoints are both within
Be, (ii) those whose endpoints are both within Be and (iii)
those which span B. and Be. Since, as mentioned above, B.
and Bg are isomorphic to B(M/e) and B(M \ e), they give
rise to minors of M and the induction hypothesis is applica-
ble. By induction hypothesis, the numbers of edges of kinds
(i) and (ii) are — min{z,1 — z}log,(min{z,1 — z})|B.| and
—min{y, 1—y} log, (min{y, 1—y})|Be| respectively. To lower
bound the number of edges of kind (iii), assume first that
x > y. By [7](lemma 3.1), there are at least x|Be| bases in
Bz adjacent to some bases in Se; of these, at least (x —y)|Be]
must lie outside |Sg|. Thus there are at least (x—y)|Be| edges
of type (iii). This argument can equally well be applied in
the opposite direction, starting at the set Be \ Se, yielding
a second lower bound of (x — y)|Be|. Thus the number of
edges of kind (iii) is at least (x — y) max {|Bc|, |Be|}. Since
the case x < y is entirely symmetric, we obtain, summing
the contributions from edges of kinds (i)-(iii):

|Cut(S)] > —min{z,1 —z}log,(min{z,1 — z})|B|
—min{y, 1 — y} log,(min{y, 1 — y})|Be|
+lz — y[ max {|Be], [Be[}-
To complete the proof, we must show that |Cut(S)| is always
at least —(za + y(1 — o)) log, (zar + y(1 — «))|B|, whenever

|S| < |BJ|/2. Note that this last condition may be expressed
as

(5~ D)Bel + (5~ v)IBel > 0. (6)

This inequality shows that only one of x or y can be greater
than 1/2. It remains to establish that

—min{z,1 — 2} log,(min{x, 1 — x})|B.|
—min{y, 1 — y} logy (min{y, 1 — y})|Be]
+lz — ylmax {[Be|, | Be|}
> —(za+y(l —a))log,(za+y(l—a))lBl.
As the cases 0 < o < 1/2 and 1/2 < a < 1 are entirely
symmetrical, we have to scrutinize only four of the eight
cases. But before, notice that in the degenerate case, a = 1

(or equally @ = 0), the induction hypothesis becomes im-
mediately applicable. Therefore we can restrict ourselves

to 1/2 < o < 1 and obtain the following four cases: 1.)
1/2>2>y>0,2)1/2>y>2>0,3) a>1/2, y<1/2
and 4.) y > 1/2, < 1/2. Each of these corresponds to one
of the four lemmas below:

LEMMA 4.1. For1/2<a<landl/2>z>y>0

filz,y,0) = —azlogyz — (1—a)ylog,y + (z — y)a
+(za+y(l - a))logy(za +y(1 — @)
0

\Y]

LEMMA 4.2. For1/2<a<landl/2>y>2>0

fo(z,y,0) = —awlogyx — (1 - a)ylog,y + (y — x)a
+(za+y(l - a))logy(za +y(1 — @)
0

Y

LEMMA 4.3. For 1/2 < a <l andxz > 1/2, y < 1/2
fs(@,y,0) = —a(l — z)logy(1 —z) — (1 —a)ylogy y
(& —y)a+ (za+y(1 — a))logy(za + y(1 — @)
>0

LEMMA 4.4. For 1/2 < a <1l andy > 1/2, © < 1/2
fal,9,0) = —azlogy @ — (1— a)(1 — y) loga(1 — 1)
+(y —z)a+ (ra+y(l —a))logy(ra+y(l - a))
>0

Proving these lemmas shows that the induction step is
valid and thus concludes the proof of Theorem 4.1. As the
proofs of the lemmas are rather technical, we will not give
them here and refer the interested reader to the appendix.

O
4.2 Rapid Mixing

As in the geometric case we now have all that is needed
to show rapid mixing.

THEOREM 4.2. The mizxing time of the bases-exchange
walk on any balanced matroid of rank n on a ground set
of size m is at most T < C'm>n? for some constant C inde-
pendent of the matroid.

Proof By Theorem 4.1  |Cut(S)|/|S| > log,(1/x)
The Markov chain has p = 1/(2mn), so by the Preliminaries

B(z) > 1 |Cut(S)| > log,(1/z)
2mn mo<n(S)<z || 2mn

(7)

Substituting (7) into the Average Conductance theorem

gives the result. O
This Theorem is stronger than [7] Theorem 5.1 (r =
O(n®*mlogm)) when nlogm = Q(m), eg. when m =

O(nlogn). In the case of graphic matroids this would be
the case when the average degree of vertices is O(logn).
However we can get a stronger result with log-Sobolev con-
stants.

THEOREM 4.3. The log-Sobolev constant and mixing time
of the bases-exchange walk on any balanced matroid of rank
n on a ground set of size m are bounded by

P Z m T S 24 mg/gnz(log n -+ lOg lOg m)



Proof By (7) we see ¢ = 1/[(2log2)mn]. It was
shown in [7] that A > 1/mn?. Thus

p > VAL /12 > 1/(24m* 2 n?)
and
7 < 12m*/?*n?(2+loglog(m™)) < 24m>/*n?(log n+log log m)

d
This is stronger than [7] Theorem 5.1 (7 = O(n®*mlogm))
when nlogm = Q(y/mlogn), eg. when m = O(n?). Ac-
cording to a result by Heller [8] this is true for simple regu-
lar matroids (i.e. matroids without loops and parallel el-
ements): m < n(n + 1), which is smaller than 2n® for
n > l,and implies that m = O(n?) if the size of all par-
allel classes is bounded by a constant. In particular this
includes all graphic matroids with few multiple edges.

5. CONCLUDING REMARKS

5.1 Observations

This paper bounded the edge-isoperimetry of two prob-
lems of combinatorial interest. A significant amount of work
has been done on studying the edge-isoperimetry of various
graphs, some information on this topic and a list of refer-
ences can be found in [1].

From the matroid example we found that Theorem 2.4
(ii) can do better than Average Conductance when we have
knowledge of the spectral gap. This isn’t the case for The-
orem 2.4 (i). From the definitions of g and ¢ we have
®(x) > g /log(1/x) and ®(x) > £ log(1/z). Substituting
these bounds into the Average Conductance Theorem and
integrating gives

1 —1
3z log m,

1 —1
T S C gjlﬁ log log To (8)

53z
[1

with the constant C' a constant independent of the Markov
chain. The second term is just the mixing time bound given
by Theorem 2.4 (i) and Theorem 2.3 so Average Conduc-
tance is always at least as good.

The quantities in (8) show g;” and ¢] are in a sense natural
analogs of conductance. The different bounds are best under
different circumstances. Both examples in this paper had
7 = Q(®,), in this case the third bound is the best. The
first bound is best for the random walk on the complete
graph K,, we don’t know of a situation when the second
bound is best.

However the Average Conductance Theorem says more
than this simple generalization. Consider the random walk
on the barbell given by two complete graphs K, connected
by a single edge, but with transition probability along the
central edge of €/n. Then ®(z) = Q(1) forz < 1/2, ®(1/2) =
O(e/n?) and Theorem 2.2 gives T = O(n?/¢) = O(1/®), the
correct bound. This shows that in special cases Average
Conductance can even hit the lower bound in 1/® < 7 <
(2/®%)(1 + log(1/m0)).

5.2 Problems

The two geometric examples show that the results in the
paper are very close to the correct bounds. We ask whether
our bounds in this and the matroid problem can be strength-
ened further.

Problem 1 : In both Examples 3.5 and 3.7 using geometry
with transition probability p to bound mixing gave results
O(plog(1/p)) from the correct bounds. We ask if Theorem
3.6 can be strengthened further, for example is it true that

O (plog(l/p)> and

p=0(®;/p
(I)?] (9 )

This may be true because we worked in a d-dimensional
space, so adding dimensions should make the mixing time
increase by O(dlog d), but 1/®? overstates this by increasing
the mixing time by O(d®) (Notice that p = Q(1/d) in our
examples so plog(1/p) would correct this overstatement).
Problem 2 : In Theorem 4.3 we have m®/? while the bound
in [7] has only m'. We ask if the fractional power can be
removed and the bounds improved to

p=x (man) and

Problem 2 has recently been solved by the second author
who used an inductive argument on the second eigenvalue
to show

A>1/mn and

7= O0(mn’ logm)

= O(mn® logm)

This is tight as the following example shows. Take the line
of length n and copy every edge to make it a double edge
(for a total of 2n edges). The graphic matroid on this graph
has rank n, m = 2n and the spectral gap of the Markov
chain can easily be shown to be A = ©(1/n?) = ©(1/mn)
(it’s just the n — dim cube with delay ©(n) between moves).

Observe that with this new spectral gap we can improve
Theorem 4.3 a bit to

p > 1/(24m®? n®/?)

This is slightly weaker than the bound on p in Problem 2,
since m > n. It is also unclear if either bound on p is tight
since for the cube matroid both give p = Q(1/n?), when the
correct bound is p = ©(1/n?). This raises another problem.
Problem 3 : In all examples where we know the log-
Sobolev constant p exactly we have found the fractional
powers left by v/ in Theorem 2.4(ii) to be unnecessary.
Is it true that

p =9 (%) and

This would put p at the upper bound of A\/log(1/mp) <
p < A/2 [4] and would give a tight bound on both the mixing
time and log-Sobolev constants of the cube matroid.

7= 0(mn logm)
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APPENDIX

Proof of lemma 4.1. First extend fi to the boundary
by continuity. Treating « like a constant, the hessian of

fl (m7y7 a) is
hl(f,y: a) =
(1—a)a
(ac<>¢+y(170¢))1n22 ) )

(1—a)a
(zaty(l—a))In2

(1—-c)

2
79:16:12 + (za+y(?7a))1n2
N el € =)
yln2 (zaty(l—a))In2

As c,?T:Qfl(az:,y,oz) and %;fl(x,y,a) are less than zero,
the hessian cannot be positive definite, i.e. fi has no
local minimum in the interior. Thus, we merely have to
check the boundaries: z =y, (y = 0A1/2 > = > 0) and

(x=1/2A1/2 > y > 0). But, since aa—;fl(:r,% a) <0 and
also %ﬁ(w,y, a) < 0, the claim holds if fi(z,y,a) > 0
for (x = 1/2,y = 0) and x = y. It is easy to check that
f1(1/2,0,) > 0 since —1 < log,a < 0 and fi(z,y,) =0
for z = y. O

Proof of lemma 4.2. Similarly to the first case, extend
f2 to the boundary by continuity first and then form the
hessian, which turns out to be the same as for fi. Since
the hessian of f2(z,y,«) is the same as in the first case,
the same arguments apply and it suffices to look at certain
points of the boundary. This time these are: * = y and
(x = 0,y = 1/2). For x = y the value of f» equals zero,
again. For z = 0,y = 1/2 the function f2(z,y, &) turns into
a function in « only, which we will call g(«). The first deriva-
tive of g shows that the only local extremum of g lies outside
the allowed range for a: 22 = 2 — ol o(In(1 —a) + 1) =
0o a=1-—er?"1 < % Checking the boundaries of g,
a =1/2 and a — 1, reveals that the claim holds. O

For the remaining two cases recollect that inequality (6)
on page ensured that only one of z or y is greater than
1/2.

Proof of lemma 4.3. Extend f3 to the boundary by conti-
nuity. As |S| < |B|/2, the valid range for z and y is given
by za + y(1 — a) < 1/2, which in turn yields z < 1/(2a).
To start with, we again form the hessian:

ha(z,y,a) =

(1—a)a
(zaty(l—a))In2
a-w?

(l—a)a 11— +
(zaty(l—a))In2 yln2 (za+y(l—a))In2

2
( _(1—;¥)ln2 + (xa+y(?—a))1112

Noticing that aa—;fg(x,y,a) < 0 and %fg(x,y,a) =
e Restay Uy < 0, since 2 > 1and 1/2 < a < 1,
the hessian hs(x,y, ) cannot be positive definite. So, the
minima of f3 can only be found on points of the boundary:
(y=0,z=1/2) and za+y(l —a) =1/2 (& y = 12:2;5‘).
Since 1/2 < a < 1, for y = 0,z = 1/2, it is easy to verify
that f3(1/2,0,a) > 0. The case y = 12__22:”5‘ needs more
consideration. Still treating « like a constant, f3 becomes a

function in z, henceforth called g(z) = —a(1 — z) logy(1 —

z) — (1 — o) (522 log,y (5°222) + Zx2-L The second
. . d? « o? s
derivative of g(z), dféx) = —@-ms (1_221a)11127 is

less than zero for a > 1/2 A x < 1/(2a). Checking the
boundaries = 1/2 and z = 1/(2«) shows that g(1) = 0
and g(5) = —a(l — 5-)logy(1 — 5=) > 0, concluding the
proof of lemma 4.3. O

Proof of lemma 4.4. Again, extend fi1 to the boundary
by continuity. Due to inequality (6) on page , only one of
xz or y can be greater 1/2. The legal range for z and y
is again za + y(1 — «) < 1/2, which yields the constraint
y <1/(2(1 — a)). Notice that 1/(2(1 —«a)) > 1 for o > 1/2
so that in fact, y is upper bounded by 1. Thus for o >
1/2 the boundary is a trapezoid. Looking at the hessian of

f4($7y7 Oé),
ha(z,y, o) =



(1—a)a I e + (1—a)?
(za+y(l—a))In2 (1—y)In2 (ra+y(l—a))ln2

__« + o? (1—a)a
( z1n2 (za+y(l—a))In2 (za+y(l—a))ln2 )

. 2 2
discloses that 25 fi(z,y,0) < 0 and %?ﬂﬂ;(a:,y,a) =
(A=)[A=2y)(A=a)=za]

(I-y)(zaty(l—a))n2 = = o ’
not positive definite, i.e. fs has no local minima in the
interior. The minima must therefore be on the following
points of the boundary (trapezoid): (z = 0,y = 1/2),
(x = 0,y = 1) and za + y(1 —a) = 1/2 (& z =
1=261=2)) * Checking that f1(0,1/2,a) and f1(0,1,a) are
greater than 0 is straightforward. Again, x = %{jfu)
needs more effort. As before, regard f4s now as a func-

Consequently, the hessian is

tion g(y) = —a(=245=)log,(+240=2) — (1 — a)(1 —

y)logs(1—y)+y—1in y only. Forming the second derivative,

d® g(y) _ _ 2(1—a)? __l-a that h
2~  (-2y(i—a))In2  (i—y)m2> WesSeetha 9(y) has no

local minima for 1/2 < y < 1. The strict inequality y < 1

2
is necessary because d dgéy) is not defined for y = 1 and

a = 1/2. For the boundaries y = 1/2 and y = 1 we obtain

g(%) = 0 and by continuity ¢g(1) = —a2‘;;1 log, 23;1 > 0.0




