Conductance and canonical paths for directed non-lazy walks

Ravi Montenegro

University of Massachusetts at Lowell

Random Structures & Algorithms - June 2011

向下 イヨト イヨ

Mixing Time of Markov Chains

- Finite Markov Chains
- Mixing Times
- Spectral Gap and Canonical Paths

Finite Markov Chains Mixing Times Spectral Gap and Canonical Paths

Outline

1 Mixing Time of Markov Chains

- Finite Markov Chains
- Mixing Times
- Spectral Gap and Canonical Paths

Finite Markov Chains Mixing Times Spectral Gap and Canonical Paths

What is a Markov Chain?

Finite Markov Chain

A random walk X_0 , X_1 , X_2 , ... on a graph which forgets its history.

$$P(X_{n+1} = y | X_n, X_{n-1}, ..., X_0) = P(X_{n+1} = y | X_n)$$

Finite Markov Chains Mixing Times Spectral Gap and Canonical Paths

Lazy walk on a cycle

Montenegro Conductance and canonical paths for directed non-lazy walks

<回> < 注)、< 注)、< 注)、<

Massachúsetts Lowell

Markov chain terminology

- State space V.
- Transition matrix P.
- Distribution $p^{(t)} = p^{(0)}P^t$
- Stationary distribution: $\pi P = \pi$.

Theorem

Finite, irreducible, aperiodic $\Rightarrow p^{(t)} \xrightarrow{t \to \infty} \pi$.

Markov chain terminology

- State space V.
- Transition matrix P.
- Distribution $p^{(t)} = p^{(0)}P^t$
- Stationary distribution: $\pi P = \pi$.

Theorem

Finite, irreducible, aperiodic $\Rightarrow p^{(t)} \xrightarrow{t \to \infty} \pi$.

Applications of Markov chains

Method

Construct ergodic Markov chain which converges to distribution π . Take some *T*-step distribution to be roughly stationary for the

purposes of sampling from π .

- *Statistics:* statistical tests based on properties of random elements.
- *Statistical physics:* calculating expectations of random variables.
- Computer science / combinatorial enumeration: birthday attacks, approximate counting, volume estimation, integration, calculating permanent, etc..

Applications of Markov chains

Method

Construct ergodic Markov chain which converges to distribution π .

Take some *T*-step distribution to be roughly stationary for the purposes of sampling from π .

- *Statistics:* statistical tests based on properties of random elements.
- *Statistical physics:* calculating expectations of random variables.
- Computer science / combinatorial enumeration: birthday attacks, approximate counting, volume estimation, integration, calculating permanent, etc..

イロト イヨト イヨト イヨト

Example

Pollard Rho

Walk on $Z_n = \mathbb{Z}/n\mathbb{Z}$ with $i \rightarrow i+1$ $i \rightarrow i+k$ (fixed constant k) $i \rightarrow 2i$

- Used for breaking Discrete Logarithm based codes.
- $\pi = U = uniform$ if n is odd
- but not if *n* and *k* even

Example

Pollard Rho

Walk on $Z_n = \mathbb{Z}/n\mathbb{Z}$ with $i \rightarrow i+1$ $i \rightarrow i+k$ (fixed constant k) $i \rightarrow 2i$

- Used for breaking Discrete Logarithm based codes.
- $\pi = U = uniform$ if *n* is odd
- but not if *n* and *k* even

Mixing Time

Mixing Time

The mixing time $\tau(\epsilon)$ is the number of steps T required so that distance is less than ϵ .

Mixing time depends on choice of distance metric. Relative density $f_t(v) = \frac{p^{(t)}(v)}{\pi(v)}$

- Variation Distance: $\|\mathbf{p}^{(t)} - \pi\|_{TV} = \frac{1}{2} \sum_{v \in V} |\mathbf{p}^{(t)}(v) - \pi(v)| = \frac{1}{2} \|f_t - 1\|_{1,\pi}$
- Chi-square distance: $\|f_t 1\|_{2,\pi}^2 = \sum_{v \in V} \pi(v) \left(\frac{\mathsf{p}^{(t)}(v)}{\pi(v)} 1 \right)$
- Relative Pointwise distance: $\max_{v} |f_t(v) 1| = \|f_t 1\|_{\infty, \tau}$

Mixing Time

Mixing Time

The mixing time $\tau(\epsilon)$ is the number of steps T required so that distance is less than ϵ .

Mixing time depends on choice of distance metric. Relative density $f_t(v) = \frac{p^{(t)}(v)}{\pi(v)}$

• Variation Distance:
$$\|\mathbf{p}^{(t)} - \pi\|_{TV} = \frac{1}{2} \sum_{v \in V} |\mathbf{p}^{(t)}(v) - \pi(v)| = \frac{1}{2} \|f_t - 1\|_{1,\pi}$$

• Chi-square distance:
$$\|f_t - 1\|_{2,\pi}^2 = \sum_{v \in V} \pi(v) \left(\frac{p^{(t)}(v)}{\pi(v)} - 1\right)^2$$

• Relative Pointwise distance: $\max_{v} |f_t(v) - 1| = \|f_t - 1\|_{\infty,\pi_{was}}$

Finite Markov Chains Mixing Times Spectral Gap and Canonical Paths

Methods for Bounding Mixing Times

Total Variation

Direct Computation, Coupling, Strong Stationary Time.

Chi-Square

Direct Computation, Spectral Gap, Canonical Paths, Comparison, Fourier Analysis.

Finite Markov Chains Mixing Times Spectral Gap and Canonical Paths

Methods for Bounding Mixing Times

Total Variation

Direct Computation, Coupling, Strong Stationary Time.

Chi-Square

Direct Computation, Spectral Gap, Canonical Paths, Comparison, Fourier Analysis.

Cayley Graph

Finite group G.
Generating set S.

$$\forall g \in G \exists s_1, s_2, \dots \vdots s_1 s_2 \dots s_n = g$$
 (inverses not inS)
Random Walk: Given prob distription $g : S \rightarrow S[g_1]$ take
 $P[g_1h] = P(g_1^{-1}h)$
i.e. choose random generator sets and transition
 $g \rightarrow g \leq S$

Eulerian Graphs $\frac{1}{\sum_{x \in Y}} \frac{1}{\sum_{x \in$ Facto Max-deg walk mixes in O(ndlug =) @ n= |V| If lazy (P(x,x) > 1) d=max deg(x) Question: What if non-lazy?

Non-lazy and non-reversible
Carley: ides (not lazy) & O (
$$\Delta^2$$
 log $\frac{161}{\Delta E}$)
ides: Take A along
odd length gath of P=>P*=>P==>P*=>>>P
P* = reversal = walk backwards on edges.
Eulerian: Self bop @each viertex: O(N2 log e)
Non looping: Same if connected by
odd length gaths of P=>P*=>P==>P=>P*=>>>>P

Method: Extend canonical paths to non-reversible

Conductance A Kny of Knyz AC Bottleneck @ A , re. hard for walk to go from A to A? Definition: If $Q(A, B) := \sum_{\substack{\gamma \in A \\ \gamma \in B}} \pi(x) P(x, \gamma)$ then $\overline{\Psi}(A) = \frac{Q(A, A^{c})}{\pi(A)} = \frac{P_{V}(X, \epsilon A^{c})}{F(X, \epsilon A^{c})} \left(x \cdot \epsilon A^{c} \cdot x \cdot x \cdot \epsilon A^{c} \cdot x \cdot x \cdot \epsilon A^{c} \cdot x \cdot \epsilon$ Theorem [JS, LS]: Mixing fime $O\left(\frac{1}{\overline{\Psi}^2}\log \pi_0 e\right)$ if $\overline{\Psi} = \min_{\pi} \Phi(A)$

Conductance Profile $\frac{1}{\overline{\Psi}(S_1)} + \frac{1}{\overline{\Psi}(S_1)} + \frac{1}{\overline{\Psi}(S_2)} + \frac{1}{\overline{\Psi}(S_2)} \leq \frac{1}{\overline{\Psi}(S_2)} \cdot \frac{\overline{\pi}(S_1) - \overline{\pi}(S_2)}{\overline{\Psi}(S_2)} + \frac{1}{\overline{\Psi}(S_2)} \leq \frac{1}{\overline{\Psi}(S_2)} \cdot \frac{\overline{\pi}(S_1) - \overline{\pi}(S_2)}{\overline{\Psi}(S_2)} + \frac{1}{\overline{\Psi}(S_2)} \leq \frac{1}{\overline{\Psi}(S_2)} \cdot \frac{\overline{\pi}(S_1) - \overline{\pi}(S_2)}{\overline{\Psi}(S_2)} + \frac{1}{\overline{\Psi}(S_2)} \cdot \frac{1}{\overline{\Psi}(S_2)} = \frac{1}{\overline{\Psi}(S_2)} \cdot \frac{1}$ $= \frac{1}{\pi(S_0) \mp (S_0)^2} (\pi(S_1) - \pi(S_0)) + \cdots$ Conductance Profile: $\overline{\Psi}(r) = \min_{\overline{H}(A)} \overline{\Phi}(A)$ Let $\chi_i = \pi(S_i)$ $\int_{X}^{X_1} \frac{1}{X \overline{\Psi}(X)^2} dX + \int_{X_1}^{X_2} \frac{1}{X \overline{\Psi}(X)^2} dX + ooo$ [LK/MP/GMT]: Mixing in $\int_{-\infty}^{\infty} \frac{dx}{x \, \overline{t}(x)^2}$

not use TI (250) and vertex expansion? Why Knyn at 5 n more C Expected growth IAI=n -> nth? $|A| = n \longrightarrow n + l$ $\frac{Mixing Time}{(C, C^{c}) = \pi(C)} \xrightarrow{2} \longrightarrow \overline{\Phi}_{1/n+1}(C) = \frac{2}{n+1}$ \Rightarrow mixing $\int \frac{1}{\sqrt{(n+1)}} dx = (n+1)\log 3n$

Canonícal Paths For each X, YEV construct path Txy from Xtoy 7. If XEA, YEAC -> Txy includes edge from A=>AC $\begin{array}{l} P_{e} = \max & \frac{1}{\pi(a)P(a,b)} \sum_{x,y=(a,b)} \pi(x) \pi(y) \\ e = (a,b) \in E \end{array}$ let Then $\sum_{x \in A} \pi(x)\pi(y) = \pi(A)\pi(A^{c}) \quad f \leq e \cdot \pi(A)P(a,b) \text{ per edge}$ $x \in A \quad \pi(A)\pi(A^{c}) \quad f \leq e \cdot \pi(A)P(a,b) \text{ per edge}$ $\Rightarrow Q(AAF) \ge \pi(a)P(ab) \ge \pi(A)\pi(AF)$ ~IEAC

 $Q(A,F) \ge \pi(a)P(a,b) \ge \frac{\pi(A)\pi(AF)}{Pe} \longrightarrow \frac{\Phi > 1/Fe}{Mix in Pe^{log}\pi_0}$ DS, Sin Mix in Pellog to Finax path length New: Vertex congrestion $P_{v} = \max_{v \in V} \frac{1}{\pi(v)} \sum_{\substack{\sigma \neq v \neq V}} \pi(x) \pi(y) \left(\leq P_{e} \right)$ Epr/pe ≥ 1/pe (versus \$ ≥ 1/pe) \implies mix in $\int \frac{P_{i}/P_{e}}{x ('/P_{e})^{2}} dx = \int \frac{P_{e}}{P_{e}} \log \frac{1}{T_{o}}$

Holding probability:
$$x = \min_{v \in V} P(v, v) < \frac{1}{2}$$

Example: K_n, $a = \min_{v \in V} P(v, v) < B$

 $\frac{\sqrt{0}}{100} = \frac{1}{100} \times -\frac{1}{100} = \frac{1}{100} \times -\frac{1}{100} = \frac{1}{100} \times -\frac{1}{100} \times -\frac{1$

How much escapes
$$\pm \text{space}$$
?
Modified flows $\Psi(A) = \min_{\pi(B)=\pi(A)} Q(A, B^{c})$
Modified conductance:
 $\varphi(A) = \frac{\Psi(A)}{\pi(A)}$
Same intuition when non-lazy
=) mix in $\int_{x \neq W^{c} dx}$

Threshold: $Y_{t}(A) = \min_{\pi(B)=\pi(A^{c})} Q_{t}(A,B^{c}) \notin \phi_{t}$ $\implies \min_{\pi(B)=\pi(A^{c})} \prod_{\chi \in \Phi_{t}(X)^{2}} dX$ $\implies J_{\xi} t \leq \chi + hen \gamma_{t}(A) = O_{t}(A,A^{c}) \notin ges \int_{\chi \in \Phi_{t}(X)^{2}} dx$

Canonical Poths: Non-Lazy Recall <u>Epripe</u> > 1/pe. If for in then mix in feeling to If he withen the > d = the pripe of R. - mix fuiled

Mix in la max {pu les by the

Eulerian max-degree (self-loops)
degin(x) = degout(x) everywhere

$$\Rightarrow \pi(x) \propto deg(x)$$

n vertices, max degree d.
 $a \neq b$
 $a \Rightarrow b$

$$\frac{(ayley Graph (ides))}{(ides)}$$

$$G = \langle S \rangle, \text{ inverses not in S} \\ P(g,h) = \mathcal{P}(g^{-1}h)$$

$$If \forall y \in G \text{ then } \mathcal{T}_{id} \times y \text{ induces path } X \rightarrow y$$

$$=) \{v \text{ same for every verdex} \\ R_{v} = \max_{v \in V} \frac{1}{\pi(v)} \underset{\partial x \neq v}{\Sigma} \frac{\pi(x) \pi(y)}{\pi(v)} \leq \frac{1}{1/164} \cdot \frac{1}{161} (161^{2}A \cdot \frac{1}{164} \cdot \frac{1}{164})^{2}A$$

$$Pe = \max_{e=(a,b) \in E} \frac{1}{\pi(a)P(a,b)} \underset{\partial x \neq ab}{\Sigma} \frac{\pi(x) \pi(y)}{\pi(y)} \leq \frac{P_{v}}{\min P(s)}$$

$$A \geq \min P(s)$$

$$= \min P(s)$$

$$\frac{\text{Canonical Paths}(d\sim 0)}{P} = \min_{\pi(B)=\pi(AS)} Q_{+}(A,B^{c}) \ge Q_{+}(A,V) - t_{\pi(A)}$$

$$\text{Threshold}: \Psi_{+}(A) = \min_{\pi(B)=\pi(AS)} Q_{+}(A,B^{c}) \ge Q_{+}(A,V) - t_{\pi(A)}$$

$$\text{Lensing: } \Psi^{T^{*}}(A) \ge P^{*}_{0} \quad \text{where } P^{*}_{0} = \min P^{*}_{(X,Y)} = \min \pi_{(Y)}P(Y_{V}) \int_{\pi(X)} \int_{\pi(X)} P(Y_{V}) \int_{\pi(X)} \int_{\pi(X)} \int_{\pi(X)} P(Y_{V}) \int_{$$

