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Mixing Time of Markov Chains

What is a Markov Chain?

Finite Markov Chain
A random walk Xp, Xi, Xa, ... on a graph which forgets its history.
P(XnJrl = )/|Xn7 anla sy XO) = P(XnJrl = _V|Xn)
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Lazy walk on a cycle
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Finite Markov Chains
Mixing Times

Mixing Time of Markov Chains Spectral Gap and Canonical Paths

Markov chain terminology

State space V.
Transition matrix P.
Distribution p(t) = p(0)pt

Stationary distribution: 7P = 7.
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Markov chain terminology

State space V.
Transition matrix P.
Distribution p(t) = p(0)pt

Stationary distribution: 7P = 7.

Finite, irreducible, aperiodic = p(t) 2% 7.
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Applications of Markov chains

Construct ergodic Markov chain which converges to distribution 7.

Take some T-step distribution to be roughly stationary for the
purposes of sampling from 7.
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Applications of Markov chains

Mixing Time of Markov Chains

Construct ergodic Markov chain which converges to distribution 7.

Take some T-step distribution to be roughly stationary for the
purposes of sampling from 7.

@ Statistics: statistical tests based on properties of random
elements.

@ Statistical physics: calculating expectations of random
variables.

e Computer science / combinatorial enumeration:
birthday attacks, approximate counting, volume estimation,
integration, calculating permanent, etc.. Wkﬁmg‘y”f
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Example

Pollard Rho
Walk on Z,, = Z/nZ with

i— i+1
i — i+ k (fixed constant k)
i = 2

@ Used for breaking Discrete Logarithm based codes.
e m = U = uniform if n is odd

@ but not if n and k even
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Example

Pollard Rho

Walk on Z,, = Z/nZ with

i— i+1
i — i+ k (fixed constant k)
i = 2

@ Used for breaking Discrete Logarithm based codes.
e m = U = uniform if n is odd

@ but not if n and k even
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Mixing Time

Mixing Time
The mixing time 7(¢) is the number of steps T required so that
distance is less than e.
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Mixing Time

Mixing Time

The mixing time 7(¢) is the number of steps T required so that
distance is less than e.

Mixing time depends on choice of distance metric.

Relative density f;(v) = p:z(v‘)/)

@ Variation Distance:

1 1
t _ t —
109 —llry = 5 3 pO(v) — 7(v)] = 5 I

vev

2
(1)
e Chi-square distance: ||f; — 1||§7T = E m(v) (p ((‘)/) -1
: (v
veVv

@ Relative Pointwise distance: max|fy(v) — 1| = ||y — 1|00 !Akﬁ"ﬂfﬂ.‘&é‘&
v
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Mixing Time of Markov Chains Spectral Gap and Canonical Paths

Methods for Bounding Mixing Times

Total Variation

Direct Computation, Coupling, Strong Stationary Time.
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Finite Markov Chains
Mixing Times

Mixing Time of Markov Chains Spectral Gap and Canonical Paths

Methods for Bounding Mixing Times

Total Variation
Direct Computation, Coupling, Strong Stationary Time.

Direct Computation, Spectral Gap, Canonical Paths, Comparison,
Fourier Analysis.
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