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What is a Markov Chain?

Finite Markov Chain

A random walk X0, X1, X2, . . . on a graph which forgets its history.

P(Xn+1 = y |Xn, Xn−1, . . . , X0) = P(Xn+1 = y |Xn)
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Lazy walk on a cycle
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Markov chain terminology

State space V .

Transition matrix P.

Distribution p(t) = p(0)Pt

Stationary distribution: π P = π.

Theorem

Finite, irreducible, aperiodic ⇒ p(t) t→∞−−−→ π.
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Applications of Markov chains

Method

Construct ergodic Markov chain which converges to distribution π.

Take some T -step distribution to be roughly stationary for the
purposes of sampling from π.

Statistics: statistical tests based on properties of random
elements.

Statistical physics: calculating expectations of random
variables.

Computer science / combinatorial enumeration:
birthday attacks, approximate counting, volume estimation,
integration, calculating permanent, etc..
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Example

Pollard Rho

Walk on Zn = Z/nZ with

i → i + 1

i → i + k (fixed constant k)

i → 2i

Used for breaking Discrete Logarithm based codes.

π = U = uniform if n is odd

but not if n and k even

Question

How long until random walk draws good samples?
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Mixing Time

Mixing Time

The mixing time τ(ε) is the number of steps T required so that
distance is less than ε.

Mixing time depends on choice of distance metric.

Relative density ft(v) = p(t)(v)
π(v)

Variation Distance:

‖p(t) − π‖TV =
1

2

∑
v∈V
|p(t)(v)− π(v)| =

1

2
‖ft − 1‖1,π

Chi-square distance: ‖ft − 1‖22,π =
∑
v∈V

π(v)

(
p(t)(v)

π(v)
− 1

)2

Relative Pointwise distance: max
v
|ft(v)− 1| = ‖ft − 1‖∞,π.
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Methods for Bounding Mixing Times

Total Variation

Direct Computation, Coupling, Strong Stationary Time.

Chi-Square

Direct Computation, Spectral Gap, Canonical Paths, Comparison,
Fourier Analysis.
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