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Abstract

The notion of conductance introduced by Jerrum and Sinclair [JS88] has
been widely used to prove rapid mixing of Markov Chains. Here we introduce
a bound that extends this in two directions. First, instead of measuring the
conductance of the worst subset of states, we bound the mixing time by a
formula that can be thought of as a weighted average of the Jerrum-Sinclair
bound (where the average is taken over subsets of states with different sizes).
Furthermore, instead of just the conductance, which in graph theory terms
measures edge expansion, we also take into account node expansion. Our bound
is related to the logarithmic Sobolev inequalities, but it appears to be more
flexible and easier to compute.

In the case of random walks in convex bodies, we show that this new bound
is better than the known bounds for the worst case. This saves a factor of O(n)
in the mixing time bound, which is incurred in all proofs as a “penalty” for a
“bad start”. We show that in a convex body in IRn, with diameter D, random
walk with steps in a ball with radius δ mixes in O∗(nD2/δ2) time (if idle steps
at the boundary are not counted). This gives an O∗(n3) sampling algorithm
after appropriate preprocessing, improving the previous bound of O∗(n4).

The application of the general conductance bound in the geometric setting
depends on an improved isoperimetric inequality for convex bodies.

1 Introduction

One of the basic algorithmic problems is sampling: choosing a random element of a
given set, from a given distribution π. Sampling algorithms are applied in statistics,
simulation, approximate combinatorial enumeration, volume computation, integra-
tion, optimization, and many other areas.

Perhaps the most important method in sampling algorithms is the use of rapidly
mixing Markov chains. The general idea is to construct an ergodic Markov chain
whose state space V is the set we want to sample from, whose stationary (steady
state) distribution is the given distribution π, and whose transitions can be easily
simulated. One then has to show that the chain approaches the steady state after a
reasonably small number of steps (typically, we want polynomial in the “input size”
of the problem). Of these, the last part, which amounts to estimating the “mixing
time”, is usually the hardest.

Let us define the mixing time. Roughly speaking, this is the smallest T such
that the distribution σT of the state after T steps will be close to stationary. There
is a small technical difficulty: it may be that the chain is periodic (an example is
the random walk on a bipartite graph), in which case the distribution of σT does
not even tend to the stationary. For the purposes of sampling, this periodicity
can be eliminated quite easily by choosing the number of steps T at random from
some simple distribution: Poisson distribution (continuous time walk), binomial
distribution (lazy walk) etc. For the purposes of this paper, we choose T uniformly
from the set {0, 1, . . . , t− 1} for a given t > 0. (This is not the best in practice, but
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it is best suited for our analysis.) Stopping after a random number T of steps, we
get a state from the distribution

ρt =
1
t
(σ0 + · · ·+ σt−1) (1)

The other issue to clarify is what we mean by “close”. For our purposes, it will
be sufficient to require that the total variation distance d(σT , π) < 1/4 (in other
words, |σT (A)− π(A)| < 1/4 for every set A ⊆ V ). We denote by T the smallest t
for which this is true for every starting node. General results [AD93] imply that in
kT steps, the total variation distance can be reduced to 2−k.

(Our results would remain valid in the “stopping rule” framework for mixing
time (see [ALW97, LW95]), and in fact some of the formulas would turn out simpler;
but we don’t want to go into the measure theoretic technicalities needed in that
framework.)

The most common tool used in the proof of rapid mixing is the notion of con-
ductance proposed by Sinclair and Jerrum [JS88] which they describe in the setting
of finite-state chains. We recall their notion in that setting now. For a set S of
states, we define the ergodic flow from S as Q(S) =

∑
i∈S

∑
j /∈S πipij ; this is the

fraction of steps of a very long random walk which move from S to its complement.
The conductance of a set S of states is defined by

Φ(S) =
Q(S)

π(S)(1− π(S))

(the denominator is the fraction of steps of a very long sequence of independent
samples from π which move from S to its complement). The conductance Φ of the
chain is the minimum conductance of nonempty proper subsets of V .

We denote by π0 the minimum stationary probability of any state. In a typical
discrete sampling problem, π0 is exponentially small.

The conductance is related to the mixing time through the following fundamental
inequality:

Theorem 1.1 (Jerrum and Sinclair)

1
Φ

. T . ln(1/π0)
1
Φ2

(Here a . b means that a ≤ cb for some absolute constant c > 0.) This bound
has been used very successfully both in combinatorial chains (e.g. to sample from
perfect matchings) as well as for random walks in convex bodies. Typically, the
factor of ln(1/π0) is polynomial in the input size, and then Theorem 1.1 says that
the polynomiality of the mixing time T is equivalent to the polynomiality of 1/Φ.

However, if we are interested in a finer analysis of the mixing time, the factor
ln(1/π0) is quite substantial. This factor, sometimes called the “start penalty”,
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accounts for getting stuck in a small set close to the starting state. One way of
saving this factor is not to start at a fixed point, but at a random point from a
distribution not concentrated on or near a single point. (It is not trivial that we can
generate such a random starting point, but sometimes it is possible by bootstrapping
or by re-using some previously generated points.) Such an approach was taken,
e.g., in [KLS97]; however, the slight dependencies between different parts of the
algorithm, introduced by this bootstrapping and recycling, substantially increases
the tediousness of the analysis.

Another possibility is to make use of the fact that small sets often have larger
boundary, and therefore the walk spreads faster at the beginning than predicted by
conductance alone. One way to formalize this analytically is through the use of log-
arithmic Sobolev inequalities, proposed by Diaconis and Saloff-Coste [DS96]. How-
ever, bounding the log-Sobolev constant seems difficult. In the context of rapidly
mixing Markov Chains used in counting problems and volume computation, this has
been successfully applied only to the “king’s moves” [FK00] (which for other rea-
sons is not efficient) and to the basis-exchange walk for balanced matroids [JSon02],
although decomposition methods hold some hope for future applications [JSTV03].

In [LK99] Lovász and Kannan introduced the method of average conductance.
If we define

φ(x) = min{Φ(S) : π(S) = x},
then they proved

Theorem 1.2

T .
∫ 1/2

π0

1
xφ(x)2

.

It was sketched how this theorem can be applied to get rid of the “start penalty”
in the case of the ball walk in a convex body.

There are other cases, where one would like to take into account that sets of
different sizes have different conductance. For example, small sets (of stationary
measure at most ε) may have very bad conductance, but one can ignore them: the
walk gets closer to the stationary distribution than ε fast, and the convergence
only slows down after that. This idea was exploited in [LS90], using the notion of
“µ-conductance”.

Another situation where the Jerrum–Sinclair bound is too pessimistic is the
“dumbbell graph”: two cliques on n/2 nodes joined by an edge. The conductance
of this graph is Θ(1/n2), and the mixing time Θ(n2), less than the square root of the
Jerrum–Sinclair upper bound. An obvious heuristic explanation is that there is only
one bad cut, and a few small cuts nearby, but most of the cuts have conductance
Θ(1).

A further improvement can be had by examining how large a neighborhood the
Markov chain expands into, i.e., the node-expansion. In the extreme case of the
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complete graph Kn, a single step from any vertex can reach any other vertex and
so the mixing time is faster than predicted by conductance alone.

In this paper, we develop a new method for estimating the mixing time, taking
into account sets of various sizes, and also both edge-expansion and node-expansion.
We note that Morris and Peres [MP03] have developed a related method known as
Evolving Sets in which they bound the stronger relative pointwise distance. Results
by these two methods are closely related, although our results are stronger when it
comes to mixing time [M03].

The main motivation for our study was a problem in connection with the problem
of generating a uniformly distributed random point in a convex body K in IRn.
One of the most efficient methods for this is to do a random walk in the convex
body, stepping from a current point v to a uniformly distributed point in the ball
v + δB with a given radius δ about v (if this point is not in K, then a new point is
generated). This is called the ball walk with δ-steps. For a large enough integer T ,
stopping the walk after T steps, we get an approximately uniform point in K. The
main problem is to determine how large T must be.

We try to summarize some previous results on this problem without going into
too much detail. Let us assume that K contains the unit ball B, and has diameter D.
The conductance of the ball walk in K is O(δ/(

√
nD)), but there is a “start penalty”,

and the best previous bound on the mixing time [KLS97] was O∗(n2D2/δ2). With
appropriate preprocessing, one can achieve D = O∗(

√
n), and the best choice of δ

is Θ∗(1/
√

n) (for larger δ, the idle steps at the boundary become dominant), and
so one gets a bound of O∗(n4) on the mixing time.

We apply the result to the ball walk in a convex body, and show that in this case
it effectively saves the “start penalty”: it is better by a factor of O∗(n) than the
above mentioned bound. This application depends on a new geometric isoperimetric
inequality, showing that the conductance of small sets is actually better than the
worst case bound.

Such a saving is also possible for certain combinatorial chains, as a recent work
of Benjamini and Mossel [BM03] shows.

In the conference version of this paper [LK99] a somewhat weaker result was
stated, and for finite Markov chains only. In this paper, we state and prove our
main result in the setting of continuous state Markov chains, which not only means
greater generality, but allows us to get stronger results, and give simpler arguments.
For our main application to random walks in convex bodies, this general setting is
needed. In section 3.5 we indicate how to derive from these similar bounds for finite
Markov chains. The derivation is straightforward but quite tedious, so we don’t give
the details; instead, we plan to write a companion paper [KLM02], dealing with the
finite case separately.

We only consider time reversible chains, which are the most common in applica-
tions; some of our techniques extend to non-reversible chains, but the elaboration
of the details is left for further work.

6



In section 2, we introduce the machinery from the theory of continuous state
Markov chains. Section 3 contains the statement of our main result and its corol-
laries, in the setting of continuous state (atom-free) Markov chains. In section 4, we
prove an isoperimetric inequality for convex bodies, and combine it with our mixing
results to give an improved (and in a sense optimal) bound on the mixing time of
the ball walk in convex bodies. Sections 5 and 6 contain the proofs of our results.

2 Continuous state Markov chains

Recall the definition of a continuous state Markov chain. Let (K,A) be a σ-algebra.
For every u ∈ K, let Pu be a probability measure on (K,A), and assume that for
every S ∈ A, the value Pu(S) is a measurable function of u (Pu(S) denotes the 1-
step transition probability density out of u). Then the triple (K,A, {Pu : u ∈ K})
is a Markov chain.

For every measure µ on (K,A), we define another measure Pµ by

Pµ(S) =
∫

K
Px(S) dµ(x).

We have to make some assumptions about the Markov chains we consider. We
assume that the Markov chain has a stationary distribution π. This distribution
satisfies

Pπ(S) = π(S)

for every S ∈ A.
We assume that the chain is ergodic, i.e., it escapes from every set S ∈ A,

0 < π(S) < 1 with positive probability:
∫

S
Px(K \ S) dπ > 0.

We assume that the Markov chain is time-reversible, which means that

dPy(x) dπ(y) = dPx(y) dπ(x).

In an integrated form this means that for any two sets X, Y ∈ A
∫

X
Px(Y ) dπ(x ) =

∫

Y
Py(X ) dπ(y).

We also assume that the probability space (K,A, π) is atom-free, i.e., every X ∈
A with π(X) > 0 has a measurable subset Y ⊂ X, Y ∈ A with 0 < π(Y ) < π(X).
(This is not an essential assumption but it is convenient; we’ll see in section 3.5
how atoms can be replaced by atom-free sets without changing mixing properties.)
It then follows that X has a measurable subset Y with π(Y ) = t for every 0 < t <
π(X).
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2.1 Conductance and other expansion measures

The ergodic flow Q is defined for X, Y ∈ A by

Q(X, Y ) =
∫

X
Px(Y ) dπ(x).

By the definition of π, we have Q(S,K) = Q(K, S) = π(S); this implies that

Q(X, Y ) ≤ min{π(X), π(Y )}.

Also note that by time reversibility, we have Q(X, Y ) = Q(Y, X). Ergodicity means
that Q(S, K \ S) > 0 for all S ∈ A with 0 < π(S) < 1.

We define the conductance function as follows. For t ∈ (0, 1), let

Ψ(t) = min
S⊂V,

π(S)=t

Q(S).

The conductance function considered in the introduction is

Φ(t) =
Ψ(t)

t(1− t)
;

the division by t(1− t) will not be convenient in the more general setting.
It is clear that

Ψ(x) = Ψ(1− x) (2)

and
Ψ(x) ≤ min{x, 1− x} ≤ 2x(1− x) ≤ 1/2. (3)

The conductance function has the Lipschitz property:

Lemma 2.1 For every 0 < x, y < 1,

|Ψ(y)−Ψ(x)| ≤ |y − x|.

Proof. We may assume that x < y. By (2), it is enough to prove that

Ψ(y)−Ψ(x) ≤ y − x.

Let S ⊆ K satisfy π(S) = x and Q(S) = Ψ(x). Let S′ be any set with S ⊆ S′ ⊆ K
with π(S′) = y. Then we have

Ψ(y) ≤ Q(S′) = Q(S, K \ S′) + Q(S′ \ S,K \ S′)
≤ Q(S) + Q(S′ \ S,K)
= Ψ(x) + y − x.

¤
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Let A be a measurable subset of K. For every 0 ≤ x ≤ π(A), let

Ψ(x,K \A) = inf{Q(C, K \A) : C ⊆ A, π(C) = x}.

It will be convenient to extend the definition for x > π(A) by

Ψ(x,K \A) = Ψ(1− x,A).

For any x, y with 0 < x, y and x + y ≤ 1, we define

Ψ(x, y) = inf
A,C
{Q(A,C) : A ∩ C = ∅;π(A) = x; π(C) = y}.

It is not hard to see that the “inf” in these definitions is attained, so we could write
“min” instead.

We also use another quantity related to conductance. Define the spread of a
measurable subset A of K as

ψ(A) =
∫ π(A)

0
Ψ(x, K \A) dx.

It is sometimes appropriate to consider the global spread or modified spread:

ψgl(A) =
∫ 1

0
Ψ(x,K \A) dx , ψmod(A) = π(A)

∫ 1

0

Ψ(x,K \A)
min{x, 1− x} dx .

These are related by ψ(A) ≤ ψmod(A) ≤ 4ψgl(A). The first inequality follows easily.
For the second, Ψ(x,K \A) π(A)/x ≤ 2Ψ(x,K \A) when x ∈ [π(A)/2, 1/2]. When
x ∈ (0, π(A)) then Ψ(x,K\A)/x is non-decreasing and so

∫ π(A)/2
0 Ψ(x, K\A)/x dx ≤∫ π(A)

π(A)/2 Ψ(x,K \A)/x dx. A similar argument holds for the case of x > 1/2.
Each quantity will have its uses: ψ(A) is the easiest to use and will prove to be

the most flexible of the three in Section 3.3, ψgl(A) is best when there is very high
node expansion (e.g., Kn), while ψmod(A) seems to behave similarly to a modified
log-Sobolev inequality.

The quantity ψ(A)/π(A) is the expected value of the ergodic flow into K \ A,
originating in the worst B ⊂ A of size t = π(B) chosen uniformly in [0, π(A)].
Another way of saying this is to consider a measure preserving map f : A →
[0, π(A)] such that dπ(f−1(t))Pf−1(t)(K \ A) is a monotone decreasing function of
t. Then

ψ(A) =
∫

A
f(x)Px(K \A) dπ(x). (4)

Yet another way of defining ψ(A) is to choose a random point y in K \A from the
stationary distribution, and make one step from y to get a point y′. Then

ψ(A) = E(f(y′))π(Ac)
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(where we take f(y′) = 0 for y′ ∈ K \A).
Perhaps the most instructive way of looking at this new quantity is the following.

If we think of the Markov chain as a random walk on a graph, then Q(A) measures
the edge expansion of the set A. The quantity ψ(A) can be viewed as a mixture of
edge expansion and node expansion. For a fixed t ∈ [0, π(A)], let C be a subset of
A with π(C) = t minimizing Q(C,K \ A), and let B = A \ C. Since Ψ(t,K \ A) is
trivially monotone increasing in t, we get

ψ(A) ≥ (π(A)− t)Ψ(t,K \A) = π(B)Q(C, K \A). (5)

Part of the ergodic flow out of A goes from B, and for this part we measure the
node-expansion by π(B); the other part of the ergodic flow we measure directly, by
Q(C, K \A).

How does one define node expansion in a Markov chain? A first attempt would
be to consider, for a given A, the measure of all states in A that can be reached in one
step. But this would be too sensitive to transitions out of A with tiny probability.
A more reasonable choice is the following. Define β(A) as the minimum stationary
measure of a set B ⊆ A such that Q(A \ B, K \ A) = 1

2Q(A) (i.e., B captures half
of the flow out of A). Then applying (5) with t = π(A)− β(A), we get

ψ(A) ≥ 1
2
β(A)Q(A).

To relate the spread ψ and the ergodic flow Ψ, note that β(A) ≥ 1
2Q(A) (since

a set of stationary measure p can absorb an ergodic flow of at most p), and so

ψ(A) ≥ 1
4
Q(A)2. (6)

The ergodic flow out of a set measures the probability that we step out of the
set, starting from an average element of the set. For small sets, it is sometimes
useful to measure the probability that we step out of the set from every point of
the set. To this end, we introduce the “local spread”

ξ(A) = inf{Pu(K \A) : u ∈ A}, ξ(t) = inf{ξ(A) : π(A) = t} (0 ≤ t < 1),

and the quantity
π1 = inf{t : ξ(t) ≤ 1/10}.

Note that when a ≥ x then

Ψ(x, 1− a) ≥ ξ(a)x.

The quantity π1 will replace the minimum stationary probability π0 in the contin-
uous setting.
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3 General mixing results

Let M be a continuous state Markov chain with no atoms. Let σt be the distribu-
tion after the t-th step of the random walk has just been executed, starting from
distribution σ. We also consider the distribution ρm obtained as follows: we choose
an integer Y ∈ {0, 1, . . . , m− 1} randomly and uniformly, and stop after Y steps.

Suppose we walk for m steps and stop. If σ0 is absolutely continuous w.r.t. π,
then it is easy to see by induction that so is σk for all k ≥ 0. Thus dρm/dπ exists.
Let g = mdρm/dπ =

∑m−1
i=0 dσi/dπ. Then for every measurable set S ⊆ K,

∫

S
g dπ = mρm(S) = σ0(S) + · · ·+ σm−1(S)

is the expected number of times the set S is visited during the first m steps of the
random walk. In particular, ∫

K
g dπ = m.

Suppose f : K → [0, 1], is a measure-preserving 1-1 map so that g(f−1(·)) is
a monotone increasing function on [0, 1]. (It is easy to see by standard arguments
that such an f exists; intuitively, we have just ordered K into [0, 1] in increasing
order of g.)

Set
q(x, y) = Q(f−1([0, min(x, y)]), f−1([max(x, y), 1])).

q(x, y) measures the flow “straddling” f−1([min(x, y), max(x, y)]); in other words it
is the flow when we “block” this set.

3.1 Mixing time estimates in terms of a parameter function

We start with a theorem that bounds the distance of ρm from the stationary distri-
bution in terms of a parameter function h. Let us call a function h : [0, 1] → IR+ a
mixweight function if ∫ 1

0
h(y)q(x, y) dy ≥ 2x(1− x)

holds for all x ∈ (0, 1).

Theorem 3.1 If h is a mixweight function, then for every starting distribution that
is absolutely continuous with respect to π,

d(ρm, π) ≤ 1
m

∫ 1

0
h(x) dx.

The ordering f is of course difficult to get a hold of in general. Instead, one can
use :
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Proposition 3.1.1 If h : [0, 1] → IR+ satisfies h(1− y) = h(y) and
∫ 1

0
h(y)Ψ(y, K \A) dy ≥ 2π(A)(1− π(A)) (7)

for all A with π(A) ≤ 1/2, then h is a mixweight function.

This follows easily by using the comparison q(x, y) ≥ Ψ(y, K \ f−1([0, x])) when
x ≤ 1/2, while the case when x > 1/2 follows from q(x, y) ≥ Ψ(1−y, K \f−1([x, 1]))
and the symmetry h(1− y) = h(y).

It is not hard to see that there is always a mixweight function h with minimum
integral (thus giving the best possible bound), but in general it will not be express-
ible by a formula. We’ll return to the question of finding the “right” function h in
section 3.3. Roughly speaking, we can think of 1/h(x) as a measure of expansion
of sets of stationary measure approximately equal to x.

If we assume a stronger smoothness property of the starting distribution, we
get a better bound on the mixing time, where the (often troublesome) ends of the
integration can be omitted.

Theorem 3.2 Suppose that the starting distribution σ satisfies σ ≤ Mπ for some
M > 0. Let 0 < c < 1/2 and let h : [0, 1] → IR+ satisfy

∫ 1−c

c
h(y)q(x, y) dy ≥ 2x(1− x)

for every x with c ≤ x ≤ 1− c. Then for every m > 0,

d(ρm, π) ≤ 2cM +
1
m

∫ 1−1/M

1/M
h(x) dx.

The two results above are not quite satisfactory, since in many applications we
are interested in random walks starting from a fixed state. However, in this case we
meet a new difficulty. Even if the chain has a large conductance, it may happen that
from the starting state s (which has measure 0) there is no escape (Ps is concentrated
on s). Even if we assume that the Markov chain mixes from every starting point,
we can adjust the exit distribution for the starting state so that it takes arbitrarily
long to escape, without changing the conductance function. Thus in the case of
continuous state Markov chains, we also need to take into account the “very local”
expansion, using the quantity ξ(0). We generalize slightly by considering ξ(a), as
this will prove useful later.

Theorem 3.3 Suppose that ξ(a) > 0 and for some c ≤ a let h : [c, 1 − c] → IR+

satisfy h(1− y) = h(y) and
∫ 1−c

c
h(y)Ψ(y,K \A) dy ≥ 2π(A)(1− π(A))
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for all A with a ≤ π(A) ≤ 1/2. Then for every m > 1 and every starting state,

d(ρm, π) ≤ 8 lnm

mξ(a)
+

4
m

∫ 1/2

c
h(x) dx.

3.2 Faster convergence to stationarity

General results [AD93, LW95] imply that if starting at any state, d(σm, π) < 1/4
for some m, then d(σkm, π) < 1/2k. One might expect an exponential drop in the
distance d(ρm, π), but since ρm includes the term σ0/m (see definition (1)), a rate of
1/m is the best that can be asserted. However, if we do a “better” averaging, then
the exponential rate of drop does hold. For example, the general results mentioned
above imply the following.

Corollary 3.4 Under the conditions of Theorem 3.3, let

R = 50
1

ξ(0)
ln

1
ξ(0)

+ 32
∫ 1/2

0
h(x)dx,

and let Y be a binomially distributed random integer with expectation 1000kR. From
any starting point, run the chain for Y steps and stop. Then the distribution ρ of
the last point satisfies

d(ρ, π) ≤ 2−k.

This corollary implies that doing O(R ln(1/δ)) steps (where the exact number
is a random variable easily generated), we get closer to the stationary distribution
than δ.

3.3 Constructing mixweight functions

In this section we describe constructions that provide functions satisfying (7). Recall
that for each of these, 1/h(x) is a measure of expansion of sets of size about x.

Considering (6) and Theorem 1.2, it would be natural to try something like

h(y) = max
π(A)=y

π(A)
ψ(A)

.

For technical reasons, we have to smooth out this function and consider

h(y) = max
y≤π(A)≤min{2y,1/2}

4π(A)
ψ(A)

hgl(y) = max
0<π(A)≤min{2y,1/2}

4π(A)
ψgl(A)

hmod(y) = max
0<π(A)≤min{2y,1/2}

4π(A)2

y ψmod(A)

(8)
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when y ≤ 1/2, and h(y) = h(1− y) for y > 1/2. To show, for instance, that hgl(y)
is a valid mixweight function we wish to apply Proposition 3.1.1. To this end, let
A be a measurable set with π(A) = x and x ≤ 1/2. Then

∫ 1

0
Ψ(y, K \A)hgl(y) dy ≥

∫ x

x/2
+

∫ 1−x/2

x
Ψ(y, K \A)hgl(y) dy

≥ 4π(A)
ψgl(A)

(∫ x

x/2
+

∫ 1−x/2

x
Ψ(y, K \A) dy

)

≥ 1
2

4π(A)
ψgl(A)

(∫ x

0
+

∫ 1

x
Ψ(y, K \A) dy

)

= 2x ≥ 2x(1− x).

The same proof, but with only the
∫ x
· terms implies that the h(y) of (8) is

also a mixweight function. A similar proof applies to hmod(y), but with the
added observation that because Ψ(y, K \ A)/y is increasing for y ≤ π(A) then∫ x/2
0 y−1 Ψ(y, K \A) dy ≤ ∫ x

x/2 y−1 Ψ(y,K \A) dy.
Each quantity is appropriate in different circumstances. Indeed, by an argu-

ment similar to (14) below, h(y) ≤ 16 y−1 maxx∈[y,2y] x
2/Ψ(x)2 while hmod(y) ≤

12 y−1 maxx≤2y x2/Ψ(x)2 and hgl(y) ≤ 8 maxx≤2y x/Ψ(x)2. The ability to restrict
the domain of x makes h(y) and h`(y) (see below) best when there are bottle-
necks, i.e. tight constrictions that it is hard to pass through, as in the dumbbell
graph discussed in the introduction. Experience shows that Ψ(x)2 is typically of
order x2 polylog(1/x), which suggests that when node-expansion is moderate then
hmod(y) will be the better of the global quantities, although hgl(y) can be best when
there is very high node-expansion. For example, the quantity h(y) in (8) implies
mixing in time O(log n) for the lazy random walk on the complete graph Kn, while
hmod(y) gives O(log log n) and hgl(y) yields O(1), the first isoperimetric proof of the
correct mixing time bound.

Since the formulas in (8) are still pretty complicated, further specialization is in
order. Using the lower bounds on ψ(A) given in section 2, we get that each of the
following functions can serve as h:

h(y) = max
y≤π(A)≤min{2y,1/2}

min
t

4π(A)
(π(A)− t)Ψ(t, K \A)

(9)

h(y) = max
y≤π(A)≤min{2y,1/2}

8π(A)
β(A)Q(A)

(10)

h(y) = max
y≤π(A)≤min{2y,1/2}

16π(A)
Q(A)2

(11)

We can make one more refinement of these bounds which is sometimes useful.
Let ` : [0, 1/2] → IR be any function satisfying

0 < `(x) ≤ x ∀x, 0 ≤ x ≤ 1/2, (12)

14



and the following semi-Lipschitz condition:

`(x)− `(y) ≤ x− y ∀x, y, 0 ≤ y ≤ x ≤ 1/2. (13)

Then for 0 ≤ y ≤ 1/2,

h`(y) = sup
π(A)∈(y,min{y+`(y), 1

2})
4π(A)
ψ`(A)

where ψ`(A) =
∫ π(A)

π(A)−`(π(A))
Ψ(t,K \A) dt

and h`(1 − y) = h`(y), is a valid choice for h (h(y) of (8) is just the case when
`(x) = x). To see this, we proceed on the same lines as the proof for (8) :

∫ 1

0
h`(y)Ψ(y,K \A) dy ≥

∫ x

x− `(x)
2

h`(y) Ψ(y, K \A) dy

≥ 2x ≥ 2x(1− x),

using the fact that when y ∈ [x − `(x)
2 , x], we have y ≤ x ≤ y + `(y) using the

Lipschitz condition and so, h`(y) ≥ 4π(A)/ψ`(A).
The same argument holds for h̃`(y) and ψ̃`(A) given by ψ̃`(A) = ψ`(A)+ψ`(K \

A), with h`(y) the supremum over π(A) ∈ [y − `(y), y + `(y)].

Corollary 3.5 For every function ` satisfying (12) and (13), for every m > 0, and
every starting distribution that is absolutely continuous with respect to π, we have

d(ρm, π) ≤ 2
m

∫ 1/2

0
h̃`(x) dx.

The function ` is nicer to have as a parameter than the function h, because
the conditions on it do not depend on the Markov chain; but one would like to see
further specialization.

One special choice of ` is `(x) = Ψ(x)/4 (which is legal by (3) and lemma 2.1).
We have

ψ`(A) ≥ `(x) Ψ(x− `(x), 1− x) + `(x)Ψ(x, 1− x− `(x)) ≥ 3
8

Ψ(x)2. (14)

Indeed, let A,C ∈ A, π(A) = x, π(C) = x−Ψ(x)/4. Then Q(A,K\A) ≥ Ψ(x). But
Q(A\C, K\A) ≤ π(A\C) = Ψ(x)/4, and hence Q(C,K\A) ≥ 3Ψ(x)/4. Moreover,
Ψ(y) ≥ 3Ψ(x)/4 and y ≤ 5x/4 in the range of y. It follows that h̃`(x) ≤ 24x/Ψ(x)2

is a mixweight function. Applying Theorem 3.3, we get a continuous version of the
main result of [LK99]:
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Corollary 3.6 Suppose that π1 > 0. Then for every m > 1 and every starting state
we have

d(ρm, π) ≤ 425 lnm

m
+

100
m

∫ 1/2

π1

x

Ψ(x)2
dx.

We can get a slightly sharper, but less explicit bound by considering a function
h that satisfies the following condition for every measurable set A with π(A) ≤ 1/2:





either h(y) ≥ 4π(A)∫ π(A)
0 Ψ(t,K \A) dt

for all y ∈ [12 π(A), π(A)],

or h(y) ≥ 4π(A)∫ 2π(A)
π(A) Ψ(t,K \A) dt

for all y ∈ [π(A), 3
2 π(A)].

3.4 Explicit conductance bounds

The integral in the estimate in Theorem 3.1 may be difficult to evaluate (even if we
use the simpler expressions in its corollaries). The following corollaries of Theorem
3.3 may be easier to apply. Each of these is derived by straightforward integration.
First, let us note that by knowing a lower bound on the conductance, we get the
following bound on the mixing time (which is closely related to the theorem of
Jerrum and Sinclair, see section 3.5):

Corollary 3.7 Suppose that for some a,A > 0, ξ(a) > 0, and an inequality of the
form

Ψ(x) ≥ Ax (15)

holds for all a ≤ x ≤ 1/2. Then for every starting distribution,

d(ρm, π) ≤ 8 ln m

mξ(a)
+

32
mA2

ln
1
a
.

If we have a stronger bound, which expresses that smaller sets have better
conductance, then we can save the logarithmic factor:

Corollary 3.8 Consider a Markov chain such that ξ(a) > 0 for some a > 0. Sup-
pose that for some B > 0, an inequality of the form

Ψ(x) ≥ Bx ln(1/x) (16)

holds for all a ≤ x ≤ 1/2. Then

d(ρm, π) ≤ 8 ln m

mξ(a)
+

100
mB2

.

We get a stronger inequality (which in fact will be needed later on) if we can
combine (15) and (16):
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Corollary 3.9 Consider a Markov chain with ξ(a) > 0. Suppose that for some
A,B > 0, an inequality of the form

Ψ(x) ≥ min{Ax, Bx ln(1/x)}

holds for all a ≤ x ≤ 1/2. Then

d(ρm, π) ≤ 8 ln m

mξ(a)
+

1
m

(
32
A2

ln
1
a

+
100
B2

)
.

Finally, we formulate another corollary, which can be considered as a continuous
version of an inequality proved by Ledoux [L99], using log-Sobolev inequalities:

Corollary 3.10 Consider a Markov chain such that for some a,B > 0 we have
ξ(a) > 0, and

Ψ(x) ≥ Bx
√

ln(1/x)

for every a < x < 1/2. Then

d(ρm, π) ≤ 8 lnm

mξ(a)
+

34
mB2

ln ln
2
a

3.5 Finite chains

In the studies above, we made use of the atom-free nature of the Markov chain. If
we want to extend our results to discrete Markov chains, we could reproduce the
arguments, with some loss for “rounding” (since not all sizes occur as sizes of sets).
This is carried out in [KLM02].

Here we sketch another possibility for obtaining analogous results for finite
chains: One can replace each atom by an atom-free set of equivalent states.
Consider a finite Markov chain M with state space V = {1, . . . , n}, transi-
tion probabilities pij , and stationary distribution π. Let Si to be the interval
[π1 + · · · + πi−1, π1 + · · · + πi). We define a Markov chain M̂ on the unit inter-
val [0, 1) as follows: if we are at a point x ∈ Si, then we choose an interval Sj with
probability pij , choose a random point y ∈ Sj uniformly, and move to y. Clearly this
way we get a Markov chain whose stationary distribution is the Lebesgue measure
on [0, 1).

It is clear that no matter where we start, after the first step of M̂, the distribu-
tion of the current state will be uniform on each Si, and the probability of being in
Si is the same as the probability of being at i in M. Hence the mixing time of M′

is the same as the mixing time of M, and we can apply the previous bounds.
The difficulty with this method is that various expansion measures for the new

chain M̂ are only implicitly defined, and even though one can express them in terms
of the original chain M, these expressions will look quite artificial. As an example,
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consider the conductance function Ψ̂(x) of the new chain. It is easy to see that we
have

Ψ̂(x) = min{
∑

i,j

Qijti(1− tj) : 0 ≤ ti ≤ 1,
∑

i

πiti = x},

but the minimum of this quadratic function is not easy to compute. (This is not
surprising from the complexity point of view, since the standard conductance itself
is NP-hard.) However, one can usually show that this conductance function is close
to the conductance function of the finite chain. Since the details are cumbersome,
we leave the detailed discussion of the finite case for another paper.

3.6 Further examples

As an illustration, we analyze the random walk on the dumbbell graph; this consists
of two complete graphs of the same size n/2, connected by an edge. It is not hard
to see that the mixing time is Θ(n2). The conductance is Θ(1/n2), so the Jerrum-
Sinclair bound of Θ(n4 log n), is way off.

The reason why we can gain by applying Corollary 3.6 is that the only cut
with really small conductance is the one separating the two complete graphs. Let
x < 1/2, then it is not hard to see that

Ψ̂(x) ≥ max
{

1
n2

, x

(
1
2
− x

)}
,

whence integration gives the bound of Θ(n2). This shows that we not only get rid
of the start penalty, but also save the squaring of the conductance!

Benjamini and Mossel [BM03] considered a more interesting example, a
Markov chain on the giant component of a super-critical percolation on the
grid {−n, . . . , n}d. This is a random walk on the graph in which each edge in
{−n, . . . , n}d is retained with probability p. As n → ∞ it is known that if p is
greater than some threshold pc(ZZd), then this graph will have a single “giant com-
ponent” and many small components. They found that for every set A ⊂ V (G) with
x = π(A) ≤ 1/2 that the walk on the giant component has Ψ(A) ≥ cp,d x1−1/d/n,
where cp,d is a constant which depends on p and d. This is large enough to deal
with the start penalty, and therefore, ignoring factors of d, a discretized version of
our results would imply mixing in time τ = Θ(n2), the correct bound. Previous
isoperimetric proofs could only show τ = O(n2 log n).

A problem in which the node-expansion (via spread ψ) proves useful is the lazy
random walk on the cube {0, 1}d. In this walk, at each step a coordinate i ∈ {1 . . . d}
is chosen uniformly at random and the value in this coordinate is set to 0 or 1 with
probability 1/2 each. It is well known that τ = Θ(d log d), but isoperimetric proofs
are typically far from this. For instance, the conductance Φ = 1/d (take a half-cube
by fixing coordinate d at xd = 0), whereas Corollary 4.4 can be used to show that
Ψ(x) = Ω(x log(1 + 1/x)). By Corollary 3.6 these imply mixing times of τ = O(d3)

18



or τ = O(d2) respectively. Once again, high expansion on small sets suffices to deal
with the start penalty.

However, observe that every subset A ⊂ {0, 1}d will have a large fraction of its
vertices on the boundary. In fact when π(A) is small then almost all vertices in A
are boundary vertices (consider Hamming balls).

Given a set A ⊂ {0, 1}d we lower bound ψ(A) by using ψ(A) =∫
[0,π(A)] t Pf−1(t)(K \A) dt, as in (4). Then

Q2(A) :=
∫

A

√
Py(K \A) dπ(y)

=
∫ x

0

√
Pf−1(t)(K \A) dt

≤ Q2(A)/2 +

√∫ x

Q2(A)/2
t Pf−1(t)(K \A) dt

∫ x

Q2(A)/2

dt

t

≤ Q2(A)/2 +
√

ψ(A) log(2x/Q2(A)) ,

where the first inequality follows from Cauchy-Schwartz. Solving for ψ(A) gives

ψ(A) ≥ 1
4

Q2(A)2

log(2x/Q2(A))
.

Talagrand [Tal03] showed that for this Markov chain the quantity

Q2(A) ≥ 1
4

π(A)

√
log(2/π(A))

d
.

It follows from a discretized version of (8) that the Markov chain mixes in τ =
O(d log2 d), very near the correct bound.

This method of “discrete gradients” is explored further in [M03]. The quan-
tity Q2(A) is connected to concentration inequalities and the logarithmic Sobolev
constant, the study of which was the goal of Talagrand’s work.

4 Random walks in convex bodies

4.1 A logarithmic Cheeger inequality

A crucial ingredient of the proofs of rapid convergence for convex bodies is an
isoperimetric inequality which asserts a lower bound on the surface area of a hy-
persurface dividing a convex body into two parts in terms of the product of the
volumes of the two parts. Since it is technically more cumbersome to work with
surface areas, a version of the isoperimetric inequality expands this hypersurface into
a full-dimensional set. We use the notation that for any two sets S1, S2, d(S1, S2),
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the distance between S1 and S2 is the infimum of distances between pairs of points
one in S1 and the other in S2.

The following theorem was proved in [DF92] (improving results of [DFK89,
LS93]):

Theorem 4.1 Let K ⊂ IRn be a convex body of diameter D, and let K = S1∪S2∪S3

be a partition into three measurable sets. Let ε = d(S1, S2). Then

vol(S3) ≥ 4ε

D

vol(S1)vol(S2)
volK

.

Letting ε → 0 yields the following:

Theorem 4.2 Let K ⊂ IRn be a convex body of diameter D, and let K be separated
into two parts S1 and S2 by a hypersurface F . Then

voln−1(F ) ≥ 4
D

vol(S1)vol(S2)
volK

.

A narrow cylinder of length D shows that the bound is sharp (at least in terms
of these parameters): we take F the plane cut bisecting, and orthogonal to, the axis
of the cylinder. Our main geometric tool is the following theorem, which gives a
sharper bound in the case when S1 or S2 is small in volume relative to K.

Theorem 4.3 Let K ⊂ IRn be a convex body of diameter D, and let K = S1∪S2∪S3

be a partition into three measurable sets. Let ε = d(S1, S2). Then

vol(S3) ≥ ε

D

vol(S1)vol(S2)
volK

ln
(

1 +
vol2K

vol(S1)vol(S2)

)

Again, applying this inequality to the ε-neighborhood of a surface cutting K
into two parts, we get:

Corollary 4.4 Let K ⊂ IRn be a convex body of diameter D, and let K be separated
into two parts S1 and S2 by a hypersurface F . Then

voln−1(F ) ≥ 1
D

vol(S1)vol(S2)
volK

ln
(

1 +
vol2K

vol(S1)vol(S2)

)
.

We remark that this version is sharp as vol(S1)/vol(K) → 0 (up to a factor of
1 + o(1) as n →∞). This is a consequence of a result of [M02].

Fix constants c, A > 0 and let K be the n-dimensional truncated cone given
as the solid of revolution of fn(t) = A (1 + c t/n) around the interval t ∈ [0, 1].
Then as n → ∞ the cross sectional area of this solid becomes proportional to
(1 + c t/n)n−1 n→∞−−−→ ect. If s = c−1 log c and S1 is the region of the solid of
revolution around the interval [0, s], then

voln−1(∂S1)
volK

n→∞−−−→ c2

ec − 1
and x =

voln(S1)
volK

n→∞−−−→ c− 1
ec − 1

.

As A → 0+ then diameter D → 1, and as c → ∞ then x → 0+ and the ratio of
voln−1(∂S1)/voln(K) to the lower bound in Corollary 4.4 goes to 1.
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4.2 Mixing of the ball walk

Suppose that K is a convex set in Rn with diameter at most D, containing the unit
ball B = B(0, 1). We consider the ball walk in K with step size δ: in this walk, at
every step, we go from the current point x ∈ K to a random point in B(x, δ) ∩K
where B(x, δ) is the ball of radius δ with center x. This is called a “proper move”.
(In practice, to implement a proper move, one has to pick a random point from
B(x, δ) and reject if it is not in K.) We assume that δ < D/100. We call this walk
the proper move walk. The distribution of a step of the proper walk from x ∈ K is
given by

Px(S) =
vol(S ∩B(x, δ))
vol(K ∩B(x, δ))

.

The steady state distribution of the proper move walk is not uniform, but is close
enough to it that it helps us sample from the uniform (see [KLS97] for details). To
be more precise, we define the local conductance by

`(x) = vol(K ∩B(x, δ))/vol(B(x, δ))

for x ∈ K, and

E =
∫

K
`(x) dx.

Then the stationary distribution π of the proper move walk has density function
`/E.

To be able to apply Theorem 3.1 (or, in fact, Corollary 3.9) to this walk, we will
have to estimate its local spread ξ(a) (or π1) and its conductance function Ψ.

Theorem 4.5 The local spread of the proper move walk satisfies π1 ≥ 1
2 (δ/D)2n.

Theorem 4.6 For 0 < x < 1/2, we have

Ψ(x) > min
{

1
288

√
n

x,
δ

81
√

nD
x ln(1 + 1/x)

}
.

4.3 Sampling from a convex body

Putting the results and methods of the previous two sections together, we obtain a
better analysis of sampling algorithms in convex sets. Suppose K is a convex set
in Rn with diameter at most D. Consider the ball walk in K as discussed in the
previous section. In [KLS97] it is shown that O∗(n2(D

δ )2 ln(1
ε )) proper moves are

sufficient to get within a total variation distance of ε of the steady state distribution
starting from any state. The results of the last section plugged into this machinery
immediately yield an improvement of this bound to O((n(D

δ )2 + n2 ln(D/δ)) ln(1
ε )),

a savings of O∗(n) when δ = O(1/
√

n).
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Further, [KLS97] shows that after appropriate preprocessing, any convex body
can be put into “isotropic” position where we have that the unit ball is contained
in the body and most of the volume of the body is contained in a ball of radius
O(
√

n). It was shown also in that paper that if we start already in the uniform
distribution, then we may use δ = 1/

√
n and each proper move can be implemented

in O(1) amortized time as above. Thus in this case, it was known that if we start
in the steady state in a body in isotropic position, after O(n3) steps, we get an
almost uncorrelated sample. The results of this paper imply that we do not need
the assumption about starting in the steady state; starting from any state, O∗(n3)
steps suffice.

One remaining bottleneck in our algorithm is that it takes O(n5) steps to put
a convex body in isotropic position. In a recent paper Lovász and Vempala [LV03]
studied a volume algorithm based on a simulated annealing approach. Their Markov
chain also requires O(n3) to obtain a sample, but only requires O(n4) steps to reach
an approximation to the isotropic position sufficient for their purposes. This leads
to an aggregate O(n4) algorithm for approximating the volume.

5 Proofs I: Markov Chains

5.1 Proof of Theorem 3.1

Recall the ordering f and the function q(·, ·) defined in Section 3. We will identify
A with f(A) here, so that for example we will write Px((y, 1]) for Pf−1(x)(f 1((y, 1]))
etc. With this notation we have:

d

dx
q(x, y) =

{
Px((y, 1]), if x < y,

−Px([0, y]), if x > y.
(17)

For two measurable sets S, T (not necessarily disjoint), we denote by F (S, T )
the expected number of times we step from a state in S to a state in T during steps
1, 2, . . . t. Clearly

F (S, T ) =
∫

S
g(u)Pu(T )dπ(u).

Lemma 5.1 For any 0 < t < 1, we have
∫ 1

0
q(x, t) dg(x) = σm([0, t])− σ0([0, t]) = σ0([t, 1])− σm([t, 1]).

The inequality

|g(b)− g(a)| ≤ 1
q(b, a)

follows easily, but we don’t need it.
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Proof. Clearly

F ([0, t], (t, 1]) =
∫ t

0
g(x)Px((t, 1]) dx.

Using (17) for x ≤ t, we can integrate by parts and get

F ([0, t], (t, 1]) =
[
g(x)q(x, t)

]t

x=0
−

∫ t

0
q(x, t) dg(x) = g(t)q(t, t)−

∫ t

0
q(x, t) dg(x).

Similarly, we get

F ((t, 1], [0, t]) = g(t)q(t, t) +
∫ 1

t
q(x, t) dg(x).

Using the equation

F ((t, 1], [0, t])− F ([0, t], (t, 1]) = σm([0, t])− σ0([0, t])

(which can be derived by simple counting), the lemma follows. ¤
Let t0 = inf{t : g(t) ≥ m}. We may assume that g(t0) = m (since g can be

changed on a set of π-measure 0).

Lemma 5.2

d(ρm, π) =
1
m

∫ t0

0
t dg(t) =

1
m

∫ 1

t0

(1− t) dg(t).

Proof. We have

d(ρm, π) = ρm([t0, 1])− π([t0, 1]) =
∫ 1

t0

(
g(u)
m

− 1
)

du.

By partial integration we get

d(ρm, π) =
[(

g(t)
m

− 1
)

(t− 1)
]1

t0

− 1
m

∫ 1

t0

(t− 1) dg(t).

Here the first term vanishes, whence we get the second expression in the lemma.
The first follows similarly. ¤

Now we are ready to prove Theorem 3.1. By Lemma 5.1, we have for every
0 < y < 1 ∫ 1

0
q(x, y) dg(x) = σ0([y, 1])− σm([y, 1]) ≤ 1.

Multiplying both sides by h(y) and integrating, we get
∫ 1

0
h(y)

∫ 1

0
q(x, y) dg(x) dy ≤

∫ 1

0
h(y) dy.
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On the left hand side we have
∫ 1

0
h(y)

∫ 1

0
q(x, y) dg(x) dy =

∫ 1

0

(∫ 1

0
h(y)q(x, y) dy

)
dg(x).

Here the expression in parenthesis is at least 2x(1 − x) by the assumption on h.
Thus we obtain that

∫ 1

0
2x(1− x) dg(x) ≤

∫ 1

0
h(x) dx.

By Lemma 5.2

d(ρm, π) =
1
m

∫ t0

0
x dg(x) ≤ 1

2(1− t0)m

∫ t0

0
2x(1− x) dg(x)

≤ 1
2(1− t0)m

∫ 1

0
h(x) dx.

Similarly,

d(ρm, π) =
1
m

∫ 1

t0

(1− x) dg(x) ≤ 1
2t0m

∫ 1

t0

2x(1− x) dg(x)

≤ 1
2t0m

∫ 1

0
h(x) dx.

Since either t0 or 1− t0 is at least 1/2, the theorem follows.

5.2 Proof of Theorem 3.2

We have to modify the proof of Theorem 3.1. We define g, t0 and q as before. The
assumption on the density of σ0 implies that the density of ρk is at most M , so we
get that

g(t) ≤ mM (18)

for almost all t. Since we can change g on a set of measure 0, we may assume that
(18) holds for all t.

We can easily dispose of the case when t0 ≥ 1− c:

d(ρm, π) = ρm([t0, 1])− π([t0, 1]) ≤ M(1− t0)− (1− t0) ≤ (M − 1)c.

The case when t0 ≤ c is similarly easy. So suppose that c < t0 < 1− c.
Lemmas 5.1 and 5.2 remain valid, but we need the following variant of Lemma

5.2:
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Lemma 5.3 We have

d(ρm, π) ≤ 2Mc +
1
m

∫ t0

c
t dg(t)

and

d(ρm, π) ≤ 2Mc +
1
m

∫ 1−c

t0

(1− t) dg(t).

Proof. Similarly as in the proof of lemma 5.2,

d(ρm, π) = ρm([t0, 1])− π([t0, 1]) =
∫ 1

t0

(
g(u)
m

− 1
)

du.

This integral we split as
∫ 1

t0

(
g(u)
m

− 1
)

du =
∫ 1−c

t0

+
∫ 1

1−c
. (19)

For the first term we get by partial integration:
∫ 1−c

t0

(
g(u)
m

− 1
)

du =
[(

g(t)
m

− 1
)

(t− 1)
]1−c

t0

+
1
m

∫ 1−c

t0

(1− t) dg(t).

Here the first term can be estimated as follows:
(

g(1− c)
m

− 1
)

c ≤ (M − 1)c.

The second integral in (19) can be estimated easily:
∫ 1

1−c

(
g(u)
m

− 1
)

du ≤ (M − 1)c.

This proves the second part of the lemma; the first is similar. ¤
By Lemma 5.1, we have for every 0 < y < 1

∫ 1

0
q(x, y) dg(x) = σ0([y, 1])− σm([y, 1]) ≤ 1.

Multiplying both sides by h(y) and integrating, we get
∫ 1−c

c
h(y)

∫ 1−c

c
q(x, y) dg(x) dy ≤

∫ 1−c

c
h(y) dy.

On the left hand side we have
∫ 1−c

c
h(y)

∫ 1−c

c
q(x, y) dg(x) dy =

∫ 1−c

c

(∫ 1−c

c
h(y)q(x, y) dy

)
dg(x).
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Here the expression in parenthesis is at least 2x(1 − x) by the assumption on h.
Thus we obtain that

∫ 1−c

c
2x(1− x) dg(x) ≤

∫ 1−c

c
h(x) dx.

By Lemma 5.3

d(ρm, π) ≤ 2Mc +
1
m

∫ t0

c
x dg(x) ≤ 2Mc +

1
2(1− t0)m

∫ t0

c
2x(1− x) dg(x)

≤ 2Mc +
1

2(1− t0)m

∫ 1−c

c
h(x) dx.

Similarly,

d(ρm, π) ≤ 2Mc +
1
m

∫ 1−c

t0

(1− x) dg(x) ≤ 2Mc +
1

2t0m

∫ 1−c

t0

2x(1− x) dg(x)

≤ 2Mc +
1

2t0m

∫ 1−c

c
h(x) dx.

Since either t0 or 1− t0 is at least 1/2, the theorem follows.

5.3 Proof of Theorem 3.3

Let

n =
⌈

lnm

ξ(0)

⌉
.

Consider the distribution σn. This is not absolutely continuous with respect to π in
general, but we may decompose it as σn = σ′+σ′′, where σ′ is absolutely continuous
with respect to π and σ′′ is concentrated on a set K0 with stationary measure 0.
We may assume that

Px(K0) = 0 (20)

for every x /∈ K0. Indeed, define the sets K1,K2, . . . recursively by Ki = Ki−1∪{x ∈
K : Px(Ki−1) > 0}. Then it follows by induction that π(Ki) = 0: if this is true for
i, then it follows for i + 1 by the equation

0 = π(Ki) =
∫

K
Px(Ki) dπ(x).

Hence K̄0 = ∪iKi has stationary measure 0, and we have Px(K̄0) = 0 for x /∈ K̄0.
So we can replace K0 by K̄0.

We claim that
σn(K0) <

1
m

.
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Indeed, for k > 0, we have

σk(K0) =
∫

K
Px(K0) dσk−1(x)

=
∫

K0

Px(K0) dσk−1(x) +
∫

K\K0

Px(K0) dσk−1(x).

Here the second integral is 0 by (20), while the first one can be estimated, by the
definition of ξ(0), by

∫

K0

Px(K0) dσk−1(x) ≤ (1− ξ(0))σk−1(K0).

Hence it follows by induction that σk(K0) ≤ (1− ξ(0))k. In particular,

σn(K0) ≤ (1− ξ(0))n ≤ e−nξ(0) ≤ 1
m

.

Consider a walk (v0, v1, . . . , vm−1), and choose an integer Y ∈ {0, . . . ,m − 1}
uniformly. Call this trial bad, if either vn ∈ K0 or Y < n. The probability that
this happens is at most (1/m) + (n/m). If the trial is not bad, then its result vY

can be considered as the result of starting from the distribution σ′/σ′(K) (which
is absolutely continuous with respect to π) and going for Y − n steps (which is an
integer uniformly distributed in {0, . . . , m − n − 1}). By Theorem 3.1, this proves
that

d(ρm, π) ≤ n + 1
m

+
2

m− n

∫ 1/2

0
h(x) dx .

When x ≤ a then h(·) given in the Theorem can be extended to [0, 1] by setting
h̃(x) = 4/a ξ(a) + h(x) δ(x ≥ c). It is easily verified that whenever π(A) ≤ a then∫ a
0 h̃(y)Ψ(y,K \A) dy ≥ 2π(A)(1− π(A)). Then

∫ a
0 h̃(x) dx = 4/ξ(a) +

∫ a
c h(x) dx.

6 Proofs II: geometry

6.1 Lemmas

We need the following “elementary” inequality.

Lemma 6.1 Let a < b < c < d. Then

d− a

c− b
≥ (eb − ea)(ed − ec)

(ec − eb)(ed − ea)
ln

(
1 +

(ed − ea)2

(eb − ea)(ed − ec)

)

Proof. The inequality is invariant under shifting all variables, so we may assume
that b = 0. Then we can write the inequality as

(d− a)
(ed − ea)

ec − 1
c

≥ u ln
(

1 +
1
u

)
,
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where

u =
(1− ea)(ed − ec)

(ed − ea)2
.

Now the left hand side is a monotone increasing function of c. The right hand side
is monotone increasing as a function of u, but u is a monotone decreasing function
of c. Thus the right hand side is a monotone decreasing function of c. It follows
that it suffices to prove the inequality in the limiting case when c → 0, in which
case we get

d− a ≥ (1− ea)(ed − 1)
ed − ea

ln
(

1 +
(ed − ea)2

(1− ea)(ed − 1)

)
.

Substituting x = ed − 1 and y = 1− ea, we have to prove that for x, y > 0,

ln
1 + x

1− y
≥ xy

x + y
ln

(
1 +

(x + y)2

xy

)
,

Here y ∈ (0, 1) and so

1 + x

1− y
= 1 +

x + y

1− y
≥ 1 + x + y.

It suffices to prove that

ln(1 + x + y) ≥ xy

x + y
ln

(
1 +

(x + y)2

xy

)
,

or

(1 + x + y)
x+y
xy ≥ 1 +

(x + y)2

xy
,

which is clear as (1 + A)B ≥ 1 + B A when A ≥ 0 and B ≥ 1. ¤
This inequality generalizes to integrals of log-concave functions as follows.

Corollary 6.2 Let a < b < c < d, and let F be a log-concave function on the
interval [a, d]. Let ν(a, b) =

∫ b
a F (t) dt. Then

d− a

c− b
≥ ν(a, b)ν(c, d)

ν(b, c)ν(a, d)
ln

(
1 +

ν(a, d)2

ν(a, b)ν(c, d)

)
(21)

Proof. There is a (unique) exponential function h(t) = αeγt such that F (b) = h(b)
and F (c) = h(c). Let µ(a, b) =

∫ b
a h(t) dt. Then

µ(a, b) ≥ ν(a, b), µ(c, d) ≥ ν(c, d), but µ(b, c) ≤ ν(b, c).
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Hence elementary arithmetic gives that

ν(a, b)ν(c, d)
ν(a, d)

≤ µ(a, b)µ(c, d)
µ(a, d)

, (22)

and
ν(a, d)
ν(b, c)

≤ µ(a, d)
µ(b, c)

. (23)

If ν(a, d) ≤ µ(a, d) then by applying (22) and that the function x ln(1+(1/x)) is
monotone increasing, we see that by replacing F by h we get a stronger inequality.

When ν(a, d) > µ(a, d) then the same result holds, but this time write the right
hand side of (21) as

ν(a, d)
ν(b, c)

ν(a, b)ν(c, d)
ν(a, d)2

ln
(

1 +
ν(a, d)2

ν(a, b)ν(c, d)

)
,

apply a modification of (22) with squares ν(a, d)2 and µ(a, d)2 in the denominators,
and finish with (23).

But (21) for an exponential function is just lemma 6.1. ¤
We quote a similar lemma (Lemma 3.8) from [KLS95]:

Corollary 6.3 Let a < b < c < d, let F be a log-concave function on the interval
[a, d], and let g be a linear function on [a, d]. Let µ(a, b) =

∫ b
a F (t)g(t)n−1 dt. Then

µ(b, c) ≥ 1
4
√

n

|F (b)− F (c)|
max{F (b), F (c)} min{µ(a, b), µ(c, d)}.

Finally, we need the following lemma, which easily follows from lemma 3.5 in
[KLS97]:

Lemma 6.4 Let x, y ∈ K with ‖x− y‖ < δ/
√

n. Then

d(Px, Py) < 1− min{`(x), `(y)}
4max{`(x), `(y)} .

6.2 Proof of theorem 4.5

Blowing up K ∩B(x, δ) by a factor of (δ/D)n we get a set covering K, whence

`(x) =
vol(K ∩B(x, δ))

vol(B(x, δ))
≥

(
δ

D

)n vol(K)
vol(B(x, δ))

. (24)

Let S be a set with stationary measure π(S) ≤ 1
2 (δ/D)2n, and let x ∈ K. Then

(using (24) in the numerator and `(x) ≤ 1 in the denominator) we get

π(S) =
∫

S
`(x) dx

/∫

K
`(x) dx

≥
(

δ

D

)n vol(S)
vol(B(x, δ))

.
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Thus

Px(S) =
vol(S ∩B(x, δ))
vol(K ∩B(x, δ))

≤ vol(S)
`(x)vol(B(x, δ))

≤
(

D

δ

)2n

π(S)
vol(B(x, δ))

vol(K)
≤ 1

2
.

6.3 Proof of theorem 4.6

The proof follows the lines of the proof of Theorem 3.1 in [KLS97]. Let

A = A(x) = min
{

x

288
√

n
,

δ

81
√

nD
x ln(1 + (1/x))

}

(this is the lower bound on Ψ(x) we claim). It is easy to check that A(x) is a
monotone increasing concave function of x.

Let K = S1 ∪ S2 be a partition of K into two non-empty parts, with 0 < x =
π(S1) ≤ 1/2. We want to show that

Q(S1, S2) > A.

Define, for y ∈ K,

h(y) =

{
Py(S1) if y ∈ S2,

Py(S2) if y ∈ S1,

(the probability that a random step from y crosses over). Since
∫

S1

h(y) dπ(y) = Q(S1, S2) = Q(S2, S1) =
∫

S2

h(y) dπ(y),

it suffices to show that ∫

K
h(y) dπ(y) ≥ 2A.

Suppose this is false. Let χ1 denote the incidence function of S1. Then, changing
the integration measure to the Lebesgue measure, we have

∫

K
h(y)`(y) dy < 2A

∫

K
`(y) dy.

The definition of x gives
∫

K
χ1(y)`(y) dy = x

∫

K
`(y) dy

By the Localization Lemma (2.5 in [KLS95]), there exist points a, b and a linear
function g(t) ≥ 0 for t ∈ [0, 1] such that setting y(t) = (1− t)a + tb, we have

∫ 1

0
g(t)n−1h(y(t))`(y(t)) dt < 2A

∫ 1

0
g(t)n−1`(y(t)) dt (25)
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and ∫

J1

g(t)n−1`(y(t)) dt = x

∫ 1

0
g(t)n−1`(y(t)) dt, (26)

where Ji = {t ∈ [0, 1] : y(t) ∈ Si} for i = 1, 2. We abuse the notation by writing
h(t) and `(t) for h(y(t)) and `(y(t)).

For i = 1, 2, define
J ′i = {t ∈ Ji : h(t) < 1/16} ,

and let
B = [0, 1] \ (J ′1 ∪ J ′2).

It is easy to see that J ′i and B are all measurable sets.
Define a measure µ on I = [0, 1] by

µ(T ) =
∫

T
g(t)n−1`(t) dt

for any measurable subset T . We have µ(J1) = xµ(I) by (26). Furthermore,
∫ 1

0
g(t)n−1h(y(t))`(y(t)) dt ≥ 1

16

∫

B
g(t)n−1`(t) dt =

1
16

µ(B),

and hence (25) implies that
µ(B) < 32Aµ(I). (27)

I. First we consider the crucial case when J ′1 = [0, r), B = [r, s] and J ′2 = (s, 1]
are intervals. Then Corollary 6.2, applied to the log-concave function gn−1`, implies
that

1
s− r

≥ µ(J ′1)µ(J ′2)
µ(B)µ(I)

ln
(

1 +
µ(I)2

µ(J ′1)µ(J ′2)

)

≥ (µ(J1)− µ(B))(µ(J2)− µ(B))
µ(B)µ(I)

ln
(

1 +
µ(I)2

µ(J1)µ(J2)

)

>
(x− 32A)(1− x− 32A)

32A
ln

(
1 +

1
x(1− x)

)

>
x

81A
ln

(
1 +

1
x

)
≥ D

√
n

δ
.

So it follows that s− r < (δ/
√

nD), and hence

|y(s)− y(r)| < δ

D
√

n
|b− a| ≤ δ√

n
.

Choose u < r and v > s such that v − u < δ/(D
√

n). Then h(u), h(v) < 1/16. On
the other hand,

h(u) + h(v) = Pu(S2) + Pv(S1) = 1− Pu(S1) + Pv(S1) ≥ 1− d(Pu, Pv),
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and hence d(Pu, Pv) ≥ 7/8. By Lemma 6.4, this implies that

max{`(u), `(v)} > 2min{`(u), `(v)}.

Letting u tend to r and v to s, we get by the continuity of the function ` that
max{`(r), `(s)} ≥ 2 min{`(r), `(s)}.

Now we can invoke Corollary 6.3, and get that

µ(B) ≥ 1
8
√

n
min{µ(J ′1), µ(J ′2)}.

Since
µ(J ′i) ≥ µ(Ji)− µ(B) ≥ xµ(I)− µ(B),

this implies that

µ(B) ≥ 1
9
√

n
xµ(I),

which contradicts (27).
II. The general case can be reduced to the case of three intervals similarly as in

[KLS97]. Let [xi, yi] be all maximal intervals contained in B. By the special case
settled above, we have

µ([xi, yi]) ≥ A(µ(Ti)),

where Ti is either [a, xi] or [yi, b]. Summing over all i, we get

µ(B) ≥
∑

i

A(µ(Ti)) ≥ A(µ(∪iTi))

(since A is sub-additive). To conclude, it suffices to notice that either J ′1 or J ′2 is
contained in ∪iTi. Indeed, for any u ∈ J ′1 and v ∈ J ′2 there is an interval [xi, yi]
separating them, and then either u or v is contained in Ti. ¤

6.4 Proof of Theorem 4.3

Suppose, by way of contradiction, that

vol(S3) <
ε

D

vol(S1)vol(S2)
volK

ln
(

1 +
vol2K

vol(S1)vol(S2)

)

Let ν > 0 be a sufficiently small real number (which we will let go to zero later).
Consider the functions

f(x) =

{
1

vol(S1)−ν − 1
vol(K) , if x ∈ S1,

− 1
vol(K) , otherwise,
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and

g(x) =

{
1

vol(S2)−ν − 1
vol(K) if x ∈ S2,

− 1
vol(K) , if x ∈ S1 ∪ S3.

Then clearly ∫

IRn
f > 0,

∫

IRn
g > 0.

By the Localization Lemma, there exist two points u, v ∈ IRn and a real number γ
such that

∫ 1

0
f(tu + (1− t)v)eγt dt > 0, and (28)

∫ 1

0
g(tu + (1− t)v)eγt dt > 0. (29)

We may assume that u, v ∈ K (else, we replace u and v by the endpoints of the
intersection of the segment [u, v] with K, which is trivially non-empty). Let

Ji = {t ∈ [0, 1] : ta + (1− t)b ∈ Si},

and

µ(J) =
∫

J
eγt dt

/∫ 1

0
eγt dt.

Then (28) can be written as

µ(J1) >
vol(S1)− ν

vol(K)
,

and (29), as

µ(J2) >
vol(S2)− ν

vol(K)
.

It follows that
µ(J3) = 1− µ(J1)− µ(J2) <

vol(S3) + 2ν

vol(K)
.

We claim that

µ(J3) <
ε

D
µ(J1)µ(J2) ln

(
1 +

1
µ(J1)µ(J2)

)
. (30)

Indeed, by the monotonicity of the function x ln(1 + 1/x), we have

ε

D
µ(J1)µ(J2) ln

(
1 +

1
µ(J1)µ(J2)

)
− µ(J3)

≥ ε

D

(vol(S1)− ν)(vol(S2)− ν)
vol(K)2

ln
(

1 +
vol(K)2

(vol(S1)− ν)(vol(S2)− ν)

)
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−vol(S3) + 2ν
vol(K)

.

Choosing ν sufficiently small, this will be positive by the indirect hypothesis. This
proves (30).

In the intuitively hardest case when J1 = [0, b], J2 = [c, 1] and J3 = [b, c] for
some 0 < b < c < 1, this inequality directly contradicts lemma 6.1. The general
case can be reduced to this case just like in [KLS97]. ¤
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Séminaire de Probabilités XXXIII, Lecture Notes in Math. 1709, Springer,
Berlin (1999), 120–216,

[LK99] L. Lovász and R. Kannan: A logarithmic Cheeger inequality and mixing
in random walks, in: Proc. 31st Annual ACM Symp. on Theory of Computing
(1999), 282-287.

[LS90] L. Lovász and M. Simonovits: Mixing rate of Markov chains, an isoperimet-
ric inequality, and computing the volume. Proc. 31st Annual Symp. on Found.
of Computer Science, IEEE Computer Soc. (1990), 346–355.

[LS93] L. Lovász and M. Simonovits: Random walks in a convex body and an
improved volume algorithm, Random Structures and Alg. 4 (1993), 359–412.

[LV03] L. Lovász and S. Vempala: Simulated Annealing in Convex Bodies and an
O∗(n4) Volume Algorithm, Proc. 44th Annual IEEE Symposium on Founda-
tions of Computer Science (2003).

[LW95] L. Lovász and P. Winkler: Efficient stopping rules for Markov chains, Proc.
27th ACM Symp. on the Theory of Computing (1995), 76–82.

[LW98] L. Lovász and P. Winkler: Mixing times, in: Microsurveys in Discrete
Probability (ed. D. Aldous and J. Propp), DIMACS Series in Discr. Math. and
Theor. Comp. Sci., 41 (1998), 85–133.

35



[M02] R. Montenegro: Faster mixing by isoperimetric inequalities, Ph.D. Thesis,
Department of Mathematics, Yale University, 2002.

[M03] R. Montenegro: Vertex and edge expansion properties for rapid mixing,
Preprint, 2003.

[MP03] B. Morris and Y. Peres, Evolving sets and mixing, Proc. 35th Annual ACM
Symposium on Theory of Computing, (2003), 279–286.

[Tal03] M. Talagrand: Isoperimetry, Logarithmic Sobolev Inequalities on the Dis-
crete Cube, and Margulis’ Graph Connectivity Theorem, Geometric and Func-
tional Analysis, 3:3 (1993), 295–314.

36


