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Abstract

We bound total variation and L∞ mixing times, spectral gap and magnitudes of the complex
valued eigenvalues of general (non-reversible non-lazy) Markov chains with a minor expansion
property. The resulting bounds for the (non-lazy) simple and max-degree walks on a (directed)
graph are of the optimal order. It follows that, within a factor of two or four, the worst case of
each of these mixing time and eigenvalue quantities is a walk on a cycle with clockwise drift.
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1 Introduction

Markov chains are a key tool in approximation algorithms for combinatorial counting problems and
for sampling from discrete spaces. Surprisingly, little is known about the convergence rate of a
Markov chain with no holding probability. Even for the simple random walk (i.e. nearest neighbor
walk) on an undirected graph the order of magnitude for the slowest converging walk seems to be
unknown.

More specifically, consider a connected undirected graph with m edges, n vertices and maxi-
mum degree d. The lazy (i.e. strongly aperiodic) simple random walk is known to converge in
O(m2 log(m/ε)) steps, because for instance the conductance is at least 1/2m, and so the lazy max-
degree walk mixes in time O(n2d2 log(nd/ε)) as well. However, comparable (or better) bounds
appear to be unknown in the non-lazy case. We remedy this by giving new bounds for simple
and max-degree walks which are better then these, apply to directed graphs, require no holding
probability, and are nearly sharp.

To state our results, define an Eulerian graph to be a strongly connected directed graph such
that each vertex v has the same in and out-degrees deg(v). This is the natural directed analog of
an undirected graph, as any undirected graph can be made into an Eulerian graph by replacing
each undirected edge with two directed edges. Two natural walks on a graph will be considered.
For the simple random walk choose a neighbor uniformly at random and go there, while in the
max-degree walk choose a neighbor with probability 1/d each and otherwise do nothing.

Which (non-lazy) directed walks mix rapidly? Certainly it is necessary that the walk not get
stuck drifting between sets of equal sizes, such as from one bipartition to another (e.g. simple walk
on a cycle with an even number of vertices). To avoid this it is enough that if the walk starts
in a set of size π(A) ≤ 1/2, then the set of adjacent vertices has size > π(A). For instance, a
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max-degree walk on a strongly connected graph with a self-loop at each vertex. It will be found
that this expansion condition is also sufficient.

We now give our main results. Note that τ(ε) is total variation mixing time (time to converge
at an “average” vertex), τ∞(ε) is L∞ mixing time (time to converge at every vertex), λi 6= 1 is
any non-trivial (complex-valued) eigenvalue of the transition matrix, λ is the spectral gap, and
N(A) = {y ∈ V : ∃x ∈ A, P(x, y) > 0} is the neighborhood of set A, and π(v) is the stationary
distribution.

Corollary 1.1. The simple random walk on an Eulerian graph with m edges satisfies

λ ≥ 1− cos
2π
m

≈ 2π2

m2
.

If it satisfies the expansion condition that

∀A ⊂ V, π(A) ≤ 1/2, ∀v ∈ N(A) : π (N(A) \ v) ≥ π(A)

then also

1− |λi| ≥ 1− cos
2π
m

≈ 2π2

m2

τ(ε) ≤ 1
− log cos 2π

m

log
1− 2/m

ε
≈ m2

2π2
log

1
ε

τ∞(ε) ≤ min

{
log m−2

2 + log 1
ε

− log cos 2π
m

,
m2

6
+
m2

8
log

1
ε

}
δε≤1 +m2 1 + 3ε

3(1 + ε)3
δε>1

≈ m2

2π2
log

m− 2
2ε

δε<1/m +
m2

8
log

4
ε
δε∈[1/m,1] +

m2

(1 + ε)2
δε>1

For the lazy simple random walk the bound on λ is a factor two smaller, the expansion condition
is replaced by strong connectivity, and in the remaining bounds replace m by 2m.

It follows that every lazy simple Eulerian walk converges in the same τ(ε) = O(m2 log(1/ε)) steps
required for a cycle walk, improving on and generalizing the classical result τ(ε) = O(m2 log(m/ε))
for a lazy simple undirected walk. This can be further improved on by an order of magnitude in
the special case of a walk on a regular graph, or equivalently of a max-degree walk.

Corollary 1.2. The max-degree walk on an Eulerian graph with n vertices and max-degree d
satisfies

λ ≥ 2
d

(
1− cos

π

n

)
≈ π2

n2d
.

If it satisfies the expansion condition that

∀A ⊂ V, |A| ≤ |V |/2 : |N(A)| > |A|
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then also

1− |λi| ≥ 2
d

(
1− cos

π

n

)
≈ π2

n2d

τ(ε) ≤ 1
− log(1− 2

d(1− cos π
n))

log
1− 1/n

ε
≈ n2d

π2
log

1
ε

τ∞(ε) ≤ min

{
log(n− 1) + log 1

ε

− log(1− 2
d(1− cos π

n))
,
n2d

3
+
n2d

4
log

1
ε

}
δε≤1 + n2d

2
3

1 + 3ε
(1 + ε)3

δε>1

≈ n2d

π2
log

n− 1
ε

δε<1/n +
n2d

4
log

4
ε
δε∈[1/n,1] +

2n2d

(1 + ε)2
δε>1

For the lazy max-degree walk the bounds on λ is a factor two smaller, the expansion condition
is replaced by strong connectivity, and in the remaining bounds replace d by 2d.

How sharp are these bounds? For the simple random walk on the cycle with an odd number
of vertices n (so m = 2n and d = 2) the spectral gap bound is off by a factor of 4, the eigenvalue
bounds are exact, and the upper bounds on τ(ε) become lower bounds if log 1−π∗

ε is replaced by
log 1

2ε (where π∗ = 2/m and π∗ = 1/n respectively). More generally, we define a precise notion
of rate of expansion, and show that a cycle walk with clockwise drift will be within a factor two
of being the slowest mixing, not only among simple or max-degree walks, but among all Markov
chains with this rate of expansion.

An interesting aspect of our argument is that it uses the Evolving set methodology of Morris
and Peres [4], in an improved form given by Montenegro and Tetali [3] which bounds total variation
distance directly, without going through L2 distance. Related bounds also show that with relative
entropy and L2 mixing times the cycle walk is again nearly the slowest walk.

The paper proceeds as follows. In Section 2 we review the Evolving set methodology. This is
followed in Section 3 with a proof of our main mixing result, a generalization of the simple and max-
degree Eulerian walks considered above. In Section 4 this is extended to a bound on convergence
rates in distances other than total variation. The Appendix contains proofs of inequalities used in
showing our results.

2 Review of Mixing and Evolving Sets

We begin by reviewing mixing time theory, and particularly Evolving Set ideas.
Let P be a finite irreducible Markov kernel on state space V with stationary distribution π,

that is, P is a |V | × |V | matrix with entries in [0, 1], row sums are one, V is connected under P
(∀x, y ∈ V ∃t : Pt(x, y) > 0), and π is a distribution on V with πP = π. The time-reversal P∗ is
given by P∗(x, y) = π(y)P(y,x)

π(x) and has stationary distribution π as well. If A,B ⊂ V the ergodic
flow from A to B is given by Q(A,B) =

∑
x∈A,y∈B π(x)P(x, y). Given initial distribution σ, the

t-step discrete time distribution is given by σPt.
If the walk is strongly connected and aperiodic then σPt t→∞−−−→ π. The rate of convergence can

be measured by the variation distance

‖σ − π‖TV =
1
2

∑
x∈V

|σ(x)− π(x)| .
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The mixing time τ(ε) denotes the worst-case number of steps required for the total variation distance
‖Pt(x, ·)− π‖TV to drop to ε.

Many bounds on mixing time are shown by working with the spectral gap, which is just the
gap between the two largest eigenvalues of the walk P+P∗

2 , that is,

λ = min
i6=0

1− λi

(
P + P∗

2

)
= inf

Var(f) 6=0

1
2

∑
x,y∈V (f(x)− f(y))2π(x)P(x, y)

1
2

∑
x,y∈V (f(x)− f(y))2π(x)π(y)

where {λi(K)} denotes the eigenvalues of Markov chain K, and λ0(K) = 1.
Our results use the Evolving set methodology of Morris and Peres [4].

Definition 2.1. Given set A ⊂ V , a step of the evolving set process is given by choosing u ∈ [0, 1]
uniformly at random, and transitioning to the set

Au = {y ∈ V : Q(A, y) ≥ uπ(y)} = {y ∈ V : P∗(y,A) ≥ u} .

The evolving set process is thus a random walk on sets. By Theorem 4.6 and Corollary 4.9 of
[3] it relates to the original Markov chain by

‖Pt(x, ·)− π‖TV ≤ 1
π(x)

Eπ(St)(1− π(St)) (2.1)

where St denotes the t-th state of an evolving set walk starting at S0 = {x}. The set size π(St)
t→∞−−−→

{0, 1}, and the rate of convergence in a single step can be measured by the root profile of [4] or the
following generalization of [3]:

Definition 2.2. Given f : [0, 1] → R+ let

Cf (A) =

∫ 1
0 f(π(Au)) du
f(π(A))

.

The f -congestion is Cf = maxπ(A)≤1/2 Cf (A), and the f -congestion profile is any function satisfying
Cf (r) ≥ maxπ(A)≤r Cf (A) for r ∈ (0, 1).

For instance, the root profile of [4] is ψ(r) = 1− C√a(r). The f -congestion is related to mixing
time and spectral gap by Theorem 2.3 below; the proof is identical to that of Theorem 3.2 of [2],
but with (2.1) instead of a bound of [4].

Theorem 2.3. Suppose f : [0, 1] → R+ is such that ∀a ∈ (0, 1/2] : 0 < f(a) ≤ f(1− a). For every
finite irreducible Markov chain, if x ∈ V then the t-step walk satisfies

‖Pt(x, ·)− π‖TV ≤
(

max
π(A)≤1/2

π(A)π(Ac)
f(π(A))

)
f(π(x))
π(x)

Ct
f .

Also, every (complex valued) eigenvalue λi 6= 1 of P satisfies

1− |λi| ≥ 1− Cf .

If only ∀a ∈ (0, 1) : f(a) > 0 then both results still hold, but with Cf = maxA⊂V Cf (A).
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The f -congestion can often be written in terms of isoperimetric (i.e. geometric) quantities via a
straightforward optimization, by use of whatever quantities are fixed by the isoperimetric term, plus
Jensen’s Inequality that

∫
f(g(x)) dµ(x) ≤ f(

∫
g(x) dµ(x)) when f is concave and µ is a probability

measure, and the identity
∫ 1
0 π(Au) du = π(A). A particularly useful quantity to consider is the

modified ergodic flow from set A:

Ψ(A) =
1
2

∫ 1

0
|π(Au)− π(A)| du

Because
∫ 1
0 π(Au) du = π(A) then Ψ(A) is the area below π(Au) and above π(A), while also the

area below π(A) and above π(Au). By Lemma 4.17 of [3] this is as the smallest ergodic flow from
set A into a set of size π(Ac), that is

Ψ(A) = min
B⊂V, v∈V,

π(B)≤π(Ac)<π(B∪v)

Q(A,B) +
π(Ac)− π(B)

π(v)
Q(A, v) .

When π is uniform this simplifies to Ψ(A) = minπ(B)=π(Ac) Q(A,B) , while if a walk is lazy (i.e.
P(x, x) ≥ 1/2 ∀x ∈ V ) then Ψ(A) = Q(A,Ac) with worst case B = Ac.

What is a good choice of function f for the f -congestion? In Example 4.4 of [2] it was suggested
that if the modified ergodic flow Ψ(A) ≥ C for every A ⊂ V and constant C not depending on set
size, then it is best to work with f(a) = sin(πa). For instance, the simple random walk on an odd
length cycle with Ψ(A) ≥ 1/m. Then, by Theorem 2.3,

‖Pt(x, ·)− π‖TV ≤ (1− π∗)Ct
sin(πa) and 1− |λi| ≥ 1− Csin(πa) ,

where π∗ = minv∈V π(v).

3 General random walks

We now set out to show our main result, eigenvalue and total variation mixing bounds for general
random walks (the L∞ case will be dealt with in the next section). Two corollaries of this will
be the specific walks on Eulerian graphs discussed in the introduction. In particular, we will find
that even when general Markov chains are considered, a walk with clockwise drift on a cycle is still
within a factor two of being the slowest mixing Markov chain.

The modified ergodic flow Ψ(A) will play a key role in our proof, but our main theorem will
involve a slightly weaker quantity. In practice these two will usually be the same. Given A ⊂ V ,
let Q̂(A, x) = min{Q(A, x), π(x)/2} and define

Ψ̂(A) = min
B⊂V, v∈V,

π(B)≤π(Ac)<π(B∪v)

∑
x∈B

Q̂(A, x) +
π(Ac)− π(B)

π(v)
Q̂(A, v) .

As with Ψ(A), for a uniform distribution Ψ̂(A) = minπ(B)=π(Ac) Q̂(A,B). For a lazy walk Ψ̂(A) =
Q̂(A,Ac) = Q(A,Ac) = Ψ(A), or if Ψ(A) ≤ ∆min/2 (defined below) then again Ψ̂(A) = Ψ(A).

To motivate the form of our main result, we note that in their work on Blocking conductance
Kannan, Lovász and Montenegro [1] show that the square of conductance can often be replaced by
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a product of a measure of vertex boundary and a measure of edge expansion. Likewise, our general
bound will involve a product of edge expansion Ψ̂min with a measure of vertex boundary Âmax,
rather than just the square of edge expansion which is found in most isoperimetric results.

Theorem 3.1. Given a finite Markov chain, let

Ψ̂min = min
π(A)≤1/2

Ψ̂(A) Âmin = min{Ψ̂min, ∆min/2}

∆min = min
A,B⊂V,

π(A) 6=π(B)

|π(A)− π(B)| Âmax = max{Ψ̂min, ∆min/2}

Qmin = min
A⊂V

Q(A,Ac) π∗ = min
v∈V

π(v) .

Then,

τ(ε) ≤ 1

− log
(
1− 2 Âmin

∆min
(1− cos(2π Âmax))

) log
1− π∗
ε

≈ 1
2π2Ψ̂minÂmax

log
1− π∗
ε

1− |λi| ≥ 2
Âmin

∆min
(1− cos(2πÂmax)) ≈ 2π2 Ψ̂min Âmax

λ ≥ 2Qmin

π∗
(1− cos(ππ∗)) ≈ π2 π∗Qmin

Proof of Corollaries 1.1 and 1.2 (see Section 4 for the L∞-bounds). First to Corollary 1.1. Sup-
pose that π(A) ≤ 1/2, and B, v are such that Ψ(A) = Q(A,B) + π(Ac)−π(B)

π(v) Q(A, v). If N(A) ⊆ Bc

then π(N(A) \ v) ≤ π(Bc \ v) = 1 − π(B ∪ v) < π(A), contradicting the expansion condition.
Hence, N(A) ∩ B 6= ∅ and so ∃x ∈ A, y ∈ B with P(x, y) > 0, and so Ψ(A) ≥ Q(A,B) ≥
π(x)P(x, y) ≥ 1/m. Likewise, for some B ⊂ V , Ψ̂(A) ≥ Q̂(A,B) ≥ min{Q(x, y), π(y)/2} and so
Ψ̂(A) ≥ 1/m if π(y) = deg(y)/m ≥ 2/m. If deg(y) = 1 then N({y}) has only a single vertex v,
and so π(N({y}) \ v) = 0 contradicting the expansion condition. It follows that π(y) ≥ π∗ ≥ 2/m.
Corollary 1.1 then follows from Theorem 3.1 and the bound ∆min ≥ 1/m. Corollary 1.2 follows
similarly, but with Ψ̂(A) ≥ 1/nd and ∆min = 1/n.

Note that the max-degree walk is actually the same as the simple random walk when each
vertex x has d − deg(x) self-loops added, and yet Corollary 1.2 is much better than that induced
by Corollary 1.1. To understand this, recall that, in keeping with the intuition of Blocking Con-
ductance, Theorem 3.1 will greatly improve on a bound involving edge-expansion alone (i.e. Ψ(A)
or Ψ̂(A)) if ∆min � Ψmin. In fact, the max-degree walk had ∆min = 1/n� 1/nd = Ψmin.

The theorem gets us very close to answering the question of what is the worst of all random
walks, as shown by the following examples.

Example 3.2. Consider the simple random walk on a cycle (with m = 2n edges). Since m = 2n
and d = 2 then Corollaries 1.1 and 1.2 are the same. In Example 3.3 we find that Corollary 1.2
is exact for the eigenvalue gap and essentially sharp for mixing times, and hence Corollary 1.1 is
equally good.
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Example 3.3. Consider a max-degree walk on a cycle with an odd number of vertices n, such that
at each vertex there are d− 1 edges pointing in the clockwise direction, and 1 edge pointing in the
counterclockwise direction.

This walk has an eigenvalue λk = d−1
d eπi(n−1)/n+1

de
−πi(n−1)/n with eigenvector f(x) = eπix(n−1)/n

where the vertices are labeled clockwise as x ∈ {0, 1, . . . , n− 1}. Then

1− |λk| = 1−
√

1− 4
d
(1− 1/d) sin2 π

n
≈ 2
d
(1− 1/d)

(π
n

)2
≈ 2π2

n2d
.

Corollary 1.2 gives a fairly similar bound of

min 1− |λk| ≥
2
d
(1− cos(π/n)) ≈ π2

n2d
.

The upper and lower bounds are equal at d = 2, and within a factor two of equality when d > 2.
For spectral gap, note that P+P∗

2 is just the simple random walk on a cycle, and the largest
eigenvalue of this is cos(2π/n). Consequently λ = 1 − cos(2π/n) ≈ 2π2

n2 . By Theorem 3.1 every
walk with Qmin = 1/n and π∗ = 1/n satisfyλ ≥ 2(1 − cos(π/n)) ≈ π2

n2 , and so our drifting
walk is within a factor two of having the worse spectral gap among all walks with Qmin = 1/n
and π∗ = 1/n. Although Corollary 1.2 is quite poor for this example, it is only off by a factor
of four when considering instead the simple random walk on a cycle with d − 2 self-loops (and
λ = 1− 2

d(1− cos(2π/n)).
Likewise, the upper and lower bounds on mixing time are quite similar, with

τ(ε) ≥ 1
− log |λk|

log
1
2ε
≥ 1

− log
√

1− 4
d(1− 1/d) sin2 π(n−1)

n

log
1
2ε
≈ n2d

2π2
log

1
2ε

while the upper bound is

τ(ε) ≤ 1
− log(1− 2

d(1− cos(π/n))
log

1− 1/n
ε

≈ n2d

π2
log

1
ε
.

The bounds are nearly equivalent at d = 2, and within a factor two of equality when d > 2. When
n = 3 and d = 2 then the lower bound can be sharpened slightly to be exactly equal to the upper
bound.

Example 3.4. Consider a general Markov chain R with uniform stationary distribution π(·) = 1/n.
Note that Ψmin,R ≤ Ψ({v}) ≤ π(v)(1− π(v)) for every v ∈ V , and so Ψmin,R ≤ π∗(1− π∗). Hence,
in Theorem 3.1 we have Ψ̂min,R ≥ 1

2Ψmin,R and Amax ≥ 1/2n and so the upper bound on mixing
time in Theorem 3.1 is roughly 2n

π2Ψmin,R
log 1−π∗

ε .
On the other hand, the Markov chain of Example 3.3 can be generalized to the walk P(x, x+1) =

α ∈ [1/2, 1] and P(x, x − 1) = 1 − α, with Ψmin,P = (1 − α)π∗ an eigenvalue λk = αeπi(n−1)/n +
(1− α)e−πi(n−1)/n, and hence τ(ε) lower bounded by roughly n2

2π2(1−α)
log 1

2ε . If Ψmin,R ≤ 1
2π∗ then

when α = 1 − Ψmin,R

π∗
≥ 1/2 then Ψmin,P = Ψmin,R and the lower bound becomes n

2π2Ψmin,R
log 1

2ε ,
which shows that the mixing time of this cycle is at most four times as fast as that of the walk R.
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Proof of Theorem 3.1. As suggested in the preliminaries, we will study the f -congestion Csin(πa).
This will be done in two steps. First, we show a result appropriate for max-degree random walks.
Then we consider a case relevant to the simple random walk.

Fix some set A ⊂ V .
First consider the case that Ψ(A) < ∆min/2.
Notice that if π(Au) > π(A) then π(Au) − π(A) ≥ ∆min, while if π(Au) < π(A) then π(A) −

π(Au) ≥ ∆min. Since π(Au) is decreasing with Ψ(A) =
∫
π(Au)>π(A)(π(Au)−π(A)) du < ∆min/2 by

assumption, it follows that π(Au) ≤ π(A) when u ≥ Ψ(A)
∆min

. Hence

Ψ(A) =
∫

π(Au)>π(A)
(π(Au)− π(A)) du =

∫ Ψ(A)/∆min

0
(π(Au)− π(A)) du .

Likewise π(Au) ≥ π(A) when u ≤ 1 − Ψ(A)
∆min

, and so Ψ(A) =
∫ 1
1−Ψ(A)/∆min

(π(A) − π(Au)) du.

Combining these, π(Au) = π(A) when u ∈
[

Ψ(A)
∆min

, 1− Ψ(A)
∆min

]
.

Hence, if we let f(a) = sin(πa) and M = Ψ(A)
∆min

then by Jensen’s Inequality

Cf (A) =
M
∫M
0 f(π(Au)) du

M + (1− 2M)f(π(A)) +M
∫ 1
1−M f(π(Au)) du

M

f(π(A))

≤
M f

(
π(A) + Ψ(A)

M

)
+ (1− 2M)f(π(A)) +M f

(
π(A)− Ψ(A)

M

)
f(π(A))

(3.2)

= 1− 2
Ψ(A)
∆min

(1− cos(π∆min))

= 1− 2
Ψ̂(A)
∆min

(1− cos(π∆min)) .

Now, consider the case that Ψ(A) ≥ ∆min/2.
Choose ℘ ∈ [0, 1] such that π(Au) ≥ π(A) if u < ℘ and π(Au) ≤ π(A) if u > ℘, so that

Ψ(A) =
∫ ℘
0 (π(Au) − π(A)) du =

∫ 1
℘ (π(A) − π(Au)) du. Then, if ℘̂ = min{℘, 1/2} it follows that

Ψ̂(A) =
∫ ℘̂
0 (π(Au)− π(A)) du =

∫ 1
℘̂ (π(A)− π(Au)) du. Hence, if x = π(A) then∫ 1

0
f(π(Au)) du = ℘̂

∫ ℘̂

0
f(π(Au))

du

℘̂
+ (1− ℘̂)

∫ 1

℘̂
f(π(Au))

du

1− ℘̂

≤ ℘̂ sin

(
π

(
x+

Ψ̂(A)
℘̂

))
+ (1− ℘̂) sin

(
π

(
x− Ψ̂(A)

1− ℘̂

))
≤ sin(πx) cos(2πΨ̂(A))

by Lemma 4.4 in the Appendix. Hence, Csin(πa)(A) ≤ cos(2πΨ̂(A)).
Combine these two cases, maximize over sets A ⊂ V , and apply Theorem 2.3 to obtain the

mixing time and eigenvalue bounds.
For the spectral gap, note that

λ = 2min 1− λi

(
I
2

+
P + P∗

4

)
= 2min 1−

∣∣∣∣λi

(
I
2

+
P + P∗

4

)∣∣∣∣ .
8



Hence it suffices to study eigenvalues of P′ = I
2 + P+P∗

4 . However, P′ is a lazy walk and so
Ψ̂(A) = Ψ(A) = QP′(A,Ac). This is in turn half the ergodic flow QP+P∗

2
(A,Ac), and so Ψ̂(A) =

1
2QP+P∗

2
(A,Ac) = 1

2QP(A,Ac) (since QP(A,Ac) = QP∗(A,Ac) = QP+P∗
2

(A,Ac)). In short,

Ψ̂min

(
I
2

+
P + P∗

4

)
=

1
2

min
A⊂V

QP(A,Ac) =
1
2
Qmin(P) .

Before applying the eigenvalue bounds proven earlier, note for a lazy walk that Ψ(A) = Q(A,Ac),
with Q(A,x)

π(x) < 1
2 only if x ∈ Ac, and Q(A,x)

π(x) > 1
2 only if x ∈ A. It follows that if π(Au) > π(A)

then A ( Au and so π(Au) ≥ π(A) + π∗. Likewise, if π(Au) < π(A) then A ) Au and so
π(Au) ≤ π(A)− π∗. Hence, when studying a lazy walk (such as I

2 + P+P∗

4 ), ∆min may be replaced
by π∗ in our earlier analysis. But π∗

(
I
2 + P+P∗

4

)
= π∗(P), and so the spectral bound follows from

the earlier eigenvalue bounds.

4 Other distances

Different applications may require different measures of the convergence rate. The total variation
distance is the most widely used and measures distance from stationary at an average vertex. The
much stronger L∞ or relative pointwise distance measures distance from stationary at the worst
vertex. In this section we show mixing bounds on L2 distance, which are again within a small
constant factor of those for the walk on a cycle with clockwise drift, and infer from this a bound on
L∞ distance as well. The interested reader can easily use the approach of this section to construct
similar bounds for other distances, such as relative entropy.

Given distributions σ and π the L2 distance is defined by

‖σ/π − 1‖2,π =

√√√√∑
x∈V

π(x)
(
σ(x)
π(x)

− 1
)2

The mixing time τ2(ε) is the worst case number of steps required for a walk to reach distance ε in
L2 distance. This can be bounded by applying the technique used to prove Theorem 2.3 to evolving
set bounds on L2 convergence [3] (Theorem 4.6 and Corollary 4.9) to show

τ2(ε) ≤
1

1− Csin(πa)

(
1
2

log
1− π∗
π∗

+ log
1
ε

)
. (4.3)

When ε is large then this can be improved further via equation (4.5) of [3]:

Theorem 4.1. When r
(
1− C√

a(1−a)

(
1

1+r2

))
is convex then

τ2(ε) ≤

⌈∫ 1/(1+ε2)

π∗

dr

2r(1− r)(1− C√
a(1−a)

(r))

⌉
.

It remains to bound the profile C√
a(1−a)

(r):
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Lemma 4.2. Let Ψmin = min
A⊂V

Ψ(A) and Amax = max{Ψmin,
∆min

2 }. Then we may take

1− C√
a(1−a)

(r) =
ΨminAmax

2r2(1− r)2
δr≤1/2 + 8ΨminAmax δr>1/2 .

Proof. In Theorem 4.16 of [3] the authors show that

1− C√
a(1−a)

(A) ≥ Ψ(A)2

2π(A)2π(Ac)2
.

The lemma follows unless Ψmin(A) < ∆min/2 for some π(A) ≤ r. But then equation (3.2)
applied to f(a) =

√
a(1− a), with X = 1

2 + ∆min
2π(A) and Y = 1

2 −
∆min
2π(Ac) , implies

1− Cf (A) ≥ 2
Ψ(A)
∆min

(
1−

√
XY −

√
(1−X)(1− Y )

)
≥ 2

Ψ(A)
∆min

(
1−

√
1− (X − Y )2

)
≥ Ψ(A)∆min

4π(A)2π(Ac)2

where the second inequality was Lemma 4.3 of [2], i.e.
√
XY +

√
(1−X)(1− Y ) ≤

√
1− (X − Y )2,

and the final inequality is
√

1− x ≤ 1− x/2.

By combining this with equation (4.3) when ε ≤ 1 and Theorem 4.1 when ε > 1, we obtain the
bound:

Corollary 4.3.

τ2(ε) ≤

⌈
2
3 + log 1

ε

8ΨminAmax
δε≤1 +

1 + 3ε2

6ΨminAmax(1 + ε2)3
δε>1

⌉
Proof of L∞ cases in Corollaries 1.1 and 1.2. We use the relation τ∞(ε) ≤ τ2,P(

√
ε) + τ2,P∗(

√
ε)

(see e.g. Appendix of [3]). Also, suppose A,B ⊂ V .
First Corollary 1.2. Since π is uniform then Ψ(A) = minπ(B)=π(Ac) Q(A,B). If π(B) = π(Ac)

then

QP(A,B) = π(B)− QP(Ac, B)
= π(B)− π(Ac) + QP(Ac, Bc) = QP∗(Bc, Ac) ,

and so Ψmin is the same for P and P∗. Finish with Corollary 4.3 using the conditions ∆min ≥ 1/n,
Ψmin ≥ 1/nd and Amax ≥ 1/2n.

Now to Corollary 1.1. Note that Ψmin,P ≥ 1/m was shown in the proof of the total variation
case. It remains to bound Ψmin,P∗ . For some v ∈ V and π(B) ≤ π(Ac) < π(B ∪ v) then, arguing
as above,

Ψmin,P∗ = QP∗(A,B) +
π(Ac)− π(B)

π(v)
QP∗(A, v)

= QP(Bc \ v,Ac) +
(

1− π(Ac)− π(B)
π(v)

)
QP(v,Ac) .
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Arguing as in the proof of Corollaries 1.1 and 1.2 appearing after Theorem 3.1, if π(C) ≤ 1/2 and
π(D) ≤ π(Cc) < π(D ∪ v) then Q(C,D) ≥ 1/m. Then, if C = Bc \ v and D = Ac it follows that
Ψmin,P∗ ≥ QP(Bc \ v,Ac) ≥ 1/m. Hence ∆min ≥ 1/m, Ψmin ≥ 1/m and Amax ≥ 1/2m for both P
and P∗. Finish with Corollary 4.3.
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Appendix

We have left for the Appendix the proof of an inequality key to our main theorem.

Lemma 4.4. Given a, b ∈ [0, 1/2] and c ∈ [0, 1/4], if c ≤ b(1−max{a, b}) then

b sin
(
π
(
a+

c

b

))
+ (1− b) sin

(
π

(
a− c

1− b

))
≤ sin(πa) cos(2πc) .

Proof. Suppose a = 0. Observe that if x ∈ [c,∞) then

d

dx
x sin

πc

x
= sin

πc

x
− πc

x
cos

πc

x
≥ 0

because sin y ≥ y cos y when y ∈ [0, π]. But 1− b ≥ b ≥ c and so

b sin
πc

b
− (1− b) sin

πc

1− b
≤ 0 . (4.4)

The lemma then follows.
If a > 0 then let h(a, b, c) denote the left side of the inequality in the lemma. By the identity

sin(x+ y) = sin(x) cos(y) + sin(y) cos(x) then

h(a, b, c)
sin(πa)

= b cos
πc

b
+ (1− b) cos

πc

1− b
+ cot(πa)

(
b sin

πc

b
− (1− b) sin

πc

1− b

)
Since a ∈ [0, 1/2] then cot(πa) is decreasing, and by (4.4) then h(a,b,c)

sin(πa) is increasing in a. Hence, if

b ≥ 2c then h(a,b,c)
sin(πa) ≤

h(1/2,b,c)
sin(π/2) = h(1/2, b, c), otherwise h(a,b,c)

sin(πa) ≤
h(1−c/b,b,c)
sin(π(1−c/b)) .
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When b ≥ 2c then πc
b ,

πc
1−b ∈ [0, π/2] since 1 − b ≥ 1

2 ≥ 2c. By concavity of cosx when
x ∈ [0, π/2], it follows that

λ cos
πc

b
+ (1− λ) cos

πc

1− b
≤ cos

(
λ
πc

b
+ (1− λ)

πc

1− b

)
for every λ ∈ [0, 1]. When λ = b it follows that h(1/2, b, c) ≤ cos(2πc).

When b < 2c then, since cot(π(1− x)) = − cot(πx),

h(1− c/b, b, c)
sin(π(1− c/b))

=
(1− b) sin πc

b(1−b)

sin πc
b

≤ (1− 2c) cos
πc

1− 2c
= h(1/2, 2c, c) ≤ cos(2πc)

where the first inequality is Lemma 4.5 with x = πc
b(1−b) and y = πc

b , and the second inequality
follows from the case of b ≥ 2c.

The following Lemma was required in the preceding proof.

Lemma 4.5. If x, y ∈ [π/2, π], x > y, and sinc(z) := sin z
z then

sinc(x)
sinc(y)

≤
(

1− 2
π
y
(
1− y

x

))
cos

y
(
1− y

x

)
1− 2

πy
(
1− y

x

) .
Since sinc(y) is decreasing when y ∈ [π/2, π] then this measures how much sinc drops between

y and x. A slightly weaker result that is perhaps a bit easier to grasp is

∀x, y ∈ [π/2, π], x > y :
sinc(x)
sinc(y)

≤ cos
(
2y
(
1− y

x

))
.

Proof. Rewrite the problem as one of showing that

f(x, y) :=
(

1− 2
π
y
(
1− y

x

))
cos

y
(
1− y

x

)
1− 2

πy
(
1− y

x

) − sinx
x

y

sin y
≥ 0 .

The third partial is

∂3f

∂y3
= − π5x2(2y − x)3

(πx− 2xy + 2y2)5
sin

y
(
1− y

x

)
1− 2

πy
(
1− y

x

)
−6π3x(2y − x)(x(π − x) + 2y(x− y))

(πx− 2xy + 2y2)4
cos

y
(
1− y

x

)
1− 2

πy
(
1− y

x

)
+

6y
x

sinx
sin y

cot3 y − 6
x

sinx
sin y

cot2 y +
5y
x

sinx
sin y

cot y − 3
x

sinx
sin y

≤ 0

The inequality is because every term is negative (note that y(1−y/x)

1− 2
π

y(1−y/x)
∈ [0, π/2] and πx− 2xy +

2y2 > 0).
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It follows that the second partial is decreasing, and so for each x ∈ [π/2, π] there are three
possible cases: strictly convex in y, convex then concave in y, or strictly concave in y. If ∂f

∂y (x, π/2) ≥
0 then in each case the minimum is at an endpoint, i.e. f(x, y) ≥ min{f(x, π/2), f(x, x)} = 0, and
we are done. It remains to consider the first partial:

∂f

∂y
(x, π/2) =

2x(π − x) cos(π − x)− (1− 2(π − x)) sin(π − x)
πx

≥ min
x∈[π/2,π]

{
0,

2x(π − x)(1− 2
π (π − x))− (1− 2(π − x))(π − x)

πx

}

= min
x∈[π/2,π]

{
0,
π − x

πx

(
2π − 1− 4x(π − x)

π

)}
= 0

The inequality is because the expression is trivially positive if π − x ∈ [1/2, π/2], whereas if a :=
π − x ∈ [0, 1/2] then use the relations cos a ≥ 1− 2

πa and sin a ≤ a.
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