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Abstract

We show a strict hierarchy among various edge and vertex expansion properties of Markov chains.
This gives easy proofs of a range of bounds, both classical and new, on chi-square distance, spectral
gap and mixing time. The 2-gradient is then used to give an isoperimetric proof that a random
walk on the grid [k]n mixes in time O∗(k2 n).
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1 Introduction

Markov chain algorithms have been used to solve a variety of previously intractable approximation
problems. These have included approximating the permanent, estimating volume, counting contin-
gency tables, and studying stock portfolios, among others. In all of these cases a critical point has
been to show that a Markov chain is rapidly mixing, that is, within a number of steps polynomial in
the problem size the Markov chain approaches a stationary (usually uniform) distribution π.

Intuitively, a random walk on a graph (i.e., a Markov chain) is rapidly mixing if there are no
bottlenecks. This isoperimetric argument has been formalized by various authors. Jerrum and Sinclair
[6] showed rapid mixing occurs if and only if the underlying graph has sufficient edge expansion, also
known as high conductance. Lovász and Kannan [8] showed that the mixing is faster if small sets have
larger expansion. Kannan, Lovász and Montenegro [7] and Morris and Peres [12] extended this and
showed that the mixing is even faster if every set also has a large number of boundary vertices, i.e.,
good vertex expansion.

In a separate paper [11] the present author has shown that the extensions of [8, 7, 12] almost
always improve on the bounds of [6], by showing that standard methods used to study conductance
– via geometry, induction or canonical paths – can be extended to show that small sets have higher
expansion or that there is high vertex expansion. This typically leads to bounds on mixing time that
are within a single order of magnitude from optimal. However, none of these methods fully exploit
the results of [7, 12], as each involves only two of three properties: edge expansion, vertex expansion
and conditioning on set size.

Before introducing our results, let us briefly discuss the measures of set expansion / congestion
that are used in [7, 12]. Note that for the remainder of the paper congestion and bottleneck mean that
there are either few edges from a set A to its complement, or that there are few boundary vertices, i.e.
either edge or vertex expansion is poor. Kannan et. al. developed blocking conductance bounds on
mixing for three measures of congestion. The spread ψ+(x) measures the worst congestion for sets of
sizes in [x/2, x], so if there are bottlenecks at small set sizes but not at larger ones then this is a good
measure to use. In contrast, the modified spread ψmod(x) measures the worst congestion among sets
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of all sizes ≤ x, but comes with stronger mixing bounds, so for a “typical” case where the congestion
gets worse as set size increases then this is best. The third measure, global spread ψgl(x) measures a
weighted congestion among sets of sizes ≤ x which is best only if the Markov chain has extremely low
congestion at small sets. Finally, Morris and Peres’ evolving sets uses a different measure ψevo(x) of
the worst congestion among sets of sizes ≤ x. Their method comes with very good mixing time bounds
in terms of ψevo(x), and because it bounds the stronger chi-square distance it also implies bounds on
the spectral gap. However, it is unclear how the size of ψevo(x) compares with the three congestion
measures of blocking conductance and hence we do not know which method is best unless all four of
the congestion measures are computed, a non-trivial task.

We begin by showing that the spread ψ+ lower bounds the evolving sets quantity ψevo of Morris
and Peres [12]. This implies a non-reversible form of ψ+, as well as lower bounds on the spectral gap
and on chi-square distance. The other forms of blocking conductance are found to upper bound ψevo

and are more appropriate for total variation distance. Moreover, an “optimistic” form of the spread
turns out to upper bound the spectral gap and lower bound total variation mixing time, although this
form is not useful in practice.

Houdré and Tetali [5], in the context of concentration inequalities, considered the discrete gradients
h+

p (x), a family which involves all three properties of the new mixing methods – edges, vertices and set
size – with p = 1 measuring only edges, p = 2 weighting edges and vertices roughly equally, and p =∞
measuring only vertices. In this paper it is shown that the spread function ψ+(x) is closely bounded
both above and below by h+

p (x). It is found that various classical isoperimetric bounds on mixing time
and spectral gap are essentially the best lower bound approximations to the quantity h+

2 (x)2/2. The
h+

1 (1/2) approximation is the theorem of Jerrum and Sinclair, h+
1 (x) leads to the average conductance

of Lovász and Kannan, h+
∞(1/2) gives a mixing time bound of Alon [2], and h+

2 (x) gives a bound
shown by Morris and Peres [12] and in a weaker form by this author [10].

Of these various bounds the one that is the most relevant to our purposes is h+
2 (x), since this is

weighted equally between edge and vertex isoperimetry. In order to give an application of our methods
we show how two additional isoperimetric quantities, Bobkov’s constant b+p and Murali’s β+ [13], can
be used to bound h+

2 (x) for products of Markov chains. We apply this to prove a lower bound on
h+

2 (x) for a random walk on the grid [k]n. This leads to a mixing time bound of O(k2 n log2 n), the
first isoperimetric proof of the correct τ = O∗(k2 n) for this Markov chain.

The paper proceeds as follows. In Section 2 we introduce notation. Section 3 shows the connection
between spread, evolving sets and spectral gap. Section 4 gives results on the discrete gradients,
including sharpness. Section 5 finishes the paper with the isoperimetric bound on the grid [k]n.

2 Preliminaries

A finite state Markov chainM is given by a state space K with cardinality |K| = n, and the transition
probability matrix, an n × n square matrix P such that Pij ∈ [0, 1] and ∀i ∈ K :

∑
j∈K Pij = 1.

Probability distributions on K are represented by 1× n row vectors, so that if the initial distribution
is p(0) then the t-step distribution is given by p(t) = p(0) Pt.

The Markov chains considered here are irreducible (∀i, j ∈ K, ∃t : (Pt)ij > 0) and aperiodic
(∀i : gcd{t : (Pt)ii > 0} = 1). Under these conditions there is a unique stationary distribution π such
that π P = π, and moreover the Markov chain is ergodic (∀i, j ∈ K : limt→∞(Pt)ij = πj). All Markov
chains in this paper are lazy (∀i ∈ K : Pii ≥ 1

2); lazy chains are obviously aperiodic.
The time reversal of a Markov chainM is the Markov chain with transition probabilities

←−
P (u, v) =

π(v)P(v, u)/π(u), and has the same stationary distribution π as the original Markov chain. It is often
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easier to consider time reversible Markov chains (∀i, j ∈ K : π(i) P(i, j) = π(j) P(j, i)). In the time
reversible case

←−
P = P and the reversal is just the original Markov chain.

The distance of p(t) from π is measured by the Lp distance ‖ · ‖Lp(π), which for p ≥ 1 is given by

‖p(t) − π‖pLp(π) =
∑
v∈K

∣∣∣∣∣p(t)(v)
π(v)

− 1

∣∣∣∣∣
p

π(v) .

The total variation distance is ‖ · ‖TV = 1
2 ‖ · ‖L1(π), and the χ2-distance is ‖ · ‖χ2(π) = ‖ · ‖2L2(π).

The mixing time measures how many steps it takes a Markov chain to approach the stationary
distribution,

τ(ε) = max
p(0)

min
{
t : ‖p(t) − π‖TV ≤ ε

}
,

χ2(ε) = max
p(0)

min
{
t : ‖p(t) − π‖χ2(π) ≤ ε

}
.

Cauchy-Schwartz shows that 2 ‖ · ‖TV ≤ ‖ · ‖1/2
χ2(π)

, from which it follows that τ(ε) ≤ χ2(4ε2).
Morris and Peres showed a nice fact about general (non-reversible) Markov chains [12]

max
x,z

Pn+m
xz

π(z)
− 1 ≤ ‖Pn(x, ·)− π‖1/2

χ2(π)
‖
←−
P m(z, ·)− π‖1/2

χ2(π)
,

and so chi-square mixing can be used to show small relative pointwise distance p(t)(·)/π(·). This makes
chi-square mixing a stronger condition than total variation mixing.

The ergodic flow between two points i, j ∈ K is q(i, j) = πi Pij and the flow between two sets
A, C ⊂ K is Q(A,C) =

∑
i∈A
j∈C

q(i, j). In fact Q(A,Ac) = Q(Ac, A), where Ac := K \A.

The continuization K̃ ofK is defined as follows. Let K̃ = [0, 1] and to each point v ∈ K assign an in-
terval Iv = [a, b] ⊂ [0, 1] = K̃ with b−a = π(v), so that m(Ix∩Iy) = 0 if x 6= y, and [0, 1] is the union of
these intervals. Then if A, B ⊂ K̃ define π(A) = m(A) and Q(A,B) =

∑
x,y∈K

m(A∩Ix)
π(x)

m(B∩Iy)
π(y) q(x, y)

for Lebesgue measure m. This is consistent with the definition of ergodic flow between sets in K. The
continuization K̃ is somewhat awkward but will be needed in our work, particularly for ψ+(A) below
and in the next few sections.

Various isoperimetric quantities have been used to upper bound τ(ε) and χ2(ε). A few of them are
listed below. Unless explicitly stated, all sets both here and later in the paper will be in K, not K̃.

Conductance[6, 8] : Φ(x) = min
π(A)≤x

Φ(A) , Φ(A) =
Q(A,Ac)
π(A)

, Φ = Φ(1/2),

Spread[7] : h+(x) = sup
A⊂K̃,

x/2≤π(A)≤x

1
xψ+(A)

where ψ+(A) =
∫ π(A)

0

Ψ(t, Ac)
π(A)2

dt,

Modified Spread[7] : hmod(x) = sup
A⊂K̃,

π(A)≤x

1
xψmod(A)

where ψmod(A) =
∫ 1

0

Ψ(t, Ac)
π(A) t#

dt,

Global Spread[7] : hgl(x) = sup
A⊂K̃,

π(A)≤x

1
π(A)ψgl(A)

where ψgl(A) =
∫ 1

0

Ψ(t, Ac)
π(A)2

dt,

Evolving Sets[12] : ψevo(x) = inf
π(A)≤x

ψevo(A) where ψevo(A) = 1−
∫ 1

0

√
π(Au)
π(A)

du,
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where Au = {y ∈ K :
←−
P (y,A) > u}

and Ψ(t, Ac) =

infK̃⊃B⊂A,
π(B)=t

Q(B,Ac) if t ≤ π(A)

Ψ(1− t, A) if t > π(A)

and t# = min{t, 1− t}.
Properties of the various ψ quantities can be found in the introduction and in the following section.
The infinum in the definition of Ψ(t, Ac) is achieved for some set B ⊂ K̃ when the Markov chain

is finite. For instance, when t ≤ π(A) then one construction for B is as follows: order the points
v ∈ A in increasing order of P(v,Ac) as v1, v2, . . . , vn, add to B the longest initial segment Bm :=
{v1, v2, . . . , vm} of these points with π(Bm) ≤ t, and for the remainder of B take t−π(Bm) < π(vm+1)
units of vm+1.

The quantities Au and Ψ(t, Ac) are closely related. For time-reversible Markov chains, if t =
π(Au) ≤ π(A) then Au is the set of size t with the highest flow into A, so the smallest flow into Ac,
and therefore Ψ(t, Ac) = Q(Au, A

c). Similarly, when t = π(Au) > π(A) then Ψ(t, Ac) = Q(Ac
u, A).

The choice of π(Au) or Ψ(t, Ac) is similar to the choice of Lebesgue or Riemann integral, where the
Lebesgue-like π(Au) measures the amount of K with transition probability to A above a certain level,
while Ψ(t, Ac) is more Riemann-like in simply integrating along P once P has been put in increasing
order.

The quantities Φ and ψevo(A) can be used to upper bound χ2(ε), while Φ(A), ψ+(A) and
ψgl/mod(A) are used to upper bound τ(ε). In the τ(ε) case it suffices to bound τ(1/4), because
τ(ε) ≤ τ(1/4) log2(1/ε) [1]. The two bounds of most interest here are:

Theorem 2.1. If M is a (lazy, aperiodic, ergodic) Markov chain then

[7] τ(1/4) ≤ 8 · 1376

(∫ 1/2

π0

h(x) dx+ h(1/2)

)

[12] χ2(ε) ≤
∫ 1/2

π0

dx

xψevo(x)
+

log(8/ε)
ψevo(1/2)

where π0 = minv∈K π(v) and h(x) indicates h+(x), hmod(x) or hgl(x). The h(x) bounds apply to
reversible Markov chains only, whereas the ψevo(x) bound applies even in the non-reversible case.

3 Spread, χ2 and the Spectral Gap

In this section we show a connection between the spread function and evolving sets. We further
explore this connection by finding that variations on the spread function both upper and lower bound
the spectral gap. The connection to evolving sets implies a mixing time theorem with much stronger
constants, as well as a non-reversible result.

Theorem 3.1. If M is a lazy Markov chain and A is a subset of the state space with π(A) ≤ 1/2,
then let the (time reversed) spread function

←−
ψ +(A) be given by

←−
ψ +(A) =

∫ π(A)

0

←−
Ψ(t, Ac)
π(A)2

dt where
←−
Ψ(t, Ac) = inf

K̃⊃B⊂A,
π(B)=t

Q(Ac, B) ,

with
←−
ψ gl(A) and

←−
ψmod(A) defined similarly, and where

←−
ψ +(x) = infπ(A)≤x

←−
ψ +(A). Then

←−
ψ gl(A) ≥ 1

2
←−
ψmod(A) ≥ ψevo(A) ≥ 1

4
←−
ψ +(A) ,
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and in particular,

τ(ε) ≤ χ2(4 ε2) ≤


4
∫ 1/2

π0

dx

x
←−
ψ +(x)

+
4 log(2/ε2)
←−
ψ +(1/2)

2
←−
ψ +(1/2)

(log(1/π0) + 2 log(1/2ε)) .

Observe that
←−
ψ + is just ψ+ of the time reversal. In particular,

←−
ψ +(A) = ψ+(A) when the Markov

chain is reversible, so this is an extension of the results of Kannan et. al. [7].
Corollary 4.3 shows that

←−
ψ +(1/2) ≥ Φ2 for lazy Markov chains, because

←−
Φ = Φ even for non-

reversible Markov chains. This approximation applied to the second upper bound on τ(ε) is exactly a
factor two from the non-reversible bound shown by Mihail [9]. A more direct approach can be found
in [12] which recovers this factor of two.

The inequalities
←−
ψ gl(A) ≥

←−
ψ +(A) and

←−
ψmod(A) ≥

←−
ψ +(A) follow almost immediately from the

definitions, so the theorem should not be used to lower bound either of these quantities by
←−
ψ +(A).

Nevertheless, the inequalities between ψ terms given in the theorem are all sharp. The first two
inequalities are sharp for a walk with uniform transition probability α/2 ≤ 1 from A and all the flow
concentrated in a region of size απ(A) in Ac. The final inequality is sharp as a limit. Let D → 4−,
x0 = (D/4)2/3, α = (4/D)−1. Then put an 1−x0 fraction of A with P(·, Ac) = α/2 and the remainder
with P(·, Ac) = 0. This flow can be concentrated in a small region of Ac.

Even though ψgl(A) is the largest quantity it is usually the least useful. As discussed in the
introduction, when there are bottlenecks at small values of π(A) then h+(x) is best (i.e., smallest)
because of the conditioning on π(A) ∈ [x/2, x]. Spread ψ+(A) is also the easiest to compute, and
the connection to ψevo(A) improves the constant terms in Theorem 2.1 greatly. For a “typical” case
hmod(x) is better than h+(x), but hgl(x) is poor because the supremum in hgl(x) may occur for small
π(A). However, for graphs with extremely high node-expansion then hgl(x) may be best. As a case
in point, on the complete graph Kn we have τ(1/4) ≤ χ2(1/4) = O(log n) via ψ+ or ψevo, while
τ(1/4) = O(log log n) from ψmod and τ(1/4) = O(1) from ψgl. However, on the cube {0, 1}n, ψgl

implies only τ = O(n2n), hopelessly far from the correct τ = O(n log n).
The following lemma shows how to rewrite

←−
Ψ(t, Ac) in terms of π(Au) and will be key to our proof.

Lemma 3.2. If M is a lazy Markov chain and A ⊂ K is a subset of the state space then

←−
Ψ(t, Ac) =


∫ 1

w(t)
(t− π(Au)) du if t ≤ π(A)∫ w(t)

0
(π(Au)− t) du if t > π(A)

where w(t) = inf{y : π(Ay) ≤ t}.

Proof. We consider the case of t ≤ π(A). A similar argument implies the result when t > π(A).
When t = π(Ax) for some x ∈ [1/2, 1] then Ax is the set of size t with the highest flow from A, so

the smallest flow from Ac, and therefore
←−
Ψ(t, Ac) = Q(Ac, Ax) (

←−
Ψ considers the reversed chain, so it
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minimizes flow from Ac rather than into Ac). But

Q(Ac, Ax) =
∑

y∈Ax

π(y)
←−
P (y,Ac) =

∑
y∈Ax

∫ 1

0

(
1− 1←−

P (y,A)≥u

)
duπ(y)

=
∫ 1

0

∑
y∈Ax

(
1− 1←−

P (y,A)≥u

)
π(y) du =

∫ 1

0
(π(Ax)− π(Au ∩Ax)) du

=
∫ 1

w(t)
(π(Ax)− π(Au)) du =

∫ 1

w(t)
(t− π(Au)) du .

This gives the result if t = π(Ax) for some x. Otherwise, the set B where the infinum is achieved in
the definition of

←−
Ψ(t, Ac) contains Aw(t)+δ where δ → 0+, and the remaining points y ∈ B \ Aw(t)+δ

satisfy
←−
P (y,A) = w(t). Let x = w(t) + δ, then w(π(Ax)) = w(t) for δ sufficiently small and

←−
Ψ(t, Ac) =

←−
Q (Ax, A

c) +
←−
Q (B \Ax, A

c)

=
∫ 1

w(π(Ax))
(π(Ax)− π(Au)) du+ (t− π(Ax)) (1− w(t))

=
∫ 1

w(t)
(t− π(Au)) du .

Proof of theorem. Rewriting
←−
ψ +(A) in terms of π(Au) gives

←−
ψ +(A) =

∫ π(A)

0

←−
Ψ(t, Ac)
π(A)2

dt =
∫ π(A)

0

∫ 1

w(t)

t− π(Au)
π(A)2

du dt

=
∫ 1

1/2

∫ π(A)

π(Au)

t− π(Au)
π(A)2

dt du =
1
2

∫ 1

1/2

(
π(A)− π(Au)

π(A)

)2

du ,

where the first equality follows from the definition of
←−
ψ +(A), the second equality applies Lemma

3.2, the third is a change in the order of integration using that w(t) ≤ u iff π(Au) ≤ t, and the
final equality is integration with respect to t. Morris and Peres [12] used a Taylor approximation√
π(Au)/π(A) =

√
1 + x ≤ 1 + x/2 − (x2/8) δx≤0 for x = π(Au)/π(A) − 1, and the Martingale

property of π(Au) that
∫ 1
0 π(Au) du = π(A) (Lemma 6 of [12]), to derive the lower bound

ψevo(A) ≥ 1
8

∫ 1

1/2

(
π(A)− π(Au)

π(A)

)2

du.

The lower bound ψevo(A) ≥ ψ+(A)/4 follows.
Similarly,

←−
ψmod(A) ≥

∫ 1

0

←−
Ψ(t, Ac)
t π(A)

dt

=
∫ π(A)

0

∫ 1

w(t)

t− π(Au)
t π(A)

du dt+
∫ 1

π(A)

∫ w(t)

0

π(Au)− t
t π(A)

du dt

=
∫ 1

1/2

∫ π(A)

π(Au)

t− π(Au)
t π(A)

dt du+
∫ 1/2

0

∫ π(Au)

π(A)

π(Au)− t
t π(A)

dt du

=
∫ 1

0

π(Au)
π(A)

log
(
π(Au)
π(A)

)
du.
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The final equality used the Martingale property of π(Au), as does the equality below.

ψevo(A) =
∫ 1

0

(
π(Au)
π(A)

−

√
π(Au)
π(A)

)
du

≤ 1
2

∫ 1

0

π(Au)
π(A)

log
(
π(Au)
π(A)

)
du ≤

←−
ψmod(A)/2,

where the inequality follows from 2(x−
√
x) ≤ x log x for all x > 0.

To establish that 2ψgl(A) ≥ ψmod(A), observe that when t ∈ [π(A), 1 − π(A)] then the result is
trivial, as 1/min{t, 1 − t}π(A) ≤ 1/π(A)2. When t ∈ [0, π(A)] then let f(t) =

←−
Ψ(t, Ac)/t. If B is

the set where the infinum in
←−
Ψ(t, Ac) is achieved then f(t) is the average probability of the reversed

chain making a transition from a point in B to Ac in a single step. It follows that f(t) is an increasing
function, because as t increases the points added to B will have higher probability of leaving then any
of those previously added. We then have the following:∫ π(A)

0

[
2
←−
Ψ(t, Ac)
π(A)2

−
←−
Ψ(t, Ac)
t π(A)

]
dt =

∫ π(A)

0

(2t− π(A)) f(t)
π(A)2

dt

=
∫ π(A)

π(A)/2

(2t− π(A)) (f(t)− f(π(A)− t))
π(A)2

dt ≥ 0.

A similar argument holds for the interval t ∈ [1− π(A), 1].
The first upper bound for τ follow from 4 ‖ · ‖2TV ≤ ‖ · ‖χ2(π) and Theorem 2.1. The second follows

from this and χ2(ε) ≤ (2ψevo(1/2))−1 log(1/επ0), which is another bound of Morris and Peres [12].

The connection between the spread function and mixing quantities is deeper than just an upper
bound on mixing time. In the proof that ψ+ bounds mixing time [7] it is shown that for reversible
Markov chains there is some ordering of points in the state space K̃ = [0, 1] such that the mixing time
is lower bounded by the case when ψcorrect(x) = ψcorrect([0, x]) =

∫ x
0 Q([x − t, x], [x, 1]) dt. The most

pessimistic lower bound on ψcorrect(x) is ψ+(x), hence an upper bound on mixing time, whereas

ψbig(A) =
∫ π(A)

0

Ψbig(t, Ac)
π(A)2

dt where Ψbig(t, Ac) = sup
K̃⊃B⊂A,
π(B)=t

Q(B,Ac) (1)

is the most pessimistic upper bound on ψcorrect(A) when A = [0, x], i.e., ψbig(x) ≥ ψcorrect(x) ≥ ψ+(x).
The following theorem shows that this ordering carries over to mixing time and spectral gap, with
ψbig appearing in a lower bound on mixing time and in an upper bound on spectral gap.

Theorem 3.3. If M is a lazy, aperiodic, ergodic reversible Markov chain then

1− 4ψbig(1/2)
8ψbig(1/2)

log(1/2ε) ≤ τ(ε) ≤ 2
ψ+(1/2)

(log(1/π0) + 2 log(1/2ε))

4ψbig(1/2) ≥ λ ≥ 1
4
ψ+(1/2) .

The lower bound on λ, when combined with ψ+(1/2) ≥ Φ2 is a factor two from the well known
λ ≥ Φ2/2 [14].
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Proof. The upper bound for τ(ε) follows from the previous theorem.
For the lower bound on λ we need some information about the proofs of certain useful facts. First,

τ(ε) ≥ 1
2

(1− λ)λ−1 ln(2ε)−1 (see [14]) (2)

can be proven by first showing that c (1 − λ)t ≤ supp(0) ‖p(t) − π‖TV for some constant c. Second,
the proof of the ψevo part of Theorem 2.1 can be easily modified to show that supp(0) ‖p(t) − π‖TV ≤
c2 (1 − ψevo(1/2))t for some constant c2. It follows that c (1 − λ)t ≤ c2 (1 − ψevo(1/2))t, and taking
t→∞ implies further that 1− λ ≤ 1− ψevo(1/2). The result then follows by ψevo(A) ≥ 1

4 ψ
+(A). In

words, this says that the asymptotic rate of convergence of total variation distance is at best 1 − λ
and at worst 1− ψevo(1/2), and therefore 1− λ ≤ 1− ψevo(1/2).

For the upper bound on λ suppose that K̃ ⊃ A = [0, x] where x = π(A) ≤ 1/2, and order vertices
in A by increasing P(t, Ac). Then

ψbig(A) + ψ+(A) =
∫ π(A)

0

Q([x− t, x], [x, 1])
π(A)2

dt+
∫ π(A)

0

Q([0, t], [x, 1])
π(A)2

dt

=
Q(A,Ac)
π(A)

= Φ(A) .

It follows that Φ(A) ≥ ψbig(A) ≥ Φ(A)/2. The upper bound on λ then follow from λ ≤ 2Φ [14].
The lower bound on mixing time follows from the upper bound on the spectral gap and the lower

bound on mixing time given in (2).

It would be interesting to know if the lower bound on the mixing time can be improved. The
barbell consisting of two copies of Kn joined by a single edge is a case where τ(1/4) < 1/ψ+(1/2),
which shows that ψ+ cannot replace ψbig in the lower bound. However, in those examples where we
know the answer we find that τ(1/4) ≥ c

∫
dx/ψ+(x).

4 Discrete Gradients

In this section we look at the discrete gradients h±p (A) of Houdré and Tetali [5]. This is a family
that extends the ideas of edge and vertex-expansion, with h±1 (A) measuring edge-expansion, h±∞(A)
measuring vertex-expansion and h±2 (A) a hybrid. We use the h±p notation here, despite the similarity
to the hgl/mod notation earlier, to be consistent with [5, 7].

Definition 4.1. Let M be a Markov chain. Then for p ≥ 1, A ⊂ K the discrete p-gradient h+
p (A) is

h+
p (A) =

Qp(A,Ac)
min{π(A), π(Ac)}

where Qp(C,D) =
∑
v∈C

p
√

P(v,D)π(v) .

The (often larger) h−p (A) is defined similarly, but with Qp(Ac, A) rather than Qp(A,Ac).
These can be extended to p =∞ in the natural way, by taking Q∞(C,D) = π({u ∈ C : Q(u,D) 6=

0}). We sometimes refer to h±p (x) = infπ(A)≤x h
±
p (A).

The main focus of this section will be h+
2 (A) and h−2 (A) which are hybrids of edge and vertex-

expansion as Cauchy-Schwartz shows, h+
2 (A)2 ≤ h+

∞(A)h+
1 (A). Note that h−2 (A) can be significantly

larger than h+
2 (A), which is why our theorems below differ in the plus and minus cases. In contrast,

conductance bounds only have one form, for Φ(A) = h+
1 (A) = h−1 (A).
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In this section it will be shown how discrete gradients can be used to upper and lower bound the
chain of inequalities given in Theorem 3.1. It is not necessary to prove a theorem for the time-reversal
because, for instance, bounds on ψ+ apply to

←−
ψ + as well by bounding ψ+ of the time-reversed Markov

chain. If we let ψ−(A) be defined as

ψ−(A) =
∫ 1

π(A)

Ψ(t, Ac)
π(A)2

then ψgl = ψ+(A) + ψ−(A), so upper and lower bounds on ψ±(A) imply upper and lower bounds on
ψgl(A) as well. Our main result of this section is the following theorem.

Theorem 4.2. Given a (non-reversible) Markov chain M with state space K and a set A ⊂ K, let

P∗ = 1− infu∈A P(u,A) and Pmin = inf
u∈A,v∈Ac,
P(u,v)>0

P(u, v)
π(v)

. If π(A) ≤ 1
2 then

1
2
h±2 (A)2 ≥ ψ±(A) ≥ 1

2
h±2 (A)2

/
log
(

12h±1 (A)h±∞(A)
h±2 (A)2

)
and ≥ 1

2
h±2 (A)2

√
Pmin

P∗
.

In practice it may be useful to upper bound the log terms either by log(12 P∗/Pmin) for ψ±, or
with log(12/h+

2 (A)2) for the ψ+(A) case and log(12/π(A)h−2 (A)2) for ψ−(A). These follow by the
identities h±1 (A) ≤ h±∞(A) P∗ and h±2 (A) ≥ h±∞(A)

√
Pmin for the first type, or by h±1 (A), h+

∞(A) ≤ 1
and h−∞(A) ≤ π(A)−1 for the latter.

All upper and lower bounds scale properly in P, e.g., if P is slowed by a factor of 2 to P→ 1
2 (I+P)

then ψ±(A) and all the bounds in Theorem 4.2 change by the same factor of 2. Moreover, if P(·, Ac)
is constant over a set A then the upper bounds are sharp, while the lower bounds are within a small
constant factor.

Our methods also extend to the other discrete gradients h±p . The most interesting cases are p = 1
and p =∞.

Theorem 4.3. Given the conditions of Theorem 4.2 then

1
2
h±1 (A)h±∞(A) ≥ ψ±(A) ≥ max

{
1
2

Pmin h
±
∞(A)2,

1
2
h±1 (A)2

P∗

}
.

The h±2 type bounds are the most appealing of the p-gradient bounds because the upper and lower
bounds are the closest. For instance, if C = h+

1 (A)h+
∞(A)/h+

2 (A)2 then the gap between the upper
and lower bounds for h+

1 or h+
∞ is at least C (since 1

2 h
+
1 h

+
∞ ≥ 1

2 h
+2
2 ≥ ψ+(A) already gives C in

the first inequality), whereas the gap between the upper and lower bounds in terms of h+2
2 is at most

log(12C), typically a much smaller quantity. Moreover, the upper bound in terms of h+
2 (A)2 is tighter

than the upper bound for any p 6= 2, as can be proven via Cauchy-Schwartz.
The lower bounds on ψ±(A) for p 6= 2 can be considered as approximations of 1

2 h
+2
2 , or a bit more

loosely, as approximations of 1
2 h

+
p h

+
q . The Jerrum-Sinclair type bound ψ+(1/2) ≥ 1

2 P−1
∗ h+2

1 (1/2)
is the natural approximation to 1

2 h
+2
2 in terms of h+

1 , while the Alon type bound ψ+(1/2) ≥
1
2 Pmin h

+2
∞ (1/2) is natural for h+

∞. It is too much to expect the upper and lower bounds to match, so
the extra log term in the case of p = 2 is not much of a penalty.

Let us now look at the sharpness of Theorem 4.2.
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Example 4.4. Consider the natural lazy Markov chain on the complete graph Kn given by choosing
among vertices with probability 1

2n each and holding with probability 1
2 (so P(x, x) = 1

2 (1 + 1
n) and

for y 6= x : P(x, y) = 1
2n). If A ⊂ K with size x = π(A) ≤ 1/2 it follows that ∀x ∈ A : P(x,Ac) = 1−x

2 ,
and therefore h+

2 (x) =
√

(1− x)/2 and

1− x
4
≥ ψ+(x) ≥ 1− x

4 log(24/(1− x))
≥ 1− x

16
,

where we have used that h+
1 (A)h+

∞(A) ≤ 1. The correct answer is ψ+(x) =
∫ x
0

t 1−x
2

x2 dt = (1− x)/4.
Likewise, ∀x ∈ Ac : P(x,A) = x

2 and so h−2 (x) = (1 − x)/
√

2x, which combined with ψgl(A) =
ψ+(A) + ψ−(A) and the bounds in Theorem 4.2 implies that

1− x
4x

≥ ψgl(x) ≥
1− x

4 log(24/(1− x))
+

(1− x)2

4x log(24/(1− x)2)
≥ 1− x

17x
,

while the correct answer is

ψgl(x) =
∫ x

0

t 1−x
2

x2
dt+

∫ 1

x

(1− t) x
2

x2
dt =

1− x
4x

.

Theorem 3.1 with ψ+ = 1/32 (as found above with h+
2 ) implies mixing in χ2(1/4) ≤ 64 (log n +

log 4), while Theorem 3.3 leads to a spectral bound of λ ≥ 1/128, which are correct orders for χ2 and
λ. With the ψgl lower bound found above we also have the correct τ(1/4) = O(1).

This example shows that for Markov chains with very high expansion the bounds on ψgl(A) given
by Theorem 4.2 can lead to very good mixing time bounds. However, few Markov chains have such
high expansion, and so in future examples we deal only with h+

2 (x) and ψ+(A).
The sharpness of the lower bound depends on the sharpness of the log(h+

1 (A)h+
∞(A)/h+

2 (A)2) term
in the denominator. We give here an example in which the lower bound is tight, up to a factor of 1.6,
for every ratio h+

2 (A)2/h+
1 (A)h+

∞(A) and every set size π(A).

Example 4.5. Let the state space K = [0, 1] and fix some ε ≤ 1/2. For ease of computation
we consider this continuous space, but the results of this example apply to finite spaces as well by
dividing K = [0, 1] into states (intervals) of size 1/n and taking n→∞.

If t ∈ [0, 1/2] then consider the reversible Markov chain with uniform stationary distribution on
[0, 1] given by the transition densities

P(t, dy)
dy

=
P(y, dt)
dt

=

{
1 if t ≤ ε
(ε/t)2 if ε < t ≤ 1/2

when t ∈
(

0,
1
2

)
and y ∈

(
1
2
, 1
)
,

holding with the remaining probability. Then, when A = [0, x] ⊆ [0, 1/2] it follows that

Ψ(t, Ac) =
∫ x

x−t
P(y,Ac) dy =

{
ε2 t

2 x(x−t) if t ≤ x− ε
ε(x−ε)

2x + ε−(x−t)
2 if t ∈ (x− ε, x]

.

Some computation shows that ψ+(A) = ε2

2 x2 (1
2 + log(x/ε)), h+

1 (A) = ε
2 x(2 − ε/x), h+

2 (A) = ε√
2 x

(1 +
log(x/ε)) and h+

∞(A) = 1. This leads to the relation

ψ+(A) = h+
2 (A)2

1
2 + log(x/ε)

(1 + log(x/ε))2
<

h+
2 (A)2

1 + log(x/ε)
. (3)
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Let β ∈ (0, 1] be such that

ε

x
β−2 :=

h+
2 (A)2

h+
1 (A)

=
ε

x

(1 + log(x/ε))2

2− ε/x
.

Solving for ε shows that ε ∈ (0, x] is the unique solution to β =
√

2−ε/x

1−log(ε/x) . For every β this gives a

Markov chain and an ε such that ε/x = β2 h+
2 (A)2/h+

1 (A). Letting β = e−k/2 for an arbitrary k, and
substituting this ε into (3) gives an example with

ψ+(A) <
h+

2 (A)2

1 + log(x/ε)
=

h+
2 (A)2

k + log
(

h+
1 (A) h+

∞(A)

h+
2 (A)2

) .

This shows that no constant k in the denominator will suffice to replace the 1/2 in Theorem 4.2.

Moreover, for every fixed x, as β (or equivalently, as ε) varies the ratio h+
2 (A)2

h+
1 (A) h+

∞(A)
= ε

x β
−2 =

ε
x

(1−log(ε/x))2

2−ε/x varies over the complete range (0, 1]. Therefore, for all set sizes x and all ratios
h+2

2 /h+
1 h

+
∞ the lower bound in the theorem is within a factor 2 log(12) ≈ 5 of optimal. In fact,

if the α quantity in the proof (see below) is optimized then the α form is within a factor 1.6 of
optimal.

Proof of Theorem 4.2. We give the proof for the ψ+(A) case. The ψ−(A) case is similar.
First let us simplify the terms in the theorem.
Without loss, assume the state space is K = [0, 1] and A = [0, x] where x := π(A). Order the

points in A in decreasing exit probability, so that y, z ∈ A : y < z =⇒ P(y,Ac) ≥ P(z,Ac). Then

∀t ∈ [0, x] : Ψ(t, Ac) =
∫ x

x−t
P(y,Ac) dy .

It follows that

ψ+(A)π(A)2 =
∫ x

0
Ψ(t, Ac) dt =

∫ x

0

∫ x

x−t
P(y,Ac) dy dt =

∫ x

0
y P(y,Ac) dy ,

where the last equality comes from changing the order of integration.
Observe also that

Q2(A,Ac) =
∑
v∈A

√
P(v, Ac)π(v) =

∫ x

0

√
P(t, Ac) dt .

We begin with the upper bound on ψ+(A).

ψ+(A)π(A)2 =
∫ x

0

√
P(t, Ac) t

√
P(t, Ac) dt

≤
∫ x

0

√
P(t, Ac)

∫ t

0

√
P(y,Ac) dy dt

=
1
2

(∫ x

0

√
P(t, Ac) dt

)2

where the inequality is due to P(t, Ac) being non-increasing, and the final equality follows from∫ x

0

∫ t

0

√
P(t, Ac)

√
P(y,Ac)dy dt =

∫ x

0

∫ x

t

√
P(t, Ac)

√
P(y,Ac)dt dy

11



by changing the order of integration.
Now the first lower bound on ψ+(A). For any ε ∈ [0, x]

Q2(A,Ac) =
∫ ε

0
1 ·
√

P(t, Ac) dt+
∫ Q∞(A,Ac)

ε

√
tP(t, Ac)/

√
t dt

≤
√
εQ1(A,Ac) +

√∫ Q∞(A,Ac)

ε
tP(t, Ac) dt

∫ Q∞(A,Ac)

ε

dt

t

≤
√
εQ1(A,Ac) +

√
ψ+(A)π(A)2 log(Q∞(A,Ac)/ε)

where the first inequality is by Cauchy-Schwartz. It follows that

ψ+(A) ≥

(
Q2(A,Ac)−

√
εQ1(A,Ac)

)2

π(A)2 log(Q∞(A,Ac)/ε)
.

Letting ε = α2 Q2(A,Ac)2/Q1(A,Ac) completes the lower bound. The bound stated in the theorem
follows by setting α = 1− 1/

√
2. This is a refinement of an argument of Morris and Peres [12].

The second lower bound will be worked out for the case of general p-gradient h+
p (A), so that

Theorem 4.3 follows easily as well. It follows from the definitions that if B ⊆ A then Q(A \B,Ac) ≥
P

1−1/p
min Qp(A \B,Ac) ≥ P

1−1/p
min (Qp(A,Ac)− π(B) p

√
P∗). Then

ψ+(A)π(A)2 =
∫ x

0
Q([x− t, x], Ac) dt

≥ P
1−1/p
min

∫ x

0
max{0, Qp(A,Ac)− t p

√
P∗} dt

=
1
2

P
1−1/p
min
p
√

P∗
Qp(A,Ac)2 .

Proof of Theorem 4.3. The upper bound for ψ+(A) follows by applying Cauchy-Schwartz to show
h+

2 (A)2 ≤ h+
1 (A)h+

∞(A), and then substituting this into Theorem 4.2. The lower bound follows from
choosing the appropriate p-gradients in the final section of the proof of Theorem 4.2. The bounds for
ψ−(A) are proven similarly.

5 A Grid Walk

The previous two sections have shown that the discrete gradients provide a nice extension of past
isoperimetry results, and that the h±2 bounds provide relatively tight upper and lower bounds on
ψgl(A) and ψ+(A). In this section we provide an application, a near-optimal result on a random walk
on the binary cube 2n, and more generally on the grid [k]n.

The quantity h+
2 (x) has been studied in the theory of concentration of measure. In particular,

Talagrand [15] has shown that

h+
2 (x) ≥ 1

4

√
− log x(1− x)

n
.

From this and Theorem 4.2 we obtain the following result.
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Corollary 5.1. The mixing time of the lazy random walk on the cube {0, 1}n is

τ = O
(
n log2 n

)
.

This method (also used by Montenegro [10] and Morris and Peres [12]) gives the first isoperimetric
proof that τ is quasi-linear for this particular random walk. In fact, the bound can be improved to
τ = O(n log n) because the proofs of both bounds in Theorem 2.1 only require that some expanding
sequence of sets be considered. When p(0) is a point (the worst case) then these sets are “fractional
hamming balls” in the blocking conductance case, and hamming balls in the evolving set case. In both
cases a modified quantity of the form

ψ̂(A) = Ω
(
− log π(A)π(Ac)

n

)
can be found [10, 12]. Unfortunately neither method extends to even something as similar as the grid
[k]n, as the level sets are no longer Hamming balls.

We now give a proof extending Talagrand’s result to the case of the grid [k]n. We will require the
isoperimetric quantity

β+2 = inf
A⊂K

Q(A,Ac)2

π(A)π(Ac)
= inf

A⊂K
Φ(A)2

π(A)
π(Ac)

studied by Murali [13].

Theorem 5.2. Suppose that Kn = K1 ×K2 × · · ·Kn is a Cartesian product of Markov chains. Then

h+
2 (x) ≥ 1

2
minβ+(Ki)

√
− log x(1− x)

n
.

Houdré and Tetali [5] studied h+
2 on products and found that h+

2 (Kn) ≥ 1
2
√

6 n
minh+

2 (Ki). The
advantage of our theorem is that it considers set sizes as well, which is important for studying mixing
time.

Proof. The proof will show a chain of inequalities relating isoperimetric quantities introduced by
various authors. Our main interest is to lower bound h+

2 (x), so rather than go into details of these
quantities we will simply give definitions and state the inequalities we need. The interested reader can
learn more about these quantities in [4, 3, 13].

Bobkov’s constant b+p is defined to be the largest constant such that for all f : X → [0, 1]

Iγ(Ef) ≤ E
√
I2
γ(f) + (D+

p f)2/b+2
p ,

where Iγ(x) is the so-called Gaussian isoperimetric function,

Iγ(x) = ϕ ◦ ξ−1(x) where ϕ(t) =
1√
2π

e−t2/2 and ξ(t) =
1√
2π

∫ t

−∞
e−y2/2 dy ,

which makes its appearance in many isoperimetric results, and where

D+
p f =

[∫ (
(f(x)− f(y))+

)p
P(x, y) dy

]1/p

.
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Note that Iγ(0) = Iγ(1) = 0, Iγ(x) ≥ x(1− x)
√

log(1/x(1− x)), and if A ⊂ K then E
(
D+

p 1A

)
=

Qp(A,Ac). The test functions f = 1A thus show that

b+p ≤
Qp(A,Ac)
Iγ(π(A))

≤
2h+

p (A)√
− log π(A)π(Ac)

,

so in a sense Bobkov’s constant is a functional form of infA⊂K h+
p (A)/

√
− log π(A)π(Ac), just as the

spectral gap λ can be considered a functional form of the conductance Φ.
It is known that Bobkov’s constant b+2 tensorizes as

b+2 (Kn) =
1√
n

min b+2 (Ki) .

Lower bounding b+2 (Ki) is difficult. One method is to use b+2 (Ki) ≥ b+1 (Ki), which follows easily
from the definitions. In her Ph.D. Dissertation Murali [13] showed that b+1 (Ki) ≥ β+(Ki). We then
have the following chain of inequalities:

2h+
2 (x)√

− log x(1− x)
≥ b+2 (Kn) =

1√
n

min b+2 (Ki) ≥
1√
n

min b+1 (Ki) ≥
1√
n

minβ+(Ki) .

Theorem 5.2 is unlikely to prove of much use for Markov chains, other than ones with relatively
small state spaces, because β+2 = infA⊂K Φ(A)2 π(A)

π(Ac) ≤ 2π0 will be extremely small unless π0 is
not too small. However, if a better method is found to lower bound Bobkov’s constant b+1 (K) or
b+2 (K) then the theorem, with β+(Ki) replaced by b+1 (Ki) or b+2 (K), could prove useful for general
tensorization results. Nevertheless, the β+ method suffices for our purposes here.

Corollary 5.3. The mixing time of the lazy random walk on the grid [k]n is

τ = O
(
k2 n log2 n

)
.

Proof. The lazy random walk on the line [k] satisfies Φ(x) ≥ 1/(4k x). It follows that β+2 ≥ 1/4k2.
By Theorem 5.2 h+

2 (x) ≥ 1
4 k
√

n

√
− log x(1− x). Combining this with Theorems 2.1 and 4.2, and the

simplification h+
1 (A) h+

∞(A)

h+
2 (A)2

≤ P∗
Pmin

discussed after Theorem 4.2 gives τ = O(k2 n log n log log kn).
The log log kn term can be improved to log n because of “ultracontractivity” of geometric Markov

chains, such as this one on [k]n, which implies that π0 may be taken as 2−n instead of k−n with only
the addition of a small constant factor. [11]

This is the first isoperimetric proof of τ = O∗(k2 n) for this Markov chain, and is quite close to the
correct τ = Θ(k2 n log n).
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