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Abstract. The mixing properties of several Markov chains to sample
from configurations of a hard-core model have been examined. The model
is familiar in the statistical physics of the liquid state and consists of a
set of n nonoverlapping particle balls of radius r∗ in a d-dimensional hy-
percube. Starting from an initial configuration, standard Markov chain
monte carlo methods may be employed to generate a configuration ac-
cording to a probability distribution of interest by choosing a trial state
and accepting or rejecting the trial state as the next configuration of the
Markov chain according to the Metropolis filter. Procedures to generate
a trial state include moving a single particle globally within the hyper-
cube, moving a single particle locally, and moving multiple particles at
once. We prove that (i) in a d-dimensional system a single-particle global-
move Markov chain is rapidly mixing as long as the density is sufficiently
low, (ii) in a one-dimensional system a single-particle local-move Markov
chain is rapidly mixing for arbitrary density as long as the local moves
are in a sufficiently small neighborhood of the original particle, and (iii)
the one-dimensional system can be related to a convex body, thus es-
tablishing that certain multiple-particle local-move Markov chains mix
rapidly. Difficulties extending this work are also discussed.

1 Introduction

A very simple model of particle interactions is the hard core model. Consider n
points in a d-dimensional unit hypercube distributed uniformly subject to the
condition that the distance r between any two particles is greater than some
critical distance 2r∗. Sampling uniformly from the set of such configurations
is of interest in statistical physics and in two and three dimensions this hard
core model is used as a simple model of liquid state systems.[1,2,20] The Markov
chain monte carlo (MCMC) algorithmic procedure is well suited to perform such
sampling.[9,10,18] Indeed, MCMC with the Metropolis filter was first applied to
the hard core model in two dimensions.[16] Recent work examining the con-
vergence rates of Markov chains has typically examined systems of computer
scientific interest or simple models in statistical physics of solid state systems,
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e.g., the Ising model.[6,10,11] In this work, we examine the convergence proper-
ties of several Markov chains for sampling from the set of configurations of the
n-particle hard-core model of molecular liquids in d dimensions.

Starting from an initial configuration of particles, the MCMC procedure per-
forms the sampling by constructing an irreducible aperiodic Markov chain that
converges to the stationary distribution of interest.[9,10,16,18] Each step of the
Markov chain consists of a trial move (for which there is much discretion in
constructing) of one or more particles followed by an acceptance or rejection
(according to the Metropolis rule) of the trial configuration as the next config-
uration of the Markov chain. One example of a trial move is a single-particle
global move in which a single particle is selected and moved to a position that
is chosen uniformly from anywhere within the hypercube. Another example is
a single-particle local move in which a single particle is selected and moved to
a position within the hypercube that is chosen according to a probability dis-
tribution that is localized around the original location of the particle. Another
example of a trial move is a multiple-particle local move in which some or all of
the particles are moved to a new set of positions chosen according to a proba-
bility distribution that is localized around the original locations of the particles.
Of course, the multiple-particle global move in which every particle is indepen-
dently randomly moved to any position in the box is a Markov chain which uses
no information from the previous configuration.

Single-particle trial moves and multiple-particle trial moves are complemen-
tary in that in many cases the former empirically mix rapidly when the system is
far from a critical point phase transition while the latter are often superior em-
pirically when the system is near a critical point.[18] Similarly, global trial moves
and local trial moves are complementary in that the former appear empirically to
mix rapidly at extremely low densities and to mix very slowly at higher densities
while the latter often appear empirically to mix rapidly at higher densities.[1]
The intuition behind this is that when the density is high, typical configurations
of the particles disallow (or more generally make extremely improbable) many
of the possible global trial moves; thus these trial moves are typically rejected.
On the other hand, by moving a particle to a nearby position, which is often free
even at relatively high densities, the trial move is more likely to be accepted.
The motivation behind these distinctions is that, as opposed to the Ising model
where each spin may adopt only two possible values, for many models each par-
ticle may adopt a large number of possible configurations. Trial moves which
are local use more information from the previous state of the Markov chain to
construct the trial state. The heat-bath algorithm applied to the q-state Potts
model is similar in spirit since it too uses local information to boost acceptance
probabilities to accelerate the empirically observed mixing.[18] Note that single-
particle local moves are often used in practice in statistical physics for the same
reason.[1,14,16] See Figure 1 for a summary of the rapid mixing results that are
empirically observed for moderately high density liquid state systems in one,
two, and three dimensions away from phase transitions and for a summary of
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Empirical Results for d = 1, 2, 3

Local Global

Single rapid slow

Multiple rarely used N.A.

Theoretical Results

Local Global

Single Thm. 3 (d = 1) Thm. 2

Multiple Thm. 5 (d = 1) N.A.

Fig. 1. Summary of empirically observed and our theoretical rapid mixing results.

our theoretical results;[1] results for both single-particle and multiple-particle
local-move and global-move Markov chains are presented.

Despite the widespread use of these methods in statistical physics, dating
back to the earliest days of the MCMC method,[16] very little has been rigorously
known about the convergence properties of either local-move or global-move
Markov chains for this hard-core model. After a review of the hard-core model
and of rapidly mixing Markov chains in Section 2 we present several rapid mixing
results for this model. In Section 3 we prove that a single-particle global-move
Markov chain is rapidly mixing for all dimensions d if the density ρ is sufficiently
low. In Section 4 we prove that a single-particle local-move Markov chain is
rapidly mixing in one dimension up to density one as long as the moves are
within a small enough region around the particles. In Section 5 we relate the n-
particle one-dimensional system to a convex body in R

n and as a corollary show
that there exist rapidly mixing multiple-particle local-move Markov chains. In
Section 6 we conclude with a discussion of difficulties extending this work to
higher densities, other dimensions, and to other energy functions.

2 Background and Preliminaries

2.1 Background on the Hard Core Model

Let Ωnd be the set of all sets of n points in [0, �]d, where we let � = 1 without
loss of generality. Thus, if Xi ∈ [0, 1]d then X = (X1, · · · , Xn) ∈ Ωnd. Let
U(X) be the energy function of the configuration X, where U(X) has the form
U(X) =

∑

i �=j φ(rij), where rij = |Xi − Xj | and φ(r) is the two-particle energy

function. A two-particle energy function of the form φ(r) = 4ε
[

(

σ
r

)12
−

(

σ
r

)6
]

,

where ε and σ are parameters of the model, is known as the Lennard-Jones

energy function and is widely used in applications.[1,14] A two-particle energy
function of the form

φ(r) =

{

∞ if r ≤ 2r∗

0 if r > 2r∗ (1)

is known as the hard-core energy function and is of interest in the present work.[1,
2,16,20] Note the similarity of this hard-core model to the hard-core Gibbs point
process and of this work to related work on that process.[15,19] A two-particle
energy function φ(r) such that φ(r) ≥ 0 for all r, e.g., the hard-core energy
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Fig. 2. Illustration of the hard-core model in one and two dimensions

function, is said to be a purely repulsive energy function. In the hard-core case,
each particle is modeled as a ball of radius r∗ and the density of the system is
defined to be ρ = nVd(Br∗) where Vd(Br∗) is the volume of the d-dimensional
ball of radius r∗. We focus attention on ρ (or r∗), d, and n, and let n → ∞,
proving results for rapid mixing if ρ assumes certain values. Note that we will
also consider the configuration space Ωm

nd, which is a discretized version of Ωnd;
more precisely, if Xi ∈ Ωm

1d = 1
m

Zd
m then X = (X1, · · · , Xn) ∈ Ωm

nd. Sampling
from Ωm

nd followed by a rejection sampling method is then sufficient to sample
from Ωnd; see [7]. Let π(X) = 1

Z
exp (−βU(X)) be the Boltzmann probability

distribution on the configuration space Ω; in this expression β is a parameter
known as the inverse temperature and Z is a normalization constant known as
the partition function. In statistical mechanics it is often of interest to sample
X ∈ Ω according to the probability distribution π(X) and MCMC is often used
as the method to do so. It should be clear that sampling from Ω = Ωnd according
to π for a system of hard-core particles corresponds to sampling from X ∈ Ωnd

uniformly subject to the constraint that rij > 2r∗ for all pairs of particles i and
j. Particles are assumed to be indistinguishable, although for convenience we
may assign them labels. In addition, we will assume either toroidal or truncated
boundary conditions, as indicated; see [1] for more detail.

Figure 2 illustrates the system in one and two dimensions for the truncated
boundary conditions; in the one-dimensional system the particles are represented
as labeled points (with no radius shown) and in the two-dimensional system a
single-particle trial move is illustrated.

2.2 Background on Rapid Mixing

Let Ω be a set such as Ωnd or Ωm
nd and let p(0) be an initial probability dis-

tribution on Ω, P be the transition kernel of a Markov chain M on Ω, and
p(t) be the t-step distribution; see [9,10,18]. The Markov chains we construct
will be time-homogeneous, aperiodic and irreducible and the t-step distribu-

tion will converge to a stationary distribution p(∞), i.e., p(t) t→∞
−−−→ p(∞). Let

Xt = (Xt
1, · · · , Xt

n) ∈ Ω be the state at the t-th step of a Markov chain and
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let Xt+1
TR be the trial state chosen for the t + 1-st step. Since trial moves will

be subjected to the Metropolis filter[9,16,18] the trial state is accepted and
Xt+1 = Xt+1

TR with probability min{1, π(Xt+1
TR )/π(Xt)}, where π is the Boltz-

mann distribution; otherwise the trial state is rejected and Xt+1 = Xt. In the
case of hard-core particles, the Metropolis rule leads to the rejection of any trial
states in which two or more particles overlap and the acceptance of all other
trial states. With this rule π = p(∞) and since the transition kernel is symmetric
for the hard-core model, i.e., P (A, B) = P (B, A) for all appropriately defined
A, B ⊂ Ω, the stationary distribution is uniform subject to the condition that no
particles overlap. A trial move is a single-particle trial move if the trial state is of
the form Xt+1

TR = (Xt
1, · · · , Xt

ξ−1, X
′
ξ, X

t
ξ+1, · · · , Xt

n) for some randomly chosen
ξ, i.e., if the coordinates of only the single randomly chosen particle ξ are modi-
fied. A trial move is a multiple particle trial move if Xt+1

TR = (X ′
1, · · · , X ′

n), where
two or more of the X ′

i �= Xt
i . A single-particle trial move is a local trial move if

the chosen particle is moved to a trial state according to a probability distribu-
tion that is localized near the previous state and is a global trial move otherwise.
A similar definition holds for multiple-particle local and global trial moves. In
addition, all the Markov chains we consider will have a holding probability of
1/2, i.e., with probability 1/2 a trial move is not attempted and Xt+1 = Xt;
this is to remove periodicity effects.

Given any two probability distributions µ and ν on some Ω, the variation

distance is a measure of how far µ and ν are from each other and is defined to
be

‖µ − ν‖TV D = sup
A⊆Ω

|µ(A) − ν(A)|. (2)

The mixing time τ(ε) is a measure how many steps it takes the Markov chain
M to come close to the uniform distribution and is defined as

τ(ε) = sup
p(0)

min
{

t : ‖p(t) − π‖TV D ≤ ε
}

. (3)

We will define τ = τ(1/e); since τ(ε) ≤ 2 τ log2(1/ε), bounding τ suffices to
bound τ(ε).[10]

There are several methods that may be used to bound the mixing time of a
Markov chain.[10] One is the method of coupling; a coupling is a stochastic pro-
cess (Xt, Yt)t∈N on pairs of states in Ω×Ω such that each of the (Xt)t∈N, (Yt)t∈N

considered independently is a faithful copy of the original Markov chain M, and
if Xt = Yt then Xt+1 = Yt+1. A coupling may be used to bound the mixing time
of a Markov chain via the coupling inequality,[10] which states that the worst
variation distance is bounded by the coupling, i.e., that

sup
p(0)

‖p(t) − π‖TV D ≤ sup
X0, Y0

Pr [Xt �= Yt] . (4)

It is generally quite difficult to construct a coupling for complex Markov chains.
The path coupling theorem of Bubley and Dyer simplifies and extends the appli-
cability of coupling.[3] The path coupling theorem states that, given a neighbor-
hood structure on the configuration space that connects every pair of states by
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some path, it is sufficient to construct a coupling on pairs of neighboring states.
We state the theorem in the simplest form necessary for our work.

Theorem 1 (Bubley and Dyer[3]). Let Ω be given and let X, Y ∈ Ω. Define

a metric Φ : Ω×Ω → {0, 1, . . . , D} by letting Φ(X, Y ) be the length of the shortest

path from X to Y . Suppose there exists a constant ζ and a coupling (Xt, Yt) of

the Markov chain such that when Φ(Xt, Yt) = 1 then E [Φ(Xt+1, Yt+1)|Xt, Yt] ≤
ζΦ(Xt, Yt). If ζ < 1 then the coupling can be extended to Ω × Ω and the mixing

time is bounded as τ ≤ log(eD)
1−ζ

. If ζ = 1 and Pr [∆Φt+1,t �= 0] ≥ α > 0 for all

Xt, Yt ∈ Ω then the mixing time is bounded as τ ≤ eD2

α
.

3 Single Particle Global Moves

In this section we prove that a single-particle global-move Markov chain is rapidly
mixing for all dimensions d if the density is sufficiently low. We assume toroidal
boundary conditions and have the following theorem.

Theorem 2. Let Ωnd be the configuration space of n hard-core particles with

radius r∗ in dimension d. Let the density be ρ and the system have toroidal

boundary conditions. Let M be a Markov chain on Ωnd with the Metropolis filter

in which trial moves are single particle global moves and let γ > 0 be a constant.

Then the Markov chain M is rapidly mixing with mixing time bounded by

τ ≤

{ 1+γ
γ

2n log(2en) if ρ ≤ 1/(2d+1(1 + γ))

2n2 log(2en) if ρ = 1/(2d+1)
(5)

Proof. The proof will be by path coupling and is a continuous analog of a hard-
core result on graphs.[3] Since the n particles can be interpreted as n points
(given by the particle centers) such that no two points can be within a distance
2r∗ of each other, each particle “blocks” other particles from being placed within
a ball of radius 2r∗ around it. If this ball is denoted by B2r∗ then the total
“blocked” volume is at most nVd(B2r∗) = 2dnVd(B

∗
r ) = 2dρ. Two n-particle

configurations X and Y are defined to be neighbors if they differ by a single
particle; denote the location of this particle in X by pX and in Y by pY .

To bound the diameter, i.e., the maximal value D of the metric, it is necessary
to construct paths between every pair of configurations X and Y . Number the
particles 1, 2, . . . , n in both configurations (any numbering will do). Pick up
particle 1 in X and in Y , so that there are (n − 1) particles remaining in each.
Each particle blocks a neighborhood of size Vd(B2r∗) from particle moves, so the
2(n−1) particles block at most 2(n−1)Vd(B2r∗) = 2d+1(n−1)Vd(B

∗
r ) < 2d+1ρ ≤

1. Since this is a strict inequality there is a spot on the torus that is blocked in
neither X nor Y so we can place particle 1 at this spot in both configurations.
The same procedure applies to the remaining particles 2, 3, . . . , n, and gives a
common “target” configuration. Thus it requires n steps from X to this target
configuration, and n steps from there to return to Y , so the length of the longest
path is D = 2n.
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To define the path coupling, first label the particles in X and Y as follows.
Label the particle where X and Y differ as particle 1; the rest of the particles
can be labeled such that particle i > 1 in X and particle i > 1 in Y are at the
same location. One step of the Markov chain proceeds as follows:

– Choose particle j.
– Choose trial location PX for particle j in configuration X.
– If j = 1 then chose trial location PY = PX for j in Y .
– If j �= 1 chose:

• If PX ∩ [B2r∗(pX) ∪ B2r∗(pY )] �= ∅ then choose PY = pY + (pX − PX),
i.e., if the new location overlaps with particle 1 in X or particle 1 in Y
then reflect through the midpoint 1

2 (pX + pY ).
• Otherwise choose PY = PX .

– Hold with probability 1/2. Otherwise, attempt the trial move, accepting if
it is a valid move.

To analyze the coupling, consider the case that particle j = 1 is chosen
in X and Y . The coupling was set up such that either the attempted move
succeeds and couples (∆Φ = −1) in both X and Y , or fails in both in which case
both particles return to their initial locations (∆Φ = 0). Each of the remaining
(n−1) particles prevents a move into a radius 2r∗ region around them, for a total
blocked volume of at most (n − 1)Vd(B2r∗) = 2d(n − 1)Vd(Br∗) = 2d(1 − 1/n)ρ.
The probability of coupling is the probability of a successful move, which is
thus at least 1

n

(

1 − 2d (1 − 1/n) ρ
)

. When a particle j > 1 is chosen then there
are several cases to consider. If PX is near pX then it fails to move in both
configurations, so ∆Φ = 0. If PX is near pY then it might make a move in only
one of X or Y and the probability of distance increasing by one (∆Φ = +1)
may be as high as Vd(B2r∗) = 2dρ/n. Any other location of PX leads to both
configurations moving successfully or both failing to move, so ∆Φ = 0. This gives

E [∆Φ] ≤ −
1

2n

[

1 − (1 − 1/n) 2d ρ
]

+
n − 1

2n
2d ρ/n

=
1

2n

[

−1 + 2(1 − 1/n)2d ρ
]

and the theorem follows because E [∆Φ] < 0 when ρ ≤ 1/2d+1.

This theorem thus proves rapid mixing in 1-d for ρ ≤ .25, in 2-d for ρ ≤ .125,
and in 3-d for ρ ≤ .0625. The corresponding packing densities are 1, π

2
√

3
≈ 0.9,

and π

3
√

2
≈ 0.74, respectively.[4,17] The slow empirical mixing indicated in Figure

1 for single-particle global-move Markov chains is for typical liquid state densities
which are much closer to the packing density than are the densities for which our
bounds hold. Although these bounds may thus seem rather weak, the packing
density is not the best comparison; it is more appropriate to compare to the
lowest density such that no global moves are possible, such as the 2-d square
lattice with density ρ = π

3
√

3
≈ 0.78 and the 3-d cubic lattice with ρ = π

6 ≈ 0.52.

Alternatively, Rogers showed that ρmax ≥ d ζ(d)/2d−1 e(1−e−d)
d→∞

−−−→ d/2d−1 e,
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where ρmax is the packing density and the Zeta function is ζ(d) =
∑∞

k=1 k−d;
thus, Theorem 2 proves rapid mixing asymptotically up to a factor of (ed/4)
of this lower bound on the packing density.[4,17] Note that even in two and
three dimensions the density regime for which we have proven rapid mixing
is significantly below densities typically of interest to practitioners simulating
liquid state systems.[1]

4 Single Particle Local Moves

In this section we consider a single-particle local-move Markov chain on a dis-
cretized version of a one-dimensional n-particle hard-core system. Suppose one
is interested in sampling configurations from Ωn1 with toroidal boundary con-
ditions, i.e., from on the circle of unit circumference with n particles. If this
circle is discretized by placing on it m equally spaced grid points then an ac-
ceptable configuration is one in which particle centers are placed on grid points
such that adjacent particles are at least a distance 2r∗ apart; equivalently, the
particle centers are at least mρ/n� grid points apart. This resulting space Ωm

n1

can be sampled with the grid-walk Markov chain, which is a single-particle local-
move Markov chain in which trial moves are generated by choosing a particle
uniformly at random and attempting to move it to either the right or the left
one grid point, rejecting the move if this causes two particles to overlap and
accepting it otherwise. The original space Ωn1 can then be sampled by rejection
sampling.[7] Our main result will be the following theorem.

Theorem 3. Let Ωm
n1 be the discretized version of the configuration space of n

hard-core particles with radius r∗ in dimension 1. Let the density be ρ and the

system have toroidal boundary conditions. Let M be a Markov chain on Ωm
n1 with

the Metropolis filter in which trial moves are the single-particle local-move grid

walk. Then the Markov chain M is rapidly mixing with mixing time bounded by

τ ≤
4e

3
n3m2(1 − ρ)2. (6)

Proof. The proof will be by path coupling. Let k = mρ/n� be the minimal
number of grid points between adjacent particle centers. Denote some arbitrary
(but fixed) grid point as the origin 0, and number the particles 1, 2, . . . , n
proceeding counterclockwise from 0. The location of the center of particle j
in configuration X will be denoted pX

j ∈ [0 . . . m − 1], counting grid points
counterclockwise from the origin 0, and likewise in Y . Two configurations X and
Y will be neighbors if they differ by a single particle j, such that the positions
of j (pX

j in X and pY
j in Y ) are on adjacent grid points, i.e., pX

j − pY
j ≡ ±1

mod m.
To bound the diameter, first suppose that pX

1 < pY
1 ; in this case, move

particle 1 in configuration Y down by pY
1 −pX

1 grid points to reach pX
1 . Likewise,

if pX
1 > pY

1 then move the particle in configuration X instead. Repeat this for
the remaining particles, proceeding counterclockwise around the circle (i.e., by
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increasing index j). Then each particle was moved only once, in either X or
Y , and moreover each was moved by at most m(1 − ρ) grid points. Therefore,
D ≤ n m(1 − ρ).

To define the path coupling, let the origin 0 be set so that under the labeling
given above the configurations differ only by particle 1, at locations pX

1 and
pY
1 ≡ pX ± 1; without loss of generality assume pX

1 = pY
1 + 1. Moves in the

Markov chain are defined as follows. First choose particle j in X and trial move
to location PX ∈ pX

j + {−1, 0, 1}. Choose the same particle j in Y and make a
move as follows:

– If j > 1 then PY = pY
j +(PX − pX

j ) (i.e., make the same move in Y as in X)

– If j = 1 then PY = pY
1 + δ where

δ =















0 if PX = pX
1 − 1 (couples and ∆Φ = −1)

0 with probability 1/2 if PX = pX
1 (no change and ∆Φ = 0)

1 with probability 1/2 if PX = pX
1 (couples and ∆Φ = −1)

−1 if PX = pX
1 + 1 (doesn’t couple and ∆Φ=+2)

To analyze the coupling, first suppose that there are no particles adjacent to
particle 1 in either X or Y . Then ∆Φ = 0 when j �= 1 is chosen, and E [∆Φ] = 0
when particle 1 is chosen. Overall, E [∆Φ] = 0 and α = 3/4n. Next, suppose that
some particle, say particle 2, is adjacent to particle 1 in X, i.e., pX

2 = pX
1 + k.

Then, when particle 2 is chosen then E [∆Φ] = 1/4 (when 2 tries to move to
PX = pX − 1), and when 1 is chosen then E [∆Φ] = −1/4. Overall, again
E [∆Φ] = 0 and α = 3/4n. Likewise when particle 2 is adjacent to 1 in Y instead
of in X. Thus, E [∆Φ] = 0, ζ = 1 and α = Pr [∆Φ �= 0] = 3/4n in the path
coupling theorem. Thus, the result follows from the path coupling theorem.

It might appear that the n3 term in the mixing time is weak and that one
should be able to obtain a bound of O(n log n), since it takes O(n log n) steps
to choose all of the n particles and most of the particles may have to move
O((m(1 − ρ))2) steps. In fact, one can show that

τ = O
(

(m (1 − ρ))
2

n (log n + log log m)
)

by comparing this problem to an n particle exclusion process on the circle with
m(1 − ρ) grid points and using a result of Diaconis and Saloff-Coste.[5] Aside
from the log log m term, this bound is tight. For instance, consider the initial
configuration where all the particles are at the “bottom” of the circle. In order
to approach the stationary distribution, a significant fraction of the particles will
need to become well distributed around the circle. It requires O((m(1 − ρ))2)
steps to move a particle a constant fraction around the circle (consider a random
walk on a line). It requires n log n steps to choose each particle once. Therefore
it requires Ω((m(1 − ρ))2 n log n) steps to distribute the particles around the
circle. A similar lack of tightness between coupling and the optimal result is
seen with a standard random walk on the grid [m]n, where a coupling will yield
τ = O(m2n3), where D = mn and α = 1/n, whereas one can obtain a bound of
τ = O(m2n log n) via the method of log-Sobolev constants.[5]
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5 Convex Bodies and Multiple Particle Local Moves

Insight into several aspects of the one-dimensional problem may be gained from
the following theorem. It relates an n-particle one-dimensional local-moves prob-
lem to the problem of computing the volume of a convex body in n dimensions.

Theorem 4. Let Ωn1 be the configuration space of n hard-core particles with

radius r∗ in dimension 1. Let the density be ρ, and the system have truncated

boundary conditions. Let M be a Markov chain on Ωn1 with the Metropolis

filter in which trial moves are generated with the following multiple-particle local

move procedure: for every particle, move that particle to a new position chosen

uniformly from the 1-dimensional ball centered at the initial position of that

particle and of radius less than 4r∗. Then the set of states reachable by the

Markov chain M is a convex body in R
n.

Proof. Consider n particles of radius r∗ positioned on a line with initial config-
uration 0 ≤ v1 < v2 < . . . < vn ≤ � = 1 as in Figure 2. Then if the local moves
are of size less than 4r∗ then the set of configurations reachable through local
moves is exactly the polytope defined by the following equations.

v1 ≥ 0
vn ≤ � = 1

∀i < n : vi+1 ≥ vi + 2r∗
(7)

To see this, observe that in the one-dimensional system the particles are ordered
and this order is preserved if the local moves are less that 4r∗. From the con-
straints due to the endpoints of the line and since the particles are hard balls
we get (7). Conversely, any values of the vi that satisfy the n + 1 conditions (7)
is a valid configuration. Thus, (7) exactly defines the set of valid configurations.

Thus, in one dimension sampling with a local-move Markov chain corresponds
to choosing a random sample from the convex body defined by (7). Sampling with
a global-move Markov chain also corresponds to choosing a random point from
a convex set or one of a large number of (up to particle label) identical convex
sets. This result makes available a great deal of work on various techniques for
sampling from convex bodies.[6,12] As a corollary to Theorem 4, there exist
rapidly mixing Markov chains for multi-particle continuous local-move Markov
chains. For example, continuous moves can be implemented via the ball walk of
[12] which in the present context is a multiple-particle local-move Markov chain
in which particle moves are subject to certain conditions.

Theorem 5. Let Ωn1 be the configuration space of n hard-core particles with

radius r∗ in dimension 1. Let the density be ρ, and the system have truncated

boundary conditions. Then there exists a multiple-particle local-move Markov

chain M on Ωn1 with the Metropolis filter for which τ ≤ poly(n).

Proof. See [12] and note that the ball walk is a multiple-particle local-move
algorithm.
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Due to the identification with the convex body problem, numerous other
Markov chains can be seen to mix rapidly. For example, the King’s Moves of
[6] is a single-particle local-move Markov chain that mixes in polynomial time
but that has more complex boundary conditions since steps are allowed slightly
outside the convex body, i.e., since a small amount of particle overlap is al-
lowed. One Markov chain that is of interest to practitioners involves performing
single-particle continuous local moves. In this case the configuration space Ωnd

is sampled (not by sampling from Ωm
nd followed by rejection sampling but in-

stead) by performing trial moves in which a single particle is moved to a nearby
location chosen from the continuous configuration space and no configurations
in which there is any particle overlap are allowed, i.e., the Markov chain must
not step outside of the convex body. This Markov chain is not rapidly mixing
for general convex bodies, although this does not exclude the possibility that it
is rapidly mixing for the convex body of Theorem 4.

6 Discussion and Conclusion

Although it is empirically observed that single-particle global-move Markov
chains tend to work best at very low densities and that single-particle local-
move Markov chains tend to work best at higher densities, the situation is more
complicated for worst case analysis since the configuration space Ω becomes dis-
connected or weakly connected under local and global moves at relatively low
densities. For example, consider the two rigid packings shown in Figure 3. The
first has density ρ ≈ 0.6 but both local and global trial moves will always be
rejected; the second has density ρ ≈ 0.39 and, although global trial moves can
be made relatively easily, local trial moves will always be rejected.[4,8] In three
dimensions there is even a packing with density ρ ≈ 0.0555 such that no local
trial moves will be accepted.[8] However know from Theorem 2 that a global-
move Markov chain at this density mixes in time τ ≤ 18n log(2en). Note that for
configurations such as these, if the particle radius r∗ is decreased slightly then
the resulting component of Ω will have positive probability but will not commu-
nicate or will communicate only weakly, i.e, via a tight “bottleneck”, with the
remainder of Ω.

One method from physics to construct an initial state that mixes well em-
pirically is to start with the n particles in a dense packing near the packing
density and then decrease r∗ until the density reaches the desired ρ; this gives
a configuration in which the particles are well separated. In one dimension this
is equivalent to putting the n particles at locations i−0.5

n
�; from Theorem 4

we see that this is the center of the polytope of one-dimensional configurations.
Although constructing such a starting configuration may be easy, determining
the mixing rate within the main component is difficult since characterizing the
main component is difficult and since methods for rapid mixing require rapid
mixing from almost every starting point.

It would be nice to prove a rapid mixing result involving other purely re-
pulsive energy functions or energy functions with both attractive and repulsive
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Fig. 3. Two low density rigid packings

terms. One might think that if Theorem 2 holds for hard particles of radius r∗,
then it should hold for at least some types of repulsive energy functions that
are 0 outside radius r∗. However, even this seems difficult to show. To see why,
consider the case in which the differing particle, #1, interacts with many par-
ticles in configuration X but with none in configuration Y . This will cause the
particles that interact with #1 to have a higher probability of moving in X than
in Y , and thus a higher chance of the distance increasing in the coupling. Hence
the coupling approach fails. A more extreme example of this phenomenon may
be seen by considering energy functions with an attractive term.

Other methods seem equally unlikely to yield positive results. Lovász et. al.
have applied conductance methods to the ball walk and Jerrum et. al. have
applied coupling and spectral methods to the ball walk.[12,10] These proofs rely
on isoperimetric inequalities for convex bodies. By an argument similar to that
in the proof of Theorem 4 one can show that if r∗ = 0 then Ωnd is a convex
set. If r∗ > 0 then if particles i and j overlap then rij ≤ 2r∗; this constraint
corresponds to the convex region in which one particle is placed anywhere, the
second is placed a distance at most 2r∗ away from it, and the rest of the particles
are placed anywhere. Then the configuration space Ωnd for r∗ > 0 is a convex
set with a large number of convex regions removed from it. It does not seem
possible to derive isoperimetric inequalities for the non-convex body formed by
the configurations of the n particles if d > 1.

Related work on the hard-core Gibbs point process and on simulated tem-
pering is of interest.[13,15,19] Simulated tempering is a method which avoids
some of the hard-disk problems by running a Markov chain with multiple energy
functions or at multiple temperatures. The Markov chain then consists of single-
particle moves as well as temperature swaps; it is hoped that the softer energy
functions will allow escape from bad configurations. However, analyzing the tem-
pered chain will require knowledge of the mixing times of local-move algorithms
with various energy functions and not just the hard-core energy function. In
addition, the only mixing bounds currently known for tempered Markov chains
establish that the tempered chain mixed no more slowly than the underlying
chains; this would not be useful in the present context.
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