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A sharp isoperimetric bound for convex bodies

Ravi Montenegro ∗

Abstract

We consider the problem of lower bounding a generalized Minkowski measure of subsets of a convex
body with a log-concave probability measure, conditioned on the set size. A bound is given in terms
of diameter and set size, which is sharp for all set sizes, dimensions, and norms. In the case of
uniform density a stronger theorem is shown which is also sharp.

Keywords : isoperimetric inequality, log-concave, Minkowski measure, Localization lemma.

1 Introduction

It is a classic result that among all surfaces in R
3 enclosing a fixed volume, the sphere has minimal

surface area, as measured by the Minkowski measure µ+. A related extremal problem shows that half
spaces minimize surface area for a Gaussian distribution in R

n [3].
One variation on these results is to consider log-concave measures µ supported on a convex body K,

i.e. a closed and bounded convex set. Recall that the Minkowski measure µ+(S) = limh→0+ µ(Sh\S)/h,
where Sh denotes the set of points at most distance h from S. In certain applications it is better to
work in a different norm. We define the generalized Minkowski measure µ+(S) as before, but where
distance in Sh is measured in the desired norm ‖ · ‖. If ‖ · ‖ is the ℓ2 Euclidean norm then this is the
standard Minkowski measure.

Our main result is the following.

Theorem 1.1. Let µ be a log-concave probability measure supported on a convex body K ⊂ R
n. For

all measurable sets S ⊂ K with µ(S) ≤ 1/2 it follows that

(diam K)µ+(S) ≥ µ(S)G(1/µ(S)) ,

where (diam K) is measured in some arbitrary norm ‖·‖, µ+(S) is the generalized Minkowski measure

in that same norm, and G(1/µ(S)) is given by

G(1/x) =
γ2eγ

eγ(γ − 1) + 1
, (1)

where γ > 0 is the unique solution to

x =
eγ(γ − 1) + 1

(eγ − 1)2
.

Moreover, this bound is sharp for every value of x, diameter of K, dimension n and norm ‖ · ‖.
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This extends theorems of Dyer and Frieze [4] and Lovász and Simonovits [7] in which they did not
condition on set size. Our sharpness also shows that their theorems are tight only when x = 1/2.

The main tool in our proof is the Localization Lemma of Lovász and Simonovits, which makes it
possible to reduce an n-dimensional integration problem into a one dimensional problem. A unique
aspect of our method is that we start with an unknown lower bound, given by G(1/x), proceed
to discover which properties G(1/x) must have to apply Localization, and only at the final step,
after reducing this to a one dimensional problem, do we determine the function G(1/x). All other
applications of Localization of which we are aware begin with a conjectured lower bound and proceed
to show it to be correct. However, by not making any assumptions to begin with we are able to obtain
the a sharp lower bound which would have been a very unlikely initial candidate.

It does not appear possible to write the function G(1/x) in closed form. However, in Corollary
3.1 we show that G(1/x) behaves like log(1/x), being bounded below by 2 + log(1/2x) and above by
2 log2(1/x). It is interesting to note that for graphs with a nice geometric structure, as with the grid
[k]n (see [2]), this shows that the graph number and the edge-isoperimetry are likely to differ by a
logarithmic factor.

We are also able to apply our methods to the more specific case of the uniform distribution. In
Theorem 4.1 we give a bound which is again sharp for every set size x, dimension n and norm ‖ · ‖.
The main improvement is when x is small, and in Corollary 4.2 it is shown that when x < 2−n then
G(1/x) behaves like n/ n

√
x. Example 4.3 shows that, at least for the ℓ∞ norm, the extremal cases on

the hypercube [0, 1]n are always within a factor 3 of the extremal cases on general convex bodies.
In fact, in general, the extremal cases are relatively simple to state. When µ is uniform and the

enclosed volume µ(S) = x, dimension n and diameter D are fixed, then there is a truncated cone K
with a subset S that is extremal (the slope of the cone depends on the dimension n). More generally,
when µ is a log-concave probability measure and x = µ(S), dimension n and diameter D are fixed, then
we show that the long thin cyclinder [0, 1] × [0, ǫ]n−1 with a one dimensional exponential distribution
F (x) = eγ x1/(ǫn−1

∫ 1
0 eγ x dx) contains a subset S = [0, s]× [0, ǫ]n−1 that is extremal as ǫ → 0+, where

γ is from Theorem 1.1 and both s and γ are independent of the dimension n.
Since Theorem 1.1 is sharp, then all bounds of the form

(diam K)µ+(S) ≥ f(µ(S))

will follow as corollaries. For instance,

(diam K)µ+(S) ≥ µ(S)µ(K \ S) (4 + log (1/4µ(S)µ(K \ S)))

strengthens a result of Kannan, Lovász and Montenegro [5]. A different weakening leads to a Gaussian
isoperimetric function,

(diam K)µ+(S) ≥
√

2π Iγ(µ(S)) , (2)

where µ(S) ≤ 1/2 and Iγ(x) is the Gaussian isoperimetric function (see (10)).
We note that other authors [1, 6] have proven related results in which quantities measuring the

well-roundedness of K were fixed, rather than the diameter D, but their results appear to be tight
only in asymptotics and not when conditioned on dimensions and volumes µ(S) as is the case here.
For instance, Bobkov [1] used a Prékopa-Leindler inequality to obtain a related result.
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Theorem 1.2. Let µ be a log-concave probability measure in R
n. For all measurable sets S ⊂ R

n, for

every point x0 ∈ R
n, for every number r > 0, and for standard ℓ2 Minkowski measure,

2r µ+(S) ≥ µ(S) log
1

µ(S)
+ (1 − µ(S)) log

1

1 − µ(S)
+ log µ{|x − x0| ≤ r} .

This is not directly comparable with our result because Theorem 1.2 considers shape (via r) as
well as set size µ(S). However, if r is a radius then the log term drops out. In this case a comparison
can be made and our result is stronger. Of course, r can be chosen so that the log term need not drop
out completely, in which case the bounds are not comparable.

The paper proceeds as follows. In Section 2 we prove Theorem 1.1. Section 3 proves various bounds
on the quantity G(1/x). We conclude with the uniform case in section 4.

2 The Proof

Recall that a function f : R
n → R

+ is log-concave if ∀x, y ∈ R
n, t ∈ [0, 1] : f [tx + (1 − t)y] ≥

f(x)t f(y)1−t, i.e., log f is a concave function on on the support of f . In particular, non-negative
concave functions are log-concave.

A measure µ is log-concave if for every measurable A, B ⊂ R
n : µ(t A+(1−t)B) ≥ µ(A)t µ(B)1−t.

All log-concave measures are induced by log-concave functions, so that µ is log-concave if and only if
there is a log-concave function F such that for every measurable S ⊂ R

n : µ(S) = µF (S) =
∫

S F (x) dx.
A lower semi-continuous function is one which is a limit of a monotone increasing sequence of

continuous functions. For example, the indicator of an open set, or the negative of the indicator of a
closed set.

The lemma below is a variation on results in [6, 7].

Lemma 2.1 (Localization Lemma). Let g and h be lower semi-continuous Lebesgue integrable

functions on R
n such that

∫

Rn

g(x) dx ≥ 0 and

∫

Rn

h(x) dx = 0 .

Then there exist two points a, b ∈ R
n and a linear function ℓ : [0, 1] → R

+ such that

∫ 1

0
ℓ(t)n−1 g((1 − t)a + tb) dt ≥ 0 and

∫ 1

0
ℓ(t)n−1 h((1 − t)a + tb) dt = 0 .

We begin by reducing our problem into a one-dimensional one.

Theorem 2.2. Let µF be a log-concave measure on R
n induced by log-concave function F , with

compact support K and a disjoint partition K = S1 ∪ S2 ∪B with µF (S1) ≤ µF (S2). Also, let t and d
be such that d ≥ diam K, t ≤ dist(S1, S2), both relative to some norm ‖ · ‖.

If G : [2, ∞) → R
+ and xG(1/x) : (0, 1/2] → R

+ are monotonically non-decreasing, then

d − t

t
µF (B) ≥ µF (S1)G

(

µF (K \ B)

µF (S1)

)

(3)

holds for all such partitions if it holds for all one-dimensional probability distributions F̃ (t) = eγ t and

all intervals S1 = [0, s), B = [s, s + t], S2 = (s + t, 1] such that µF̃ (S1) ≤ µF̃ (S2).
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Remark 2.3. The dependence on B in the lower bound can be removed by replacing d− t with d and
K \B by K. However, this leads to a slightly weaker result which no longer extends [7] in terms of t.

Proof. Assume a contradiction, i.e. ∃F, K, S1, S2, B with

d − t

t

µF (B)

µF (K \ B)
<

µF (S1)

µF (K \ B)
G

(

µF (K \ B)

µF (S1)

)

. (4)

By continuity of measure, if S1 and S2 are increased by a small enough amount, with B = K\(S1 ∪ S2)
and t decreasing accordingly, then this still gives a counterexample. It can then be assumed that S1

and S2 are open, with B closed.
The Localization Lemma can be used to reduce this to a one-dimensional problem. The following

two conditions will decrease the left side of the counterexample, while keeping the right side constant.

g(t) = F (t)
(

A1K\B(t) − 1B(t)
)

where A = µ(B)/µ(K \ B)

and h(t) = F (t)
(

x1K\B(t) − 1S1
(t)

)

where x = µ(S1)/µ(K \ B) ,

where S1 indicates the closure of S1. The condition
∫

g(t) dt ≥ 0 assures that µ(B)/µ(K \ B) not
increase when changing to one-dimension, while

∫

h(t) dt = 0 causes x = µ(S1)/µ(K \ B) to stay
constant, and these two conditions imply µ(S1) ≤ µ(S2) in the one-dimensional problem as well. This
decreases the left side of (4) while increasing the right side (by the conditions on G), and hence gives
a one-dimensional counterexample. The one dimensional problem has smaller diameter (length) than
K and larger separation t, so the same d and t are valid in the one-dimensional problem. Moreover,
by linearity all norms are equivalent in R

1 up to a constant factor; these constants cancel out when
taking (d − t)/t, so it can be assumed that the norm is standard Euclidean length. Without loss,
assume the one dimensional problem is on [0, 1].

In the sequel, for t ∈ [0, 1] then F (t) will denote the restriction to the one-dimensional problem,
i.e. ℓ(t)n−1 F (t a + (1 − t) b), and for [u, v] ⊆ [0, 1] then µF ([u, v]) =

∫ v
u ℓ(t)n−1 F (ta + (1 − t)b) dt.

Suppose there is a one-dimensional counterexample (with < in (3)) where B consists of a single
interval, i.e. [0, 1] = [0, u) ∪ [u, v] ∪ (v, 1] where S1 = [0, u), B = [u, v], S2 = (v, 1]. Let log F̃ (t) be
the line log F̃ (t) = A + γ t passing through the points (u, log F (u)) and (v, log F (v)). Log-concavity
of F (t) implies that F̃ (t) ≤ F (t) in B and F̃ (t) ≥ F (t) in S1 ∪ S2. Then µF̃ (B) ≤ µF (B) and the
left side of the counterexample decreases in changing from µF (B) to µF̃ (B). Also, µF̃ (S1) ≥ µF (S1)
and µF̃ (S2) ≥ µF (S2) ≥ µF (S1), so that by monotonicity of G(x) the right side of the counterexample
increases in going from µF (K \ B) to µF̃ (K \ B), and by monotonicity of xG(1/x) there is another
increase in going from µF (S1) to min{µF̃ (S1), µF̃ (S2)}. This completes the single interval case.

In general, the one-dimensional problem may have many intervals. We use a trick of Lovász
and Simonovits [7] to reduce the general case to the single interval case. Suppose that µF ([0, r)) >
µF ((s, 1]) for the leftmost maximal interval [r, s] ⊆ B ⊂ [0, 1], or µF ([0, r)) ≤ µF ((s, 1]) for the
rightmost maximal interval. In the former case the result follows from the single interval case applied
to S2 = [0, r), B = [r, s], S1 = (s, 1], while the latter case is similar. Otherwise, consider consecutive
maximal intervals [r, s] and [u, v] of B such that µF ([0, r)) ≤ µF ((s, 1]) but µF ([0, u)) > µF ((v, 1]).
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Either S1 or S2 is a subset of [0, r)∪ (v, 1], assume S1. If the single interval case has been proven then

1 − t

t
µF ([r, s]) ≥ µF ([0, r))G

(

µF (K \ [r, s])

µF ([0, r))

)

≥ µF ([0, r) ∩ S1)G

(

µF (K \ B)

µF ([0, r) ∩ S1)

)

≥ µF ([0, r) ∩ S1)G

(

µF (K \ B)

µF (S1)

)

where the inequalities follow from the monotonicity conditions on G(x) and xG(1/x). Likewise,

1 − t

t
µF ([u, v]) ≥ µF ((v, 1] ∩ S1)G

(

µF (K \ B)

µF (S1)

)

.

Adding these expressions together gives

1 − t

t
µF (B) ≥ 1 − t

t
(µF ([r, s]) + µF ([u, v]))

≥ µF (S1)G

(

µF (K \ B)

µF (S1)

)

,

as desired. If it were S2 ⊆ [0, r)∪(v, 1] then the same steps would hold with S2. Since µF (S2) ≥ µF (S1)
then the monotonicity of xG(1/x) would then imply the result for µF (S1).

This reduces the problem to a one dimensional one on [0, 1], with log-concave measure µF (A) =
∫

A eγ t dt and intervals S1 = [0, s), B = [s, s + t], S2 = (s + t, 1]. We now find the optimal G(x) for the
one-dimensional problem, which leads to the optimal function G(x) in Theorem 2.2 as well.

Theorem 2.4. Let G : [2,∞) → R be defined by G(2) = 2 and

∀γ > 0 : G(1/x) =
γ2eγ

eγ(γ − 1) + 1
where x =

eγ(γ − 1) + 1

(eγ − 1)2
∈ (0, 1/2) . (5)

Then the conditions of Theorem 2.2 are satisfied, and the theorem is sharp at every value of x =
µ(S1)/µ(K \ B).

Remark 2.5. The general case of sharpness was given in the introduction. Recall that K = [0, 1] ×
[0, ǫ]n−1. When x = 1/2 then γ = 0 and F = 1, with sharpness when S1 is half the cylinder, i.e.
S1 = [0, 1/2] × [0, ǫ]n−1. This is the same as the sharpness result for Dyer and Frieze’s [4] version of
Theorem 1.1 that does not condition on x. Similarly, when x = 1/2 and t > 0 in Theorem 2.2 then
F = 1 and S1 = [0, (1− t)/2)× [0, 1]n−1, B = [(1− t)/2, (1 + t)/2]× [0, 1]n−1. This was the sharp case
for Lovász and Simonovits [7]. Our bounds equal theirs when x = 1/2 and are strictly better when
x < 1/2.

Remark 2.6. Alternatively, γ can be interpreted as the slope of xG(1/x) because

d

dx
[xG(1/x)] =

d

dγ

[

γ2eγ

(eγ − 1)2

] [

dx

dγ

]−1

=

(2γeγ+γ2eγ)(eγ−1)2−γ2eγ2eγ(eγ−1)
(eγ−1)4

(eγ+eγ(γ−1))(eγ−1)2−(eγ(γ−1)+1)2eγ (eγ−1)
(eγ−1)4

= γ .
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Proof of Theorem 2.4. Consider a one-dimensional (single interval) counterexample to Theorem 2.2
with µF̃ (S1) ≤ µF̃ (S2). The case µF̃ (S2) ≤ µF̃ (S1) follows similarly.

1 − t

t

µF̃ (B)

µF̃ (K \ B)
<

µF̃ (S1)

µF̃ (K \ B)
G

(

µF̃ (K \ B)

µF̃ (S1)

)

. (6)

Write the intervals as S1 = [0, s), B = [s, s + t] and S2 = (s + t, 1]. If t is decreased, while
fixing x = µF̃ (S1)/µF̃ (K \ B) and adjusting s in order to keep x constant, then the right side of the
counterexample remains constant in t.

For the left side, some simple algebra shows that µF̃ (S1) = x
1−x µF̃ (S2), and therefore

eγ s − 1 =
x

1 − x

(

eγ − eγ (s+t)
)

.

Solving for eγ s proves that

γ µF̃ (S1) = eγ s − 1 = x
eγ − eγ t

1 + x (eγ t − 1)
,

from which it follows that the left side of the counterexample is

1 − t

t

µF̃ (B)

µF̃ (K \ B)
= (1 + x(eγ − 1))

1 − t

t

eγ t − 1

eγ − eγ t
.

By Lemma 2.7 with D = eγ it follows that, taking t → 0+ on both sides of (6) gives another
counterexample:

γx +
γ

eγ − 1
< xG(1/x) . (7)

Fix x and minimize the left side with respect to γ.

∂

∂γ

(

γx +
γ

eγ − 1

)

= x +
eγ − 1 − γeγ

(eγ − 1)2

When γ > 0 then this is increasing in γ and so the root is an absolute minimum of (7), i.e. the
minimum occurs at the solution to

x =
eγ(γ − 1) + 1

(eγ − 1)2
∈ (0, 1/2) . (8)

Observe that when γ ∈ (0,∞) then (8) is a bijection onto x ∈ (0, 1/2). Since the solution to (8) is
the minimum of the left side in (7) then there is another counterexample with

γ
eγ(γ − 1) + 1

(eγ − 1)2
+

γ

eγ − 1
< xG

(

1

x

)

.

This simplifies to give a contradiction to (5).
When γ < 0 then reverse orientation and consider [1, 0]. This reduces it to the problem just

considered.
The above work shows that for fixed x then when t → 0+ the γ given by (8) leads to an equality

in (3), so G is sharp.
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Lemma 2.7. If D > 1 and t > 0 then

1 − t

t

Dt − 1

D − Dt
≥ log D

D − 1
,

with the minimum occuring as t → 0+.

Proof. Let D = eγ for some γ > 0. Cross multiplying and simplifying, it suffices to show

(1 − t) (eγ t − 1) (eγ − 1) − γt (eγ − eγ t) ≥ 0 .

Plugging in the Taylor series for ex into the left side, and factoring out t or 1 − t factors gives

LHS = γ2 t(1 − t)

∞
∑

k=0

(γ t)k

(k + 1)!

∞
∑

k=0

γk

(k + 1)!
− γ2 t

∞
∑

k=0

γk

(k + 1)!
(1 − tk+1)

= γ2 t(1 − t)

[

∞
∑

k=0

γk
k

∑

i=0

ti

(i + 1)! (k − i + 1)!
−

∞
∑

k=0

γk

(k + 1)!

k
∑

i=0

ti

]

= γ2 t(1 − t)
∞
∑

k=0

γk
k

∑

i=0

ti

[
(k+2

i+1

)

(k + 2)!
− 1

(k + 1)!

]

≥ 0,

where the inequality uses that
(k+2

i+1

)

≥ k + 2 for i ∈ {0, . . . , k}.

3 Bounding G(1/x)

Theorem 1.1 gives an optimal bound, but it seems impossible to write G(1/x) in closed form. We give
here a few upper and lower bounds which show that G(x) is essentially logarithmic in x.

Corollary 3.1. If x = µ(S) ≤ 1/2, then

4x(1 − x) log2

(

1

x(1 − x)

)

≥ xG(1/x) ≥ x(1 − x)

(

4 + log

(

1

4x(1 − x)

))

2x log2(1/x) ≥ xG(1/x) ≥ x (2 + log(1/2x))

and has limit
G(1/x)

log(1/x)

x→0+

−−−−→ 1 .

The first lower bound is a stronger form of a result of Kannan, Lovász and Montenegro [5].
Computer plots show that the absolute error is no more than 0.0051, or at most 0.51% of the [0, 1]
range of µ+(S), and the relative error is no more than 7%.

Another lower bound of interest is

(diam K)µ+(S) ≥
√

2π Iγ(x) , (9)

where Iγ(x) is the so-called Gaussian isoperimetric function

Iγ(x) = ϕ ◦ Φ−1(x) where ϕ(t) =
1√
2π

e−t2/2 and Φ(t) =
1√
2π

∫ t

−∞
e−y2/2 dy , (10)

which makes its appearance in many isoperimetric results, such as Bobkov’s [1]. This lower bound is
weaker than the first one in the corollary and so we do not prove it here.
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Proof of Corollary. The second upper bound follows because the general log-concave bound is at least
as small as the uniform one (see the next section). By Corollary 4.2, taking n → ∞, the upper bound
on the uniform case for x > 2−n becomes a bound on the case x > 0. The first upper bound follows
from the second one because 2x(1 − x) ≥ x and x(1 − x) ≤ x.

For the limiting case

lim
x→0+

G(1/x)

log(1/x)
= lim

γ→∞

γ2eγ

eγ(γ−1)+1

ln
(

(eγ−1)2

eγ(γ−1)+1

) = 1 .

To prove the first lower bound, substitute the expression for µ+(S) in Theorem 1.1 into the lower
bound and rearrange terms. This reduces the problem to one of showing

γ2 eγ

(eγ − 1)2
1

x(1 − x)
−

(

4 + log

(

1

4x(1 − x)

))

≥ 0 where x =
eγ (γ − 1) + 1

(eγ − 1)2
. (11)

In order to show that (11) is non-negative, it suffices to show that d
dγ (Eqn. 11) ≥ 0, or equivalently

that the sign of the derivative is never negative. Multiplying the derivative by positive functions does
not affect its sign, so positive factors can be cancelled out of the derivative before checking its sign.
This differentiation and cancellation of terms can be performed repeatedly; if the final expression is
non-negative, and if after each intermediate derivative the value at 0 was non-negative, then it follows
that (11) holds.

Consider

d4

dγ4

[

e−γ d2

dγ2

[

e−γ d4

dγ4

[

e−γ d

dγ

[

(eγ(γ − 1) + 1)2 (eγ − (γ + 1))2 (eγ − 1)

eγ(γ − 2) + (γ + 2)

d

dγ
(Eqn.11)

]]]]

= 1296 eγ .

It can be verified that each intermediate derivative was non-negative as γ → 0+, and 1296 eγ is trivially
non-negative, so by the earlier remarks (11) follows.

The second lower bound follows from this by checking that the difference of the two lower bounds
is concave with minima of 0 at x → 0+ and x = 0.5.

4 The Uniform Distribution

When the distribution F is uniform over K then the results from the previous sections can be strength-
ened slightly. The proof is similar, but without the reduction from log-concavity to eγ t. Instead, the
extremal cases will be truncated cones {x : ‖ < x2, x3 . . . , xn > ‖ ≤ 1 + γ x1}, which leads to a more
tedious computation.

Theorem 4.1. Theorem 1.1 holds for the uniform distribution, but with optimal G(1/x) in dimension

1 given by xG(1/x) = 1, and in dimension n > 1 given by G(2) = 2 and

∀γ > 0 : xG(1/x) =
γ n

(1 + γ)n − 1

[

(1 + γ)n−1γ(n − 1)

(1 + γ)n−1 − 1

]1−1/n

where

x =
(1 + γ)n−1 [γ(n − 1) − 1] + 1

[(1 + γ)n−1 − 1] [(1 + γ)n − 1]
∈ (0, 1/2) .
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How much of an improvement does this give over the log-concave result? By fixing a constant
γ̂ > 0 and setting γ = γ̂/n, then as n → ∞ the bound in Theorem 4.1 converges to that of the
dimension free Theorem 1.1, just with γ̂ in place of γ.

For finite n the main difference is for small values of x. In particular, the limiting cases in
Corollaries 3.1 and 4.2 (see below) reveal that when n is fixed and x → 0+ then G(1/x) for the log-
concave case is infinitely smaller than for the uniform case. Therefore the log-concave bound is not
a good approximation of the uniform result on small subsets, although the following corollary does
show that it is a good approximation when x > 2−n.

Corollary 4.2. In Theorem 4.1 the quantity G(1/x) is bounded by

n
n
√

x
≥ G(1/x) ≥ 1

2

n
n
√

x
when x ≤ 2−n,

2 log2(1/x) ≥ G(1/x) ≥ 2 + log(1/2x) when x > 2−n ,

and has limit
G(1/x)

n/ n
√

x

x→0+

−−−−→ 1 .

Proof. For the first upper bound it suffices to give an example satifying the upper bound for every x
and n. Consider an n-dimensional unit hypercube [0, 1]n. Then, in ℓ∞ norm, a subcube embedded
in the corner of volume x will have µ+(S) = n x1−1/n, µ(S) = x and diam∞ K = 1. Therefore,
G(1/x) ≤ (diam K)µ+(S)/µ(S) = n/ n

√
x.

When n = 1 then the lower bound is trivial.
When n > 1 then

xG(1/x) ≥ γ n

(1 + γ)n − 1
[x ((1 + γ)n − 1)]1−1/n

≥ n

2
x1−1/n if γ ≥ 1 .

The formula for x is monotone decreasing in γ, so this implies the lower bound when

x ≤ xγ=1 where xγ=1 =
2n−1 (n − 2) + 1

(2n−1 − 1)(2n − 1)
>

2n−1 (n − 2)

2n−1 2n
=

n − 2

2n
.

Then xγ=1 > 1/2n for n ≥ 3, and when n = 2 then xγ=1 = 1/3 > 1/2n again.
The second lower bound follows from Section 3, as the lower bound for the uniform problem is

certainly no worse than that for the general log-concave.
The second upper bound follows by an example, again. Once again consider the unit hypercube

[0, 1]n with ℓ∞ norm, but this time for x ∈
(

2−(k+1), 2−k
]

(where 1 ≤ k < n) consider the k-dimensional

subcube, i.e., S = [0, x1/k]k × [0, 1]n−k. Then µ(S) = x, µ+(S) = k x1−1/k and therefore G(1/x) ≤
(diam K)µ+(S)/µ(S) = k/ k

√
x. The function k

√
x log2(1/x) is minimized in

(

2−(k+1), 2−k
]

at x = 2−k,
with minimum k/2. This implies that G(1/x) ≤ 2 log2(1/x).
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For the limiting case,

lim
x→0+

G(1/x)

n/ n
√

x
= lim

γ→∞

γn n
√

(1 + γ)n−1 − 1
[(1+γ)n−1γ(n−1)]

1−1/n

(1+γ)n−1 [γ(n−1)−1]+1

n n

√

[(1+γ)n−1−1][(1+γ)n−1]
(1+γ)n−1[γ(n−1)−1]+1

= lim
γ→∞

γ
n
√

(1 + γ)n − 1

{

(1 + γ)n−1γ(n − 1)

(1 + γ)n−1 [γ(n − 1) − 1] + 1

}1−1/n

= 1 .

It is illustrative to compare these bounds to something that is known exactly.

Example 4.3. Consider the n-dimensional hypercube [0, 1]n with uniform distribution F = 1, ℓ∞
norm and S ⊂ K required to have faces parallel to the surfaces (i.e. ‖u‖1 = 1). Bollobás and Leader
[2] studied surfaces of minimal surface area for this problem and found that the extremal sets for fixed
x are just the k-dimensional subcubes that we used to determine the upper bounds in Corollary 4.2,
i.e.,

(diam K)µ+(S)/µ(S) ≥ min
k∈{1,...,n}

k/ k
√

x . (12)

Simple calculus shows that k/ k
√

x log(1/x) ≥ e, with the minimum occuring at x = e−k. Therefore,
(diam K)µ+(S)/µ(S) ≥ e log(1/x), which shows that the best logarithmic approximation to (12) is
only a factor e larger than the general lower bound of Corollary 4.2. Likewise, the upper bound in the
corollary is an upper bound to (12) because it was found by fixing k over certain intervals.

Bollobás and Leader solved the hypercube problem in order to find an edge-isoperimetric inequality
on the grid [k]n. The bounds of Corollary 4.2 show that in graphs with a nice geometric structure,
such as [k]n, then the graph number (or cutset expansion) and the edge-isoperimetry are likely to
differ by a logarithmic factor of inverse set size.

5 Remarks

The diameter is often a poor measure of the size of a convex body. For instance, the diameter of [0, 1]n

in the standard Euclidean ℓ2 norm is
√

n, whereas the average distance of a point from the center
is much smaller. It would be nice if the methods of this paper could be used to allow conditioning
on set sizes in results using other measures of diameter, such as the theorem of Kannan, Lovász and
Simonovits [6]

(
∫

|x − x0|µ(dx)

)

µ+(S) ≥ (log 2)µ(S)µ(K \ S) .

When µ is a probability measure then
∫

|x−x0|µ(dx) measures the average radius of the convex body
(or probability distribution) centered at x0, and replaces the diameter in this paper. A sharp result
conditioned on set size would read something like

(
∫

|x − x0|µ(dx)

)

µ+(S) ≥ µ(S)F (1/µ(S)) .

10



However, a problem arises because the average radius,
∫

|x−x0|µ(dx), may increase when the reduction
is made to a one-dimensional problem. This contrasts to the diameter, which is non-increasing.
Therefore it is necessary to “waste” an inequality in the Localization Lemma to hold down this
average radius, while two more inequalities would be needed to find F (1/µ(S)). Since Localization
only allows for two inequalities then our method fails here.
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