
A Birthday Paradox for Markov chains, with

an optimal bound for collision in

the Pollard Rho Algorithm for Discrete Logarithm

Jeong Han Kim ∗ Ravi Montenegro † Yuval Peres ‡ Prasad Tetali §

Abstract

We show a Birthday Paradox for self-intersections of Markov chains with uniform stationary
distribution. As an application, we analyze Pollard’s Rho algorithm for finding the discrete
logarithm in a cyclic group G and find that, if the partition in the algorithm is given by a
random oracle, then with high probability a collision occurs in Θ(

√
|G|) steps. Moreover, for

the parallelized distinguished points algorithm on J processors we find that Θ(
√
|G|/J) steps

suffices. These are the first proofs of the correct order bounds which do not assume that every
step of the algorithm produces an i.i.d. sample from G.

1 Introduction

The Birthday Paradox states that if C
√
N items are sampled uniformly at random, with replace-

ment, from a set of N items, then for large C, with high probability some item will be chosen
twice. This can be interpreted as a statement that with high probability, a Markov chain on the
complete graph KN with transitions P (i, j) = 1/N will intersect its past in C

√
N steps; we re-

fer to such a self-intersection as a collision, and say the “collision time” is O(
√
N). Miller and

Venkatesan generalized this in [11] by showing that for a general Markov chain, the collision time
is bounded by O(

√
N Ts(1/2)), where Ts(ε) = min{n : ∀u, v ∈ V, Pn(u, v) ≥ (1− ε)π(v)} measures

the time required for the n-step distribution to assign every state a suitable multiple of its sta-
tionary probability. Kim, Montenegro and Tetali [8] further improved the bound on collision time
to O(

√
N Ts(1/2)). In contrast, while this shows the average path to be quickly self-intersecting,

Pak [13] has shown that undirected regular graphs of large degree have a non-intersecting path of
length N/32Ts(1/2).

The motivation of [11, 8] was to study the collision time for a Markov chain involved in Pollard’s
Rho algorithm for finding the discrete logarithm on a cyclic group G of prime order N = |G| 6= 2.
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For this walk Ts(1/2) = Ω(logN) and so the results of [11, 8] are insufficient to show the widely
believed Θ(

√
N) collision time for this walk. In this paper we improve upon these bounds and

show that if a finite ergodic Markov chain has uniform stationary distribution over N states, then
O(
√
N) steps suffice for a collision to occur, as long as the relative-pointwise distance (L∞ of the

densities of the current and the stationary distribution) drops steadily early in the random walk; it
turns out that the precise mixing time is largely, although not entirely, unimportant. See Theorem
3.1 for a precise statement. This is then applied to the Rho walk to give the first proof of collision
in Θ(

√
N) steps, and to Van Oorschot and Wiener’s [22] parallel version of the algorithm on J

processors to prove collision in Θ(
√
N/J) steps.

We note here that it is also well known (see e.g. [2], Section 4.1) that a random walk of length
L contains roughly Lλ samples from the stationary measure (of the Markov chain), where λ is the
spectral gap of the chain. This yields another estimate on collision time for a Markov chain, which
is also of a multiplicative nature (namely,

√
N times a function of the mixing time) as in [11, 8]. A

main point of the present work is to establish sufficient criteria under which the collision time has
an additive bound: C

√
N plus an estimate on the mixing time. While the Rho algorithm provided

the main motivation for the present work, we find the more general Birthday paradox result to be
of independent interest, and as such expect to have other applications in the future.

A bit of detail about the Pollard Rho algorithm is in order. The classical discrete logarithm
problem on a cyclic group deals with computing the exponents, given the generator of the group;
more precisely, given a generator g of a cyclic group G and an element h = gx, one would like to
compute x efficiently. Due to its presumed computational difficulty, the problem figures prominently
in various cryptosystems, including the Diffie-Hellman key exchange, El Gamal system, and elliptic
curve cryptosystems. About 30 years ago, J.M. Pollard suggested algorithms to help solve both
factoring large integers [15] and the discrete logarithm problem [16]. While the algorithms are of
much interest in computational number theory and cryptography, there has been little work on
rigorous analysis. We refer the reader to [11] and other existing literature (e.g., [21, 4]) for further
cryptographic and number-theoretical motivation for the discrete logarithm problem.

A standard variant of the classical Pollard Rho algorithm for finding discrete logarithms can
be described using a Markov chain on a cyclic group G. While there has been no rigorous proof of
rapid mixing of this Markov chain of order O(logc |G|) until recently, Miller-Venkatesan [11] gave a
proof of mixing of order O(log3 |G|) steps and collision time of O(

√
|G| log3 |G|), and Kim et al. [8]

showed mixing of order O(log |G| log log |G|) and collision time of O(
√
|G| log |G| log log |G|). In

this paper we give the first proof of the correct Θ(
√
|G|) collision time. By recent results of Miller-

Venkatesan [12] this collision will be non-degenerate and so solve the discrete logarithm problem
with probability 1 − o(1) for almost every prime order |G|, if the start point of the algorithm is
chosen at random or if there is no collision in the first O(log |G| log log |G|) steps.

The paper proceeds as follows. Section 2 contains some preliminaries; primarily an introduction
to the Pollard Rho Algorithm, and a simple multiplicative bound on the collision time in terms of
the mixing time. The more general Birthday Paradox for Markov chains with uniform stationary
distribution is shown in Section 3. In Section 4 we bound the appropriate constants for the Rho
walk and show the optimal collision time. We finish in Section 5 by proving similar results for the
distinguished points method of parallelizing the algorithm.
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2 Preliminaries

Our intent in generalizing the Birthday Paradox was to bound the collision time of the Pollard Rho
algorithm for Discrete Logarithm. As such, we briefly introduce the algorithm here. Throughout
the analysis in the following sections, we assume that the size N = |G| of the cyclic group on which
the random walk is performed is odd. Indeed there is a standard reduction – see [17] for a very
readable account and also a classical reference [14] – justifying the fact that it suffices to study the
discrete logarithm problem on cyclic groups of prime order.

Suppose g is a generator of G, that is G = {gi}N−1
i=0 . Given h ∈ G, the discrete logarithm

problem asks us to find x such that gx = h. Pollard suggested an algorithm on Z×N based on a
random walk and the Birthday Paradox. A common extension of his idea to groups of prime order
is to start with a partition of G into sets S1, S2, S3 of roughly equal sizes, and define an iterating
function F : G → G by F (y) = gy if y ∈ S1, F (y) = hy = gxy if y ∈ S2, and F (y) = y2 if
y ∈ S3. Then consider the walk yi+1 = F (yi). If this walk passes through the same state twice, say
ga+xb = gα+xβ, then ga−α = gx(β−b) and so a − α ≡ x(β − b) mod N and x ≡ (a − α)(β − b)−1

mod N , which determines x as long as (β−b,N) = 1. Hence, if we define a collision to be the event
that the walk passes over the same group element twice, then the first time there is a collision it
might be possible to determine the discrete logarithm.

To estimate the running time until a collision, one heuristic is to treat F as if it outputs uniformly
random group elements. By the Birthday Paradox if O(

√
|G|) group elements are chosen uniformly

at random, then there is a high probability that two of these are the same. Teske [20] has given
experimental evidence that the time until a collision is slower than what would be expected by an
independent uniform random process. We analyze instead the actual Markov chain in which it is
assumed only that each y ∈ G is assigned independently and at random to a partition S1, S2 or
S3. In this case, although the iterating function F described earlier is deterministic, because the
partition of G was randomly chosen then the walk is equivalent to a Markov chain (i.e. a random
walk), at least until the walk visits a previously visited state and a collision occurs. The problem
is then one of considering a walk on the exponent of g, that is a walk P on the cycle ZN with
transitions P (u, u+ 1) = P (u, u+ x) = P (u, 2u) = 1/3.

Remark 2.1. By assuming each y ∈ G is assigned independently and at random to a partition we
have eliminated one of the key features of the Pollard Rho algorithm, space efficiency. However,
if the partitions are given by a hash function f : (G,N) → {1, 2, 3} which is sufficiently pseudo-
random then we might expect behavior similar to the model with random partitions.

Remark 2.2. While we are studying the time until a collision occurs, there is no guarantee that
the first collision will be non-degenerate. If the first collision is degenerate then so also will be all
collisions, as the algorithm becomes deterministic after the first collision.

As mentioned in the introduction, we first recall a simple multiplicative bound on collision time
from [8]. The following proposition relates Ts(1/2) to the time until a collision occurs for any
Markov chain P with uniform distribution on G as the stationary distribution.

Proposition 2.3. With the above definitions, a collision occurs after

Ts(1/2) + 2
√

2c |G|Ts(1/2)

steps, with probability at least 1− e−c, for any c > 0.
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Proof. Let S denote the first
⌈√

2c |G|Ts(1/2)
⌉

states visited by the walk. If two of these states
are the same then a collision has occurred, so assume all states are distinct. Even if we only check
for collisions every Ts(1/2) steps, the chance that no collision occurs in the next tTs(1/2) steps (so
consider t semi-random states) is then at most

(
1− 1

2
|S|
|G|

)t
≤

(
1−

√
c Ts(1/2)

2|G|

)t
≤ exp

(
−t

√
c Ts(1/2)

2|G|

)
.

When t =
⌈√

2c|G|
Ts(1/2)

⌉
, this is at most e−c, as desired, and so at most

⌈√
2c |G|Ts(1/2)

⌉
− 1 +

⌈√
2c|G|
Ts(1/2)

⌉
Ts(1/2)

steps are required for a collision to occur with probability at least 1− e−c.

Obtaining a more refined additive bound on collision time will be the focus of the next section.
While the proof can be seen as another application of the well-known second moment method, it
turns out that bounding the second moment of the number of collisions before the mixing time is
somewhat subtle. To handle this, we use an idea from [9], who in turn credit their line of calculation
to [7].

3 Collision Time

Consider a finite ergodic Markov chain P with uniform stationary distribution (i.e. doubly stochas-
tic), state space Ω of cardinality N = |Ω|, and let X0, X1, · · · denote a particular instance of the
walk. In this section we determine the number of steps of the walk required to have a high proba-
bility that a “collision” has occurred, i.e. a self-intersection Xi = Xj for some i 6= j.

First, some notation. Fix some T ≥ 0 and integer β > 0. Let the indicator function 1{Xi=Xj}
equal one if Xi = Xj , and zero otherwise. Define

S =
β
√
N∑

i=0

β
√
N+2T∑

j=i+2T

1{Xi=Xj}

to be the number of times the walk intersects itself in β
√
N + 2T steps, where i and j are at least

2T steps apart. Also, for u, v ∈ Ω, let

GT (u, v) =
T∑
i=0

P i(u, v)

be the expected number of times a walk beginning at u hits state v in T steps. Finally, let

AT = max
u

∑
v

G2
T (u, v) and A∗T = max

u

∑
v

G2
T (v, u) .
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To see the connection between these and the collision time, observe that

∑
v

G2
T (u, v) =

∑
v

( T∑
i=0

T∑
j=0

P i(u, v)P j(u, v)
)

=
T∑
i=0

T∑
j=0

∑
v

P i(u, v)P j(u, v)

=
T∑
i=0

T∑
j=0

Pr(Xi = Yj)

=
T∑
i=0

T∑
j=0

E
(
1{Xi=Yj}

)
= E

T∑
i,j=0

1{Xi=Yj} ,

where {Xi}, {Yj} are i.i.d. copies of the chain, both having started at u at time 0, and E denotes
expectation. Hence AT is the maximal expected number of collisions of two T -step i.i.d. walks of P
starting at the same state u. Likewise, A∗T is the same for the reversal P ∗, where P ∗(u, v) = P (v, u)
(recall the stationary distribution was assumed to be uniform).

The main result of this section is the following.

Theorem 3.1 (Birthday Paradox for Markov chains). Consider a finite ergodic Markov chain with
uniform stationary distribution on a state space of N vertices. Let T be such that m

N ≤ P
T (u, v) ≤

M
N for some m ≤ 1 ≤M and every pair of states u, v. After

4c
(
M

m

)2
(√

2N
M

max{AT , A∗T }+ T

)

steps a collision occurs with probability at least 1− e−c, for any c ≥ 0.

At the end of this section we present an example to illustrate the need for the pre-mixing term
AT in Theorem 3.1. A slight strengthening of Theorem 3.1 is also shown there, at the cost of a
somewhat less intuitive bound.

Observe that if AT , A∗T ,m,M = Θ(1) and T = O(
√
N) then the collision time is O(

√
N), as in

the standard Birthday Paradox. By Lemma 3.2, for this to occur it suffices that P T be sufficiently
close to uniform after T = o(

√
N) steps, and that P j(u, v) = o(T−2) + dj for all u, v, for j ≤ T

and some d < 1. More generally, to upper bound AT and A∗T it suffices to show that the maximum
probability of being at a vertex decreases quickly.

Lemma 3.2. If a finite ergodic Markov chain has uniform stationary distribution then

AT , A
∗
T ≤ 2

T∑
j=0

(j + 1) max
u,v

P j(u, v) .
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Proof. If u is such that equality occurs in the definition of AT , then

AT =
∑
v

G2
T (u, v) =

T∑
i=0

T∑
j=0

∑
v

P i(u, v)P j(u, v)

≤ 2
T∑
j=0

j∑
i=0

max
y
P j(u, y)

∑
v

P i(u, v)

≤ 2
T∑
j=0

(j + 1) max
y
P j(u, y) .

The quantity A∗T plays the role of AT for the reversed chain, and so the same bound holds for
A∗T but with maxu,v(P ∗)j(u, v) = maxu,v P j(v, u) = maxu,v P j(u, v).

In particular, suppose P j(u, v) ≤ c+ dj for every u, v ∈ Ω and some c, d ∈ [0, 1). The sum

T∑
j=0

(j + 1)(c+ dj) = c
(T + 1)(T + 2)

2
+

1− dT+1 − (T + 1)dT+1(1− d)
(1− d)2

≤ (1 + o(1))
cT 2

2
+

1
(1− d)2

,

and so if P j(u, v) ≤ o(T−2) + dj for every u, v ∈ Ω then AT , A
∗
T = 2+o(1)

(1−d)2
.

The proof of Theorem 3.1 relies largely on the following inequality which shows that the expected
number of self-intersections is large with low variance:

Lemma 3.3. Under the conditions of Theorem 3.1,

E[S] ≥ m

N

(
β
√
N + 2
2

)
, E[S2] ≤ M2

N2

(
β
√
N + 2
2

)2 (
1 +

8 max{AT , A∗T }
Mβ2

)
.

Proof of Theorem 3.1. First recall the standard second moment bound: using Cauchy-Schwartz,
we have that

E[S] = E[S1{S>0}] ≤ E[S2]1/2E[1{S>0}]
1/2

and hence Pr[S > 0] ≥ E[S]2/E[S2] . By Lemma 3.3, if β = 2
√

2 max{AT , A∗T }/M then

Pr[S > 0] ≥ m2/M2

1 + 8 max{AT ,A
∗
T }

Mβ2

≥ m2

2M2
,

independent of the starting point. If no collision occurs in β
√
N + 2T steps then S = 0 as well,

and so Pr[no collision] ≤ Pr[S = 0] ≤ 1−m2/2M2. Hence, in k(β
√
N + 2T ) steps

Pr[no collision] ≤
(
1−m2/2M2

)k ≤ e−km2/2M2
(3.1)

Taking k = 2cM2/m2 completes the proof.
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Proof of Lemma 3.3. We will repeatedly use the relation that there are
(
β
√
N+2
2

)
choices for i, j

appearing in the summation for S, i.e. 0 ≤ i and i+ 2T ≤ j ≤ β
√
N + 2T .

Now to the proof. The expectation E[S] satisfies

E[S] = E

β
√
N∑

i=0

β
√
N+2T∑

j=i+2T

1{Xi=Xj} =
β
√
N∑

i=0

β
√
N+2T∑

j=i+2T

E[1{Xi=Xj}] ≥
(
β
√
N + 2
2

)
m

N
(3.2)

because if j ≥ i+ T then

Pr(Xj = Xi) =
∑
u

Pr(Xi = u)P j−i(u, u) ≥
∑
u

Pr(Xi = u)
m

N
=
m

N
. (3.3)

Similarly, Pr(Xj = Xi) ≤ M
N when j ≥ i+ T .

Now for E[S2]. Note that

E[S2] = E

β
√
N∑

i=0

β
√
N+2T∑

j=i+2T

1{Xi=Xj}

β
√
N∑

k=0

β
√
N+2T∑

l=k+2T

1{Xk=Xl}


=

β
√
N∑

i=0

β
√
N∑

k=0

β
√
N+2T∑

j=i+2T

β
√
N+2T∑

l=k+2T

Prob(Xi = Xj , Xk = Xl) .

To evaluate this quadruple sum we break it into 3 cases.

Case 1: Suppose |j − l| ≥ T . Without loss, assume l ≥ j, so in particular l ≥ max{i, j, k} + T .
Then

Prob(Xi = Xj , Xk = Xl) = Prob(Xi = Xj)Prob(Xl = Xk | Xi = Xj)
≤ Prob(Xi = Xj) max

u,v
Prob(Xl = v | Xmax{i,j,k} = u)

≤ Prob(Xi = Xj)
M

N
≤
(
M

N

)2

. (3.4)

The first inequality is because {Xt} is a Markov chain and so given Xi, Xj , Xk the walk at any
time t ≥ max{i, j, k} depends only on the state Xmax{i,j,k}.

Case 2: Suppose |i− k| ≥ T and |j − l| < T . Without loss, assume i ≤ k. If j ≤ l then

Prob(Xi = Xj , Xk = Xl) =
∑
u,v

Prob(Xi = u)P k−i(u, v)P j−k(v, u)P l−j(u, v)

≤
∑
u

Prob(Xi = u)
M

N

M

N

∑
v

P l−j(u, v) =
(
M

N

)2

(3.5)

because k ≥ i + T , j ≥ k + T , and
∑

v P
t(u, v) = 1 for any t because P and hence also P t

is a stochastic matrix. If, instead, l < j then essentially the same argument works, but with∑
v P

t(v, u) = 1 because P and hence also P t is doubly-stochastic.
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Case 3: Finally, consider those terms with |j − l| < T and |i − k| < T . Without loss, assume
i ≤ k. If l ≤ j then

Prob(Xi = Xj , Xk = Xl) =
∑
u,v

Prob(Xi = u)P k−i(u, v)P l−k(v, v)P j−l(v, u)

≤
∑
u

Prob(Xi = u)
∑
v

P k−i(u, v)
M

N
P j−l(v, u) . (3.6)

The sum over elements with i ≤ k < i+ T and l ≤ j < l + T is upper bounded as follows:

β
√
N∑

i=0

i+T∑
k=i

β
√
N+2T∑

l=k+2T

l+T∑
j=l

Prob(Xi = Xj , Xk = Xl)

≤ M

N

β
√
N∑

i=0

β
√
N+2T∑

l=i+2T

max
u

∑
v

∑
k∈[i,i+T )

P k−i(u, v)
∑

j∈[l,l+T )

P j−l(v, u) (3.7)

≤ M

N

β
√
N∑

i=0

β
√
N+2T∑

l=i+2T

max
u

∑
v

GT (u, v)GT (v, u)

≤ M

N

β
√
N∑

i=0

β
√
N+2T∑

l=i+2T

max
u

√∑
v

G2
T (u, v)

∑
v

G2
T (v, u)

≤ M

N

(
β
√
N + 2
2

)√
AT A∗T .

The case when j < l gives the same bound, but with the observation that j ≥ k + T and with
AT instead of

√
AT A∗T .

Putting together these various cases we get that

E[S2] ≤
(
β
√
N + 2
2

)2(
M

N

)2

+ 2
(
β
√
N + 2
2

)
M

N
AT + 2

(
β
√
N + 2
2

)
M

N

√
AT A∗T .

The
(
β
√
N+2
2

)2
term is the total number of values of i, j, k, l appearing in the sum for E[S2], and

hence also an upper bound on the number of values in Cases 1 and 2. Along with the relation(
β
√
N+2
2

)
≥ β2N

2 this simplifies to complete the proof.

As promised earlier, we now present an example that illustrates the need for the pre-mixing
term AT in Theorem 3.1.

Example 3.4. Consider the random walk on ZN which transitions from u→ u+1 with probability
1− 1/

√
N , and with probability 1/

√
N transitions u→ v for a uniformly random choice of v.

Heuristically the walk proceeds as u→ u+ 1 for ≈
√
N steps, then randomizes, then proceeds

as u → u + 1 for another
√
N steps. This effectively splits the state space into

√
N blocks of

size about
√
N each, so by the standard Birthday Paradox it should require about

√
N1/2 of these

randomizations before a collision will occur. In short, about N3/4 steps in total.
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To see the need for the pre-mixing term, observe that Ts ≈
√
N log 2 while if T = T∞ ≈√

N log(2(N − 1)) then we may take m = 1/2 and M = 3/2 in Theorem 3.1. So, whether Ts or
T∞ are considered, it will be insufficient to take O(T +

√
N) steps. However, the number AT of

collisions between two independent copies of this walk is about
√
N , since once a randomization

step occurs then the two independent walks are unlikely to collide anytime soon. Our collision time
bound says that O(N3/4) steps will suffice, which is the correct bound.

A proper analysis shows that 1−o(1)√
2
N3/4 steps are necessary to have a collision with probability

1/2. Conversely, when T =
√
N log2N then m = 1− o(1), M = 1 + o(1) and AT , A∗T ≤

1+o(1)
2

√
N ,

so by equation (3.1), (2 + o(1))N3/4 steps are sufficient to have a collision with probability at least
1/2. Our upper bound is thus off by at most a factor of 2

√
2 ≈ 2.8.

We finish the section with a slight sharpening of Theorem 3.1. This will be used to improve the
lead constant in our upcoming bound on collision time for the Pollard Rho walk:

Theorem 3.5 (Improved Birthday paradox). Consider a finite ergodic Markov chain with uniform
stationary distribution on a state space of N vertices. Let T be such that m

N ≤ P T (u, v) ≤ M
N for

some m ≤ 1 ≤M and every pair of states u, v. After

2c

√√√√(1 +
2T∑
j=1

3jmax
u,v

P j(u, v)
)N
M

+ T


steps a collision occurs with probability at least 1−

(
1− m2

2M2

)c
, independent of the starting state.

Proof. We give only the steps that differ from before. First, in equation (3.7), note that the triple
sum after maxu can be re-written as

∑
α∈[0,T )

∑
β∈[0,T )

∑
v

Pα(u, v)P β(v, u) ≤
2(T−1)∑
γ=0

(γ + 1)P γ(u, u)

and so the original quadruple sum reduces to M
N

(
β
√
N+2
2

)
maxu

∑2(T−1)
γ=0 (γ + 1)P γ(u, u) .

For the case when i < k and j < l proceed similarly, then reduce as in Lemma 3.2 to obtain the
upper bound

M

N

(
β
√
N + 2
2

) T−1∑
α=1

T−1∑
β=1

∑
v

Pα(u, v)P β(u, v) ≤ M

N

(
β
√
N + 2
2

) T−1∑
γ=1

(2γ − 1) max
v
P γ(u, v) .

Adding these two expressions gives an expression of at most

M

N

(
β
√
N + 2
2

)1 +
2T∑
γ=1

3γmax
v
P γ(u, v)

 .

The remaining two cases will add to the same bound, so effectively this replaces a 4 max{AT , A∗T }
in the original theorem with the expression 2

(
1 + maxu

∑2T
γ=1 3γmaxv P γ(u, v)

)
.
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To simplify, note that if maxu,v P j(u, v) ≤ c+ dj for c, d ∈ [0, 1) then

2T∑
j=1

3j
(
c+ dj

)
= 3cT (2T + 1) + 3d

1− d2T − 2Td2T (1− d)
(1− d)2

≤ (1 + o(1))6cT 2 +
3d

(1− d)2
. (3.8)

4 Convergence of the Rho walk

Let us now turn our attention to the Pollard Rho walk for discrete logarithm. To apply the collision
time result we will first show that maxu,v∈ZN

P s(u, v) decreases quickly in s so that Lemma 3.2
may be used. We then find T such that P T (u, v) ≈ 1/N for every u, v ∈ ZN . However, instead of
studying the Rho walk directly, most of the work will instead involve a “block walk” in which only
a certain subset of the states visited by the Rho walk are considered.

Definition 4.1. Let us refer to the three types of moves that the Pollard Rho random walk makes,
namely (u, u+ 1), (u, u+ x), and (u, 2u), as moves of Type 1, Type 2, and Type 3, respectively. In
general, let the random walk be denoted by Y0, Y1, Y2, . . . , with Yt indicating the position of the
walk (modulo N) at time t ≥ 0. Let T1 be the first time that the walk makes a move of Type 3.
Let b1 = YT1−1 − YT0 (i.e., the ground covered, modulo N , only using consecutive moves of Types
1 and 2.) More generally, let Ti be the first time, since Ti−1, that a move of Type 3 happens and
set bi = YTi−1 − YTi−1 . Then the block walk B is the walk Xs = YTs = 2sYT0 + 2

∑s
i=1 2s−ibi.

By combining our Birthday Paradox for Markov chains with several lemmas to be shown in this
section we obtain the main result of the paper:

Theorem 4.2. For every choice of starting state, the expected number of steps required for the
Pollard Rho algorithm for discrete logarithm on a group G to have a collision is at most

(1 + o(1)) 12
√

19
√
|G| < (1 + o(1)) 52.5

√
|G| .

In order to prove this it is necessary to show that Bs(u, v) decreases quickly for the block walk:

Lemma 4.3. If s ≤ blog2Nc then for every u, v ∈ ZN the block walk satisfies

Bs(u, v) ≤ (2/3)s .

If s > blog2Nc then Bs(u, v) ≤ 3/2
N1−log2 3

≤ 3/2√
N

.

A bound on the asymptotic rate of convergence is also required:

Theorem 4.4. If s ≥
⌈
m log 2(m−1)

ε

⌉
where m = dlog2Ne, then for every u, v ∈ ZN the block walk

satisfies
1− ε
N
≤ B2s(u, v) ≤ 1 + ε

N
.

This is all that is needed to prove the main result:
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Proof of Theorem 4.2. The proof will use Theorem 3.5 because this gives a somewhat sharper
bound. Alternatively, Theorem 3.1 and Lemma 3.2 can be applied nearly identically to get the
slightly weaker (1 + o(1))72

√
|G|.

First consider steps of the block walk. Lemma 4.3 implies that Bs(u, v) ≤ 3/2√
N

+ (2
3)s, for s ≥ 0,

and for all u, v. Hence, by equation (3.8), if T = o( 4
√
N) then 1 +

∑2T
j=1 3j Bj(u, v) ≤ 19 + o(1). By

Theorem 4.4, after 2(log2N)(log logN + log 3
ε ) steps M ≤ 1 + ε and m ≥ 1− ε. Hence, if ε = 1/N2

then T = (4 + o(1)) (log2N)2 = o( 4
√
N) and m = 1− o(1/N) and M = 1 + o(1/N). Plugging this

into Theorem 3.5, a collision fails to occur in

k

2

√√√√(1 +
2T∑
j=1

3j max
u,v

Bj(u, v)
)N
M

+ 2T

 = (1 + o(1)) 2
√

19 k
√
N

steps with probability at most (1− δ)k where δ = m2/2M2 = (1− o(1))/2.
Now return to the Rho walk. Recall that Ti denotes the number of Rho steps required for i

block steps. The difference Ti+1 − Ti is an i.i.d. random variable with the same distribution as
T1 − T0. Hence, if i ≥ j then E[Ti − Tj ] = (i − j)E[T1 − T0] = 3(i − j). In particular, if we let
r = (1 + o(1)) 2

√
19N , let R denote the number of Rho steps before a collision, and let B denote

the number of block steps before a collision, then

E[R] ≤
∞∑
k=0

Pr[B > kr]E[T(k+1)r − Tkr | B > kr]

=
∞∑
k=0

Pr[B > kr]E[T(k+1)r − Tkr]

≤
∞∑
k=0

(
1 + o(1)

2

)k
3r = (1 + o(1)) 12

√
19
√
N .

Proof of Lemma 4.3. We start with a weaker, but somewhat more intuitive, proof of a bound on
Bs(u, v) and then improve it to obtain the result of the lemma. The key idea here will be to separate
out a portion of the Markov chain which is tree-like with some large depth L, namely the moves
induced solely by bi = 0 and bi = 1 moves. Because of the high depth of the tree, the walk spreads
out for the first L steps, and hence the probability of being at a vertex also decreases quickly.

Let S = {i ∈ [1 . . . s] : bi ∈ {0, 1}} and z =
∑

i/∈S 2s−ibi be random variables whose values
are determined by the first Ts steps of the random walk. Then YTs = 2sYT0 + 2z + 2

∑
i∈S 2s−ibi.

Hence, choosing YT0 = u, YTs = v, we may write

Bs(u, v) =
∑
S

Prob(S)
∑
z∈ZN

Prob(z | S)Prob

(∑
i∈S

2s−ibi = v/2− 2s−1u− z | z, S

)

≤
∑
S

Prob(S) max
w∈ZN

Prob

(∑
i∈S

2s−ibi = w | S

)
,

and so for a fixed choice of S, we can ignore what happens on Sc.

11



Each w ∈ [0 . . . N−1] has a unique binary expansion, and so if s ≤ blog2Nc then modulo N each
w can still be written in at most one way as an s bit string. For the block walk, Prob(bi = 0) ≥ 1/3
and Prob(bi = 1) ≥ 1/9, and so max{Prob(bi = 0 | i ∈ S), P rob(bi = 1 | i ∈ S)} ≤ 8

9 . It follows
that

max
w∈ZN

Prob

(∑
i∈S

2s−ibi = w | S

)
≤ (8/9)|S| , (4.9)

using independence of the bi’s. Hence,

Bs(u, v) ≤
∑
S

Prob(S) (8/9)|S| =
s∑
r=0

Prob(|S| = r) (8/9)r

≤
s∑
r=0

(
s

r

)(
4
9

)r (
1− 4

9

)s−r (8
9

)r
=
(

4
9

8
9

+
5
9

)s
=
(

77
81

)s
.

The second inequality was because (8/9)|S| is decreasing in |S| and so underestimating |S| by
assuming Prob(i ∈ S) = 4/9 will only increase the upper bound on Bs(u, v).

In order to improve on this, we will shortly re-define S (namely, events {i ∈ S}, {i 6∈ S}) and
auxiliary variables ci, using the steps of the Rho walk. Also note that the block walk is induced by
a Rho walk, so we may assume that the bi were constructed by a series of steps of the Rho walk.
With probability 1/4 set i ∈ S and ci = 0, otherwise if the first step is of Type 1 then set i ∈ S
and ci = 1, while if the first step is of Type 3 then put i /∈ S and ci = 0, and finally if the first step
is of Type 2, then again repeat the above decision making process, using the subsequent steps of
the walk. Note that the above construction can be summarized as consisting of one of four equally
likely outcomes (at each time), where the last three outcomes depend on the type of the step that
the Rho walk takes; indeed each of these three outcomes happens with probability 3

4 ×
1
3 = 1/4;

finally, a Type 2 step forces us to reiterate the four-way decision making process.
Then Pr(i ∈ S) =

∑∞
l=0(1/4)l (1/2) = 2/3. Also observe that Pr(ci = 0|i ∈ S) = Pr(ci = 1|i ∈

S), and that Pr(bi − ci = x | i ∈ S, ci = 0) = Pr(bi − ci = x | i ∈ S, ci = 1). Hence the steps done
earlier (leading to the weaker bound) carry through with z =

∑
i 2s−i(bi− ci) and with

∑
i∈S 2s−ibi

replaced by
∑

i∈S 2s−ici. In (4.9) replace (8/9)|S| by (1/2)|S|, and in showing the final upper bound
on Bs(u, v) replace 4/9 by 2/3. This leads to the bound Bs(u, v) ≤ (2/3)s.

Finally, when s > blog2Nc, simply apply the preceding argument to S′ = S ∩ [1 . . . blog2Nc].
Alternately, note that when s ≥ blog2Nc then

Bs(u, v) ≤ max
w

Bblog2Nc(u,w) ≤ (2/3)log2N−1 ,

for every doubly-stochastic Markov chain B.

In [11, 8] sufficiently strong bounds on the asymptotics of B2s(u, v) are shown in several ways,
including by use of characters and quadratic forms, canonical paths, or Fourier analysis. We give
here the Fourier approach, as it establishes the sharpest mixing bounds. To bound mixing time of
the block walk, it suffices to show that for large enough s, the distribution νs of

Zs = 2s−1b1 + 2s−2b2 + · · ·+ bs

is close to the uniform distribution U = 1/N , because then the distribution of Xs = 2sYT0 + 2Zs
will be close to uniform as well. More precisely, it will be shown that
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Lemma 4.5. If νs(j) = Pr[Zs = j], ξ = 1− 4−
√

10
9 , and m satisfies 2m−1 < N < 2m then

N
N−1∑
j=0

(νs(j)− U(j))2 ≤ 2
(

(1 + ξ2bs/mc)m−1 − 1
)
.

Proof of Theorem 4.4. By Cauchy-Schwartz:∣∣∣∣B2s(u, v)− U(v)
U(v)

∣∣∣∣2
=

∣∣∣∣∑w (Bs(u,w)− U(w)) (Bs(w, v)− U(v))
U(v)

∣∣∣∣2
=

∣∣∣∣∣∑
w

U(w)
(

Bs(u,w)
U(w)

− 1
)(

B∗s(v, w)
U(w)

− 1
)∣∣∣∣∣

2

≤
∑
w

U(w)
∣∣∣∣Bs(u,w)
U(w)

− 1
∣∣∣∣2 ∑

x

U(x)
∣∣∣∣B∗s(v, x)
U(x)

− 1
∣∣∣∣2 (4.10)

Lemma 4.5 bounds the first sum of (4.10). The second sum is the same quantity but for the
time-reversed walk B∗(y, x) = B(x, y). To examine the reversed walk let b∗i denote the sum of steps
taken by B∗ between the (i− 1)-st and ith time that a u→ u/2 transition is chosen (i.e. consider
block steps for the reversed walk), and let Z∗s = 2−s+1 b∗1 + · · ·+ b∗s. If we define bi = −b∗i then the
bi are independent random variables from the same distribution as the blocks of B, and so

Pr[−2s−1Z∗s = j] = Pr[b1 + 2b2 + · · ·+ 2s−1bs = j]
= Pr[Zs = j] .

Lemma 4.5 thus bounds the second sum of (4.10) as well, and the theorem follows.

Before proving Lemma 4.5 let us review the standard Fourier transform and the Plancherel
identity. For any complex-valued function f on ZN and ω = e2πi/N , recall that the Fourier transform

f̂ : ZN → C is given by f̂(`) =
N−1∑
j=0

ω`jf(j), and the Plancherel identity asserts that

N

N−1∑
j=0

|f(j)|2 =
N−1∑
j=0

|f̂(j)|2 .

For the distribution µ of a ZN -valued random variable X, its Fourier transform is

µ̂(`) =
N−1∑
j=0

ω`jµ(j) = E[ω`X ].

Thus, for the distributions µ1 , µ2 of two independent random variables Y1, Y2, the distribution ν of
X := Y1 + Y2 has the Fourier transform ν̂ = µ̂1 µ̂2 , since
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ν̂(`) = E[ω`X ] = E[ω`(Y1+Y2)]
= E[ω`Y1 ]E[ω`Y2 ] = µ̂1(`)µ̂2(`).

Generally, the distribution ν of X := Y1 + · · ·+Ys with independent Yi’s has the Fourier transform
ν̂ =

∏s
r=1 µ̂r . Moreover, for the uniform distribution U , it is easy to check that

Û(`) =
{

1 if ` = 0,
0 otherwise.

As the random variables 2rbs−r’s are independent, ν̂s =
∏s−1
r=0 µ̂r, where µr are the distributions of

2rbs−r. The linearity of the Fourier transform and ν̂s(0) = E[1] = 1 yield

ν̂s − U(`) = ν̂s(`)− Û(`) =
{

0 if ` = 0∏s−1
r=0 µ̂r(`) otherwise.

Proof of Lemma 4.5. By Plancherel’s identity, it is enough to show that

N−1∑
`=1

∣∣∣ s−1∏
r=0

µ̂r(`)
∣∣∣2 ≤ 2

(
(1 + ξ2bs/mc)m−1 − 1

)
.

Let Ar be the event that bs−r = 0 or 1. Then,

µ̂r(`) = E[ω`2
rbs−r ]

= Pr[bs−r = 0] + Pr[bs−r = 1]ω`2
r

+Pr[Ār]E[ω`2
rbs−r |Ār],

and, for x := Pr[bs−r = 0] and y := Pr[bs−r = 1],

|µ̂r(`)| ≤ |x+ yω`2
r |+ (1− x− y)|E[ω`2

rbs−r |Ār]|
≤ |x+ yω`2

r |+ 1− x− y.

Notice that

|x+ yω`2
r |2 = (x+ y cos 2π`2r

N )2 + y2 sin2 2π`2r

N

= x2 + y2 + 2xy cos 2π`2r

N .

If cos 2π`2r

N ≤ 0, then

|µ̂r(`)| ≤ (x2 + y2)1/2 + 1− x− y
= 1− (x+ y − (x2 + y2)1/2)

Since x = Pr[bs−r = 0] ≥ 1/3 and y = Pr[bs−r = 1] ≥ 1/9, it is easy to see that x+ y− (x2 + y2)1/2

has its minimum when x = 1/3 and y = 1/9. (For both partial derivatives are positive.) Hence,

|µ̂r(`)| ≤ ξ = 1− 4−
√

10
9

, provided cos 2π`2r

N ≤ 0.
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If cos 2π`2r

N > 0, we use the trivial bound µ̂r(`) = E[ω`2
rbs−r ] ≤ 1.

For ` = 1, ..., N − 1, let φs(`) be the number of r = 0, ..., s− 1 such that cos 2π`2r

N ≤ 0. Then

s−1∏
r=0

|µ̂r(`)| ≤ ξφs(`). (4.11)

To estimate φs(`), we consider the binary expansion of

`/N = .α
`,1
α

`,2
· · ·α

`,s
· · · ,

α
`,r
∈ {0, 1} with α

`,r
= 0 infinitely often. Hence, `/N =

∑∞
r=1 2−rα

`,r
. The fractional part of

`2r/N may be written
{`2r/N} = .α

`,r+1
α

`,r+2
· · ·α

`,s
· · · .

Notice that cos 2π`2r

N ≤ 0 if the fractional part of `2r/N is (inclusively) between 1/4 and 3/4, which
follows if αr+1 6= αr+2 . Thus, φs(`) is at least as large as the number of alterations in the sequence
(α

`,1
, α

`,2
, ..., α

`,s+1
).

We now take m such that 2m−1 < N < 2m. Observe that, for ` = 1, ..., N − 1, the subsequences
α(`) := (α

`,1
, α

`,2
, ..., α

`,m
) of length m are pairwise distinct: If α(`) = α(`′) for some ` < `′

then `′−`
N is less than

∑
r≥m+1 2−r ≤ 2−m, which is impossible as N < 2m. Similarly, for fixed r

and ` = 1, ..., N − 1, all subsequences α(`; r) := (α
`,r+1

, α
`,r+2

, ..., α
`,r+m

) are pairwise distinct. In
particular, for fixed r with r = 0, ..., bs/mc − 1, all subsequences α(`; rm), ` = 1, ..., N − 1, are
pairwise distinct. Since the fractional part {2rm`

N } = .α
`,rm+1

α
`,rm+2

· · · must be the same as `′

N for
some `′ in the range 1 ≤ `′ ≤ N − 1, there is a unique permutation σr of 1, ...N − 1 such that
α(`; rm) = α(σr(`)). Writing |α(σr(`))|A for the number of alternations in α(σr(`)), we have

φs(`) ≥
bs/mc−1∑
r=0

|α(σr(`))|A ,

where σ0 is the identity. Therefore, (4.11) gives

N−1∑
`=1

∣∣∣ s−1∏
r=0

µ̂r(`)
∣∣∣2 ≤ N−1∑

`=1

ξ2
∑bs/mc−1

r=0 |α(σr(`))|
A .

Using

ξx+y + ξx
′+y′

≤ ξmin{x,x′}+min{y,y′} + ξmax{x,x′}+max{y,y′}

inductively, the above upper bound may be maximized when all σr’s are the identity, i.e.,

N−1∑
`=1

∣∣∣ s−1∏
r=0

µ̂r(`)
∣∣∣2 ≤ N−1∑

`=1

ξ2bs/mc|α(`)|
A .

Note that 1/N ≤ `/N ≤ 1 − 1/N implies that α(`) is neither (0, ..., 0) nor (1, ..., 1) (both are of
length m). This means that all α(`) have at least one alternation. Since α(`)’s are pairwise distinct,

N−1∑
`=1

ξ2bs/mc|α(`)|
A ≤

∑
α:|α|

A
>0

ξ2bs/mc|α|
A ,
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where the sum is taken over all sequences α ∈ {0, 1}m with |α|A > 0.
Let H(z) be the number of α’s with exactly z alterations. Then

H(z) = 2
(
m− 1
z

)
,

and hence

∑
α:|α|

A
>0

ξ2bs/mc|α|
A = 2

m−1∑
z=1

(
m− 1
z

)
ξ2bs/mcz

= 2
(

(1 + ξ2bs/mc)m−1 − 1
)
.

Remark 4.6. For the reader interested in applying these methods to show a Birthday type result
for other problems, it is worth noting that a Fourier approach can also be used to show that Bs(u, v)
decreases quickly, and so AT , A∗T = O(1).

For the distribution νs of Xs the Plancherel identity gives

max
v

Pr[Xs = v] = max
v
νs(v)2 ≤

N−1∑
w=0

νs(w)2 =
1
N

N−1∑
`=0

|ν̂s(`)|2 =
1
N

N−1∑
`=0

∣∣∣ s−1∏
r=0

µ̂r(`)
∣∣∣2.

For ` = 0, 1, ..., N − 1, let φs(`) be the number of r = 0, ..., s− 1 such that cos 2π`2r

N ≤ 0. Then

s−1∏
r=0

|µ̂r(`)| ≤ ξφs(`).

Take m such that 2m−1 < N < 2m. Then, for s ≤ m− 1 and any (fixed) binary sequence α1, ..., αs
(that is, αj ∈ {0, 1}), there are at most d2−sNe `’s such that the binary expansion of `/N up to s
digits is .α1, ..., αs. Since there are at most 2e−Ω(s)2s binary sequences with fewer than (s − 1)/3
alterations,

s−1∏
r=0

|µ̂r(`)| = 2e−Ω(s)

except for at most 2e−Ω(s)2sd2−sNe = 2e−Ω(s)N values of `. Using a trivial bound
∏s−1
r=0 |µ̂r(`)| ≤ 1

for such `’s, we have
max
v

Pr[Xs = v] = 2e−Ω(s) + 2e−Ω(s) = 2e−Ω(s).

If s > m− 1, then
∏s−1
r=0 |µ̂r(`)| ≤

∏m−2
r=0 |µ̂r(`)| implies that

max
v

Pr[Xs = v] = 2e−Ω(m−1) = O(N−Ω(1)).

One might expect that the correct order of the mixing time of the Block walk Xs is indeed
Θ(log p log log p). This is in fact the case, at least for certain values of p and x, by an argument
similar to that of Diaconis et.al. [1, 3]:
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Theorem 4.7. If p = 2m − 1 and x = p− 1 then the block walk has mixing time Θ(log p log log p).

Sketch of proof. The upper bound on mixing time, O(log p log log p), was shown in Theorem 4.4 via
a Fourier argument.

The proof of a lower bound on mixing time, Ω(log p log log p), is fairly similar to that of Section
4 “A proof of Case 2” of Hildebrand [6], which in turn closely follows a proof of Chung, Diaconis
and Graham [3]. The basic idea is by now fairly standard: choose a function and show that its
expectation under the stationary distribution and under the n-step distribution Pn are far apart,
with sufficiently small variance to conclude that the two distributions (Pn and π) must differ
significantly.

In keeping with notation of [6], suppose p = 2t − 1 and let k denote a variable over Z. The
“separating” function f : Zp → C to be used here is

f(k) :=
t−1∑
j=0

qk2j
where q = e2πi/p .

Then EU (f) = 0 if p > 1, and EU (ff̄) = t and so Var(f) = t, where U denotes the uniform
distribution.

Let Pn(·) denote the distribution of Zn = 2n−1b1 + 2n−2b2 + · · ·+ bn induced by n steps of the
block walk. Set n = rt where r = δ log t− d ∈ N for some fixed δ (to be chosen later). Also, define
Πj = P̂t(2j − 1). Then

EPn(f f̄) =
∑
k

Pn(k)
∑
j,j′

qk(2j−2j′ ) =
t−1∑
j,j′=0

P̂n(2j − 2j
′
)

=
t−1∑
j,j′=0

(
P̂t(2j − 2j

′
)
)r

= t
t−1∑
j=0

Πr
j

For the third equality note that since the bi are i.i.d. random variables and 2t ≡ 1 mod p, then
Zn is exactly the sum of r random variables each with distribution

∑t−1
i=0 2ibt−i, i.e. a sum of

r variables each distributed as Zt. For the final equality, note that {2ibt−i}t−1
i=0 contains random

variables with the same distributions as does {2i+cbt−i}t−1
i=0 for any constant c ∈ Z, because the bt−i

are i.i.d. and 2i+c ≡ 2(i+c mod t) mod p. Hence P̂t(x) = P̂t(2cx) and in particular P̂t(2j − 2j
′
) =

P̂t

(
2(j−j′ mod t) − 1

)
.

By a similar calculation EPn(f) = tΠr
1. Thus also VarPn(f) = t

∑t−1
j=0 Πr

j − t2|Π1|2r.
The expressions for Πj can be written more explicitly. To do this, recall that Xn − 2nX0 =∑n
i=1 2n−ibi where the bi are i.i.d. with some distribution b. Let ak = Pr[b = k], and note that also

ak = Pr[b = −k] since the non-doubling steps are symmetric, i.e. u→ u+ 1 and u→ u+x = u−1.
Then ak satisfies the recurrence relation

ak =
1
3

(ak−1 + ak+1), a0 =
1
3

+
2
3
a1, a∞ = 0

which has solution ak = 1√
5

(
3−
√

5
2

)|k|
. Hence, if we define G(x) =

∑∞
k=−∞ ak e

2πikx then

Πj = P̂t(2j − 1) =
t−1∏
α=0

G

(
2α(2j − 1)

p

)
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where

G(x) =
1√
5

1−
(

3−
√

5
2

)2

1 +
(

3−
√

5
2

)2
− (3−

√
5) cos(2π x)

.

In order to compare expectation and variance under distributions Pn and under U it remains
only to approximate the Πj , which we have just written down explicitly in terms of G(x). This
requires a tedious calculation which differs little from the argument of Hildebrand [6], so we refer
the interested reader to [6] for details. There is a small mistake in the proof of Claim 1 in [6], but
it does not effect the proof for the Rho walk.

5 Distinguished Point Methods

The Rho algorithm can be parallelized to J processors via the Distinguished Points method of van
Oorschot and Wiener [22]. To do this, start with a global choice of (random) partition S1 q S2 q
S3 (i.e. a common iterating function F ), and choose J initial values {yj0}Jj=1 from ZN , one per

processor. Then run the Rho walk on processor j starting from initial state g(yj
0), until a collision

occurs between either two walks or a walk and itself. To detect a collision let ϕ : G → {0, 1} be
an easily computed hash function with support {x ∈ G : ϕ(x) = 1}, to be called the distinguished
points. Each time a distinguished point is reached by a processor then it is sent to a central
repository and compared against previously received states. Once a distinguished point is reached
twice then a collision has occurred, and the discrete logarithm can likely be found, while conversely
once a collision occurs then the collision will be detected the next time a distinguished point is
reached.

The proofs in previous sections immediately imply a factor of J speed-up when parallelizing.
To see this, suppose the initial values {yj0}Jj=1 are chosen uniformly at random. Run a Rho walk for
some T steps per processor, then define {Xi} by starting with the Rho walk of processor #1, then
appending that from processor #2, etc, i.e. if Y j

i denotes the i-th state of copy j of the walk, for
i ∈ {0, 1, . . . , T } and j ∈ {0, 1, 2, . . . , J − 1} then Xi = Y

i div (T +1)
imod (T +1) for i ∈ {0, 1, . . . , J(T + 1)− 1}.

This is a time-dependent random walk which follows the Rho walk, except at multiples of time
T + 1 where it instead jumps to a uniformly random state. Since our proofs involved pessimistic
estimates on the distance of a distribution from uniform, and these jumps result in uniform samples,
then they can only improve the result. Hence this effectively leads to a Rho walk with J(T + 1)−1
steps, and a factor J speed-up per processor is achieved. If the initial values were not uniform then
discard the first O(log2N) steps per processor and treat the next state as the initial value, which
by Theorem 4.4 will give a nearly uniform start state.
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