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This thesis is concerned with isoperimetric methods for studying the rate at which Markov

chains approach their steady state distribution. We begin by proving a new isoperimetric

bound on the mixing time using a quantity which we call blocking conductance φ(x), this

is an extension of conductance Φ and average conductance Φ(x). We then look at the

three methods for bounding conductance of which we are aware : geometry, induction, and

canonical paths. We extend all three of these methods and obtain bounds on the blocking

conductance φ(x) or the conductance function Φ(x); in all three cases these give significant

improvements over conductance based bounds for the mixing time. We end by considering

a new isoperimetric quantity h+
2 (x); we prove a mixing time bound in terms of h+

2 (x) and

conjecture a stronger theorem which may give optimal mixing time bounds for a wide range

of Markov chains including geometric, inductive, and product Markov chains.
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Chapter 1

Introduction

1.1 Mixing Times

This thesis is concerned with geometric methods for studying the rate at which Markov

chains approach their steady state distributions.

Given a finite state, discrete time, Markov chain M – such as a random walk on a graph

or a group – with state space Ω and transition probability matrix P, we are are interested

in studying the rate at which the total variation distance, ‖p(t) − π‖TV decreases to 0. In

particular, given unknown initial distribution p(0) and t-step distribution p(t), we seek to

find the smallest τ such that

τ = max
p(0)

min{t : ‖p(t) − π‖TV ≤ 1/4} ;

this is generally known as the mixing time. It is known [ea] that for time-reversible Markov

chains, to be defined later, we then have

max
p(0)

‖p(τ log2(1/ε)) − π‖TV ≤ ε ,

so upper bounding τ gives a first order estimate on the rate of convergence to the steady

state distribution.
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1.2 Applications

The recent interest in the study of the mixing time of Markov chains has been motivated in

large part due to applications in computer science and physics which use the Markov Chain

Monte Carlo method.

The Markov Chain Monte Carlo (MCMC) method is the use of Markov chains to sample

from a fixed state space Ω and distribution σ, where the Markov Chain M is constructed

so that its stationary distribution π equals σ. Then running the Markov chain for a large

enough number of steps will give a sample from Ω that is very close to sampling by π = σ.

When the target distribution σ is uniform over Ω and there is a clear choice of a neigh-

borhood structure (edges), then one way to generate σ is to set

P(x, y) =





1/d∗ if y ∈ Γ(x)

1− d(x)/d∗ if y = x

0 otherwise

(1.1)

where Γ(x) = {y ∈ Ω : y is a neighbor of x}, d(x) = |Γ(x)| and d∗ ≥ maxx∈X d(x). The

Metropolis Method can be used on top of this to obtain an arbitrary stationary distribution.

For example, let G be a graph and we want to sample uniformly from all k-colorings of

G. Then the state space Ω is the space of all colorings of the vertices of G by k colors,

where no two adjacent vertices have the same color; one reasonable neighborhood structure

is to allow two colorings C1 and C2 to be adjacent if they differ at only a single vertex. The

Markov chain M described above is then the Glauber dynamics, where steps are made by

choosing a vertex v ∈ G uniformly at random, a color c also uniformly, and then recoloring v

to color c if this is possible (i.e. if no y ∈ Γ(v) has color c). Then the stationary distribution

of M is uniform over Ω.

There are three main applications for the Markov Chain Monte Carlo method.

• Approximate Counting and Integration : Approximate counting for self-

reducible problems can be reduced to a uniform sampling problem [JVV86]. For

example, the glauber dynamics above is commonly used to count the number of k-

colorings of a graph G. Discrete integration (estimate
∑

x∈Ω w(x) for a positive weight
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w) is a natural generalization, and is used in many volume algorithms [DFK91].

• Statistical Physics : Estimate the expectation of a random variable over a large

complicated state space. For example, over arrangements of water molecules, distri-

butions of atoms in a lattice, etc.

• Combinatorial Optimization : Construct M so that π is higher near optimal

solutions and use this to search for optima. For example, simulated annealing.

Problems in approximate counting have proven the largest motivation of these three. It

is a classical problem of combinatorics to estimate the size of a class of objects with a

certain structure; for example, the number of k-colorings or Hamiltonian cycles of a graph.

Complexity theory tells us that many counting problems are #P-hard – including the k-

colorings and Hamiltonian cycle problems – and hence there is no efficient deterministic

method (unless P = NP ) for computing exactly the size of these objects. The next best

solution is to look for approximation algorithms, and often the only known way to obtain

good estimates for these counting problems are through randomized algorithms such as the

Markov Chain Monte Carlo Method.

1.3 History of this field

Since the development of stochastic processes there has been much interest in convergence of

Markov chains. An early question was whether a Markov chain was ergodic, that is whether

it has a unique stationary distribution to which the Markov chain converges asymptotically.

It was found that for the finite state discrete time Markov chains with which we are con-

cerned, a Markov chain that is connected and aperiodic will asymptotically converge to a

unique stationary distribution. Metropolis et.al. made use of this fact in their groundbreak-

ing paper “Equation of state calculation by fast computing machines” [MRR+53], where

they constructed Markov chains with distributions applicable in Physics.

Exact information on the rate of convergence can be found from the spectrum of the

transition probability matrix P. However, the spectrum is known for only a few highly

symmetric Markov chains, such as a random walk around a cycle. An easier quantity to
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study is the spectral gap λ between the largest eigenvalue (one) and the second largest

eigenvalue, as this is the dominant component of the mixing time [DS91]; when π0 is the

smallest steady state probability of a state then

τ = O(λ−1 log π−1
0 ) .

It has proven difficult to obtain decent lower bounds on even the spectral gap, until recently.

One of the earlier successes in obtaining good upper bounds on the mixing time was the

Coupling Theorem [Ald83], first used by Aldous. This led to simple accurate estimates on

the mixing time for symmetric Markov chains such as random walks on the cycle, binary

hypercube, and some other groups. Aldous and Diaconis used a related notion of the Strong

Stopping Time [AD86] to study card shuffling. Applications include the famous result that

seven shuffles is enough to shuffle a deck of cards. However, none of these methods seemed

to apply to Markov chains much more complex than random walks on groups.

Jerrum and Sinclair [JS88] studied a geometric quantity they call the conductance Φ, a

discretized version of Cheeger’s constant h from Riemannian Geometry, and showed how

it can be used to bound the spectral gap. When A is used to denote subsets of the state

space Ω, and Ac denotes the complement Ac = Ω \A then

Φ = min
0<π(A)≤1/2

∑
α∈A π(α) P(α, Ac)

π(A)
.

They showed that 1
2 Φ2 ≤ λ ≤ 2Φ, and so

τ = O(Φ−2 log π−1
0 ) .

The conductance of a Markov chain can be thought of as a measure of the smallest “ergodic

flow” Q(A,Ac) =
∑

α∈A π(α) P(α, Ac) from a subset A to its complement Ac, relative to

the size π(A) of A; alternatively, it is a measure of the worst edge bottleneck in its un-

derlying graph. Jerrum and Sinclair developed a practical method for lower bounding the

conductance and used this method to bound the mixing time of a Markov chain of interest

to computer scientists.

This led to a stream of new results and various methods to bound the conductance. In

their paper Jerrum and Sinclair used a method known as canonical paths, Dyer, Frieze,
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and Kannan [DFK91] used isoperimetric inequalities to bound conductance for a Markov

chain for approximating the volume of convex bodies, and Mihail and Sudan [MS92] used

inductive methods for a Markov chain used to estimate the number of matroids with a given

set of bases.

Two weaknesses with conductance are the large difference between the upper and lower

bounds it gives on the spectral gap (1
2 Φ2 ≤ λ ≤ 2Φ), and the large difference between

the upper and lower bounds that the spectral gap gives on the mixing time (λ−1 ≤ τ ≤
2λ−1 log π−1

0 ). Sinclair [Sin92] and Diaconis and Stroock [DS91] used canonical paths to

bound the spectral gap directly, and thus gave tighter bounds on the spectral gap. Diaconis

and Saloff-Coste [DSC96] extended ideas from the theory of hypercontractivity and showed

how the logarithmic-Sobolev constant ρ, to be defined and discussed in Chapter 2 bounds

mixing time (τ ≤ 2ρ−1 log log π−1
0 ); ρ is often the same order as λ, in which case it gives

tighter bounds on mixing time than does the spectral gap. Unfortunately, the log-Sobolev

constant has proven difficult to work with except for with some very symmetric random

walks on groups.

Bubley and Dyer [BD97] made the Coupling Theorem more practical with the develop-

ment of path coupling. This was used by many authors [Wil97, Vig99] to obtain optimal

results when a Markov chain has good local behavior. However, Kumar and Ramesh [KR01]

showed that coupling and path coupling methods are unlikely to apply to several Markov

chains of interest.

A new development in geometric methods was made by Lovász and Kannan [LK99], who

developed the notion of the conductance function

Φ(x) = min
0<π(A)≤x

∑
α∈A π(α) P(α, Ac)

π(A)
,

an extension of conductance that measures edge bottlenecks for sets of various sizes, and

gave a proof that it can be used to bound the mixing time directly, without reference to

the spectral gap,

τ = O

(∫ 1/2

π0

dx

xΦ(x)2
+

1
Φ

)
.

By using the conductance function it is possible to show optimal bounds on the mixing

time of some simple Markov chains such a random walk on a cycle, whereas spectral gap or
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logarithmic-Sobolev methods are unable to do this. Lovász and Kannan gave an application

of their method to a Markov chain of interest to them, however it is still an open problem

to apply the conductance function to other Markov chains for which conductance has been

used.

Independently, Houdré [Hou01] showed how to bound the log-Sobolev constant in terms

of the spectral gap and geometric quantities closely related to the conductance function.

However, he only gave applications to highly symmetric Markov chains.

1.4 The Results

In Chapter 3 we prove an extension of Average Conductance which we call Blocking Conduc-

tance. This is a method appearing in a paper by Kannan, Lovász and Montenegro [KLM02].

A key problem with conductance results has been that mixing time bounds always involve a

square Φ2 or Φ(x)2, so that we cannot expect to show the correct bounds when the mixing

time is “square free” : for example, the lazy random walk on the binary hypercube {0, 1}n

has τ = Θ(n log n). With blocking conductance we will replace the Φ(x)2 with a term φ(x),

thus eliminating the square and opening the possibility of better geometric mixing time

bounds.

The blocking conductance function (BCF) φ(x) will involve a measure of edge×vertex

isoperimetry, so that when φ(x) is high then this will mean that there are no sets of size x

which simultaneously have an edge and a vertex bottleneck. This turns out to be a useful

measure because in many problems the tightest edge bottlenecks only occur when there are

many neighboring vertices, while vertex bottlenecks only occur when there are many edges.

The binary hypercube {0, 1}n is a classic example.

Next, we look for applications of average and blocking conductance. Both Φ(x) and φ(x)

are extensions of Φ, so that we cannot expect to bound either quantity without knowing

how to bound Φ. We are aware of three methods for bounding Φ – isoperimetry, induction

and canonical paths – and by Jerrum and Sinclair’s results (see Theorem 2.1) these give

a method for bounding the mixing time. Most of Chapters 4-6 of this thesis will consist

of extending these three methods in order to obtain bounds on Φ(x) or φ(x), and then by
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applying Theorem 3.1 or 3.2 we can significantly improve on previous geometric mixing

time bounds in all three cases.

As the first application, in Chapter 4 we look at using isoperimetric inequalities to bound

Φ(x). Recall that bounding the conductance Φ or conductance function Φ(x) is equivalent

to finding a lower bound on the ratio of ergodic flow (edges) from sets A to Ac, relative

to the size of A. Then the idea of isoperimetric inequalities is to consider Markov chains

whose underlying graph can be embedded in Rn, while preserving adjacency (edges) and set

size (size of A). For example, the n-dimensional grid [k]n can be embedded by associating

points v = (v1, v2, . . . , vn) with cubes P (v) = {x = (x1, x2, . . . , xn) : vi − 1
2 ≤ xi ≤ vi + 1

2}.
If A is a subset of the state space Ω, then such an embedding will be such that the volume

volnP (A) is proportional to π(A) and the surface area voln−1∂P (A) is proportional to the

number of edges (or flow) from A to Ac.

With this in mind, it suffices to find an isoperimetric inequality for convex bodies K ⊂ Rn,

with a log-concave distribution F on K, and subsets S ⊂ K with piecewise smooth bound-

aries; the inequality should give a lower bound on the ratio of surface area
∫
∂S\∂K F (y) dy

to the volume
∫
S F (y) dy. This is known to suffice for bounding the conductance and con-

ductance function of certain Markov chains [KK91, DF91, LS93]. Past results have focused

on finding the worst such ratio among all subsets covering at most half of the space K (i.e.
∫
S F (y) dy ≤ 1

2

∫
K F (y) dy), but we will need to bound the ratio among all subsets of a

fixed size x (i.e.
∫
S F (y) dy = x

∫
K F (y) dy).

Theorem 4.1 gives such a lower bound and has the nice property that it is tight for every

set size x. In particular, if the space is the unit hypercube K = [0, 1]n and x is fixed, then

we exhibit a log-concave distribution F on K and a subset A such that the lower bound is

an equality. Moreover, when the distribution is restricted to uniform (F = 1) then we derive

a slightly stronger result, Theorem 4.7, which is again tight for every x and dimension n.

Theorem 4.1 can be used to obtain improved bounds for mixing time on the Markov

chains to which isoperimetric inequalities have been applied [KK91, DF91, LS93]. We

are able to show that when previous methods gave conductance Φg and mixing time τ =

O(Φ−2
g log π−1

0 ), our new isoperimetric inequality on Φ(x) gives mixing time τ = O(Φ−2
g ),

thus saving a factor of log π−1
0 . We also give the first non-trivial bounds on the log-Sobolev

7



constants of these geometric Markov chains.

This can give a substantial improvement. For the lazy random walk on the grid [k]n

the improvement is from τ = O(n3 k2 log k) to τ = O(n2 k2), while the optimal bound

is τ = Θ(k2 n log n). Example 4.8 deals with a Markov chain on linear extensions, this

improves from τ = O(n5 log n) [Jer98] to τ = O(n4) and even beats the path-coupling

and comparison bound [BD97] of τ = O(n4 log2 n). Wilson [Wil97] used an elegant path

coupling to show the correct bound is τ = Θ(n3 log n), so our results are quite close to

optimal. (We note that in her Ph.D. dissertation Chen [Che00] gave a different method of

sampling linear extensions which sometimes mixes in time O(n2 log n)).

Next, in Chapter 5 we look at an inductive method of bounding conductance. The

best example of which we are aware is the use of induction [MS92, FM92] to bound the

conductance of a Markov chain on matroids with a given sets of bases. Matroids are a

generalization of the linear algebraic notions of linear independence and bases, which appear

in different guises in many areas of mathematics. A matroid can be thought of as having

a set of elements E(M) of size m = |E(M)| and a collection of bases B(M) each of size n

(the rank). The aforementioned papers considered a class of matroids known as balanced

matroids, and which have a natural inductive structure.

We are able to extend their inductive methods and obtain a bound on Φ(x). In Corollary

5.2 we apply Houdré’s Theorem 2.9 to this Φ(x) and bound the log-Sobolev constant for

this Markov chain, and obtain a mixing time of τ = O(m3/2n2 log log(mn)), a significant

improvement over the conductance based bound [FM92, MS92] of τ = O(m2 n3 log m). For

regular matroids with a constant number of parallel edges, such as graphic matroids without

multiple edges, this is also an improvement over Feder and Mihail’s canonical path bound

of τ = O(mn3 log m) [FM92]. It is worth noting that this is one of the more complicated

problems studied with log-Sobolev constants.

In Chapter 6 look at applying blocking conductance φ(x). As a first application we

consider canonical paths methods, the third and most common method of bounding con-

ductance. As mentioned in the previous section, canonical paths can be used to bound

the spectral gap directly [Sin92], and so conductance is generally not used in this case.

Nevertheless, we are able to use a geometric argument based on blocking conductance to
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obtain Theorem 6.1, a mixing time bound closely related to Sinclair’s spectral gap results

(see Theorem 2.6).

Many results previously shown by applying canonical paths to the spectral gap can be

shown equally well with Theorem 6.1. For example, Feder and Mihail’s [FM92] canonical

path bound on mixing time of balanced matroids carries over exactly. Then, between

Corollary 5.2 and Theorem 6.1 our isoperimetric results are always at least as strong, and

sometimes stronger than their spectral gap bounds.

The main result in Chapter 6 uses blocking conductance to show a new type of isoperi-

metric bound on mixing time. We consider the quantity h+
2 (x), which is a member of the

family

h+
p (x) = min

A⊂Ω
0<π(A)≤x

∑
α∈A π(α) p

√
P(α,Ac)

π(A) π(Ac)
.

It is clear that 1
2 h+

1 (x) ≤ Φ(x) ≤ h+
1 (x), and because P(α,Ac) ≤ 1 then h+

2 (x) can be

substantially larger than Φ(x).

A restricted version h+
p = h+

p (1/2) has been considered by Bobkov, Houdré and Tetali

[BHT00, HT96] (see Example 6.3 in this thesis), where h = h+
1 is twice the Conductance /

Cheeger constant. It is known that h+
1 relates to edge isoperimetry and that h+∞ relates to

vertex isoperimetry; an application of Cauchy-Schwarz shows that h+
2 relates to a mixture

of edge and vertex isoperimetry [Tal93]. h+
1 and h+∞ can both be used to bound the spectral

gap λ [BHT00], and thus the mixing time as well. In Theorem 6.3 we are able to upper

and lower bound the quantity Ψint(A), a form of blocking conductance defined on sets, in

terms of h+
2 (A), the value of h+

2 on the set A. We obtain

2h+
2 (A)2 ≥ Ψint(A) ≥ h+

2 (A)2

(2 + log(1/
√

Pmin))2
,

where Pmin is the smallest non-zero transition probability. This leads to a better mixing

time bound than that available by either h+
1 or h+∞. We get that

τ = O

(
log2(1/Pmin)

∫ 1/2

π0

dx

xh+
2 (x)2

+
1
Φ

)
.

This bound is roughly the Average Conductance theorem with h+
2 (x) replacing Φ(x), and

with the (small) extra log2(1/Pmin) term, and so it may give a substantial improvement

over bounds involving Φ(x).
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There are several applications of this. Talagrand [Tal93] has bounded h+
2 (x) for the binary

hypercube {0, 1}n. When substituted into Theorem 6.3 this shows that τ = O(n log3 n),

which is a significant improvement over the Average Conductance bound of τ = O(n2) (see

Chapter 4). In Example 6.3 we apply results of [HT96] to bound h+
2 (x) for product Markov

chains, this gives a mixing times bound which is almost optimal for products. Example 6.4

deals with a related quantity β̃2 defined in [Mur01], by using Theorem 6.3 we show that β̃2
2

is nearly as strong as log-Sobolev when dealing with mixing time.

In Chapter 7 it is conjectured that the extra terms in Theorem 6.3 are unnecessary, so

that the mixing time is bounded by

τ = O

(∫ 1/2+πmax

π0

dx

xh+
2 (x)2

)
,

where πmax = maxπ(x) is the maximal stationary distribution of a point. If this is the

case then the bound on the binary hypercube and on general product Markov chains will

be tight. Moreover it would also show that β̃2
2 is as strong as the log-Sobolev constant for

showing mixing time; it may turn out that β̃2
2 is a much easier quantity to bound, because

it has no logarithmic terms and bears a strong resemblance to the conductance Φ. It also

seems likely that h+
2 (x) will give tight bounds for both the Markov chain on linear extensions

and the one on balanced matroids.
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Chapter 2

Preliminaries

2.1 Markov Chains

In this thesis we are concerned with studying finite state Markov chains M. Finite state

Markov chains can be interpreted in many ways, we will consider them either as a random

walk on a weighted graph (E, V ) or as a product of stochastic matrices P.

A finite state Markov chain M is given by a state space Ω with cardinality |Ω| = n, and

the transition probability matrix, an n× n square matrix P such that Pij ∈ [0, 1] and

∀i ∈ Ω :
∑

j∈Ω

Pij = 1 .

A Markov chain is connected if ∀i, j ∈ Ω, ∃t : Pt
ij > 0. Moreover, it is aperiodic if

∀i : gcd{t : (Pt)ii > 0} = 1. This guarantees that ∃N : t ≥ N =⇒ (Pt)ii > 0, i.e. after

enough steps of the Markov chain there will always be a non-zero probability of being at

any point i. A Markov chain is lazy if ∀i ∈ Ω : Pii ≥ 1
2 ; lazy chains are obviously aperiodic.

The initial distribution on Ω is given by an n-dimensional column matrix p(0), such that

(p(0))i ∈ [0, 1] and
∑

i∈V (p(0))i = 1. The transition probability matrix P then determines

the distribution at later times, we write p(t) to denote the distribution after t steps of the

Markov chain p(t)(i) =
∑

j∈Ω p(t−1)(j) Pji.

A key quantity with which we are concerned is the stationary distribution (or steady-state

distribution) π of a Markov chain M. This is a distribution π on Ω such that π P = π. It is

well known that a connected aperiodic finite state discrete time Markov chain has exactly
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one stationary distribution π.

A Markov chain with stationary distribution π is ergodic if ∀i, j ∈ Ω : limt→∞ Pt
ij = πj .

In particular, connected aperiodic finite state discrete time Markov chains are ergodic. This

thesis will study how quickly ergodic Markov chains approach their stationary distribution.

The flow between two points i, j ∈ Ω is q(i, j) = πi Pij – the q(i, j) can be thought of as

edge weights for the directed graph Ω× Ω – and the flow between two sets A, C ⊂ Ω is

Q(A,C) =
∑

i∈A
j∈C

q(i, j) =
∑

i∈A
j∈C

πi Pij .

The Markov chains we study will be time-reversible, that is ∀i, j ∈ Ω : πi Pij = πj Pji,

or equivalently q(i, j) = q(j, i) so the graph Ω × Ω is undirected. This says that the flow

along an edge is the same in both directions, so in particular an outside observer watching

vertices and edges of a Markov chain in the steady state would not be able to distinguish

between a step of the Markov chain P and the reverse time Markov chain P−1.

A nice fact about Markov chains is that if a distribution σ satisfies σi Pij = σj Pji, then

it follows that σ is the stationary distribution and the Markov chain is time-reversible. For

example, if P is symmetric (i.e. ∀i, j ∈ Ω : Pij = Pji) and σ = 1/|Ω| is uniform then

trivially σi Pij = σj Pji; it follows that symmetric Markov chains have uniform stationary

distribution. Another easy example to check is that the Markov chain given by (1.1) in the

introduction has uniform stationary distribution.

Unless otherwise stated, all Markov chains in this thesis will be assumed to be ergodic,

lazy, time-reversible, finite state discrete time Markov chains. These are completely natural

assumptions; the laziness eliminates all aperiodic behavior while increasing mixing time

by only a factor of 2, time-reversibility allows for simple computation of the stationary

distribution and also allows the problem to be considered as a weighted undirected graph,

and combinatorial problems have a finite number of states.
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2.2 Various Bounds on the Mixing Time

2.2.1 The Mixing Time

For probability distributions σ and τ on Ω the total variation distance (often just called

variation distance) is

‖σ − τ‖TV =
1
2

∑

i∈Ω

|σ(i)− τ(i)| = max
A⊂Ω

(σ(A)− τ(A)) .

This is a measure of how far σ and τ are from equality.

The mixing time τ(ε) measures how many steps it takes a Markov chain to approach the

stationary distribution from the worst starting distribution. It is not difficult to see that

for finite state spaces, the worst initial distribution will be to start at a single point. Then

we let

τ(ε) = max
i∈Ω

min
{
t : ‖δi P

t − π‖TV ≤ ε
}

where δi is the distribution with δi(j) = 1 if j = i and 0 otherwise.

By convention we will define the mixing time to be τ = τ(1/4). This suffices to bound

τ(ε) because [AF],

‖δiP
τ log2(1/ε) − π‖TV ≤ ε ,

i.e. τ(ε) ≤ τ log2(1/ε).

2.2.2 Equivalence of Different Bounds

An important concept when studying mixing times is the equivalence of various types of

mixing times. In almost all cases, methods for bounding the mixing time do so by bounding

some other quantity, such as spectral gap λ, which is known in turn to bound the total

variation distance.

A few examples of equivalences that we will use are as follows. These equivalences are

the results of work by Aldous, Lovász and Winkler [ALW97, LW96]. First we need a few

definitions. In all cases we will be working with lazy, time-reversible, ergodic Markov chains

M with stationary distribution π.

Given a Markov chain M, initial distribution µ and target distribution σ, a stopping rule

is a rule which observes the progress of the Markov chain and stops at some randomized
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time Λ, such that the final distribution is σ. The simplest stopping rule would choose a

state x ∈ Ω according to σ, and then let the Markov chain proceed, stopping when it reaches

x. Define

h(µ, σ) = inf{EµT : T is a randomized stopping time from µ to σ} .

Then the forget time is

Tforget = inf
σ

sup
µ

h(µ, σ) = inf
σ

sup
x

h(x, σ) .

This is the time to reach the distribution σ which is closest to all initial distributions; once

σ has been reached then the Markov chain has forgotten all information about the starting

distribution.

The reset time

Treset =
∑

j

πj h(j, π)

is the expected time to reach π when the initial distribution is drawn from π.

The mixing time Tmix,

Tmix = sup
µ

h(µ, π) ,

is the expected time to reach π with an optimal stopping rule and the worst initial distri-

bution. The stopping rule in this case is often called mean optimal.

Let ρt(·) = 1
t

∑t−1
i=0 p(i)(·) be the t-step average distribution of the Markov chain. Then

Tuniform = min{t : ‖ρt − π‖TV ≤ 1
4
}

is the time for the average distribution to approach stationary.

Then we have :

• Tforget ≤ Tmix (obvious).

• Treset ≤ Tmix (obvious).

• Tmix ≤ 2(Treset + Tforget). [ALW97]

• Tforget ≤ 43 Tuniform(1/4). [ALW97]

14



• If M is time-reversible then Tforget = Treset. [LW96]

• If M is time-reversible then τ(ε) ≤ 8 Tmix log2(1/ε). [ea]

• If M is time-reversible then τ(ε) ≤ 1376 Tuniform(1/4) log2(1/ε).

The proof of the Average Conductance theorem (Theorem 2.2) bounds Tmix, while the

theorem (Theorem 2.3) using the Bounded Conductance Function will bound Tuniform.

Clearly the constant 1376 used to convert between Tuniform(1/4) and τ(ε) is impractical,

so it is to be hoped that a direct proof can improve on this. However, we are interested

mainly in the order of magnitude of the mixing time in terms of some measure n of the size

of the problem, and not so much in the constant term, so we often state results in terms of

big-O O(·) to ignore the conversion between mixing times.

• f(n) = O(g(n)) if ∃C ∈ R+ : ∀n, f(n) ≤ C g(n).

• f(n) = Ω(g(n)) if g(n) = O(f(n)), or equivalently if ∃c ∈ R+ : ∀n, f(n) ≥ c g(n).

• f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)), or equivalently if ∃c, C ∈
R+ : ∀n, c g(n) ≤ f(n) ≤ C g(n).

2.2.3 Isoperimetric Bounds

A common geometric technique for bounding the mixing time on complicated Markov chains

involves conductance, or more generally the conductance function. The conductance function

of M is defined in terms of the flow,

Φ(x) = min
S⊂Ω

π0≤π(S)≤x

Q(S, Sc)
π(S)

where π0 = minv∈V πv and π0 ≤ x ≤ 1/2. Also, the conductance Φ is defined by Φ = Φ(1/2).

If a finite state Markov chain has a uniform (i.e. constant) stationary distribution and all

transition probabilities are either a constant p or 0, then bounding the conductance function

is equivalent to bounding the edge-isoperimetry, because

Φ(x) = min
π0≤π(S)≤x

Q(S, Sc)
π(S)

= p min
0<|S|≤x|Ω|

|Cut(S)|
|S| , (2.1)
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where Cut(S) = {(i, j) ∈ S × Sc : Pij > 0}. Likewise, bounding the conductance is

equivalent to bounding cutset expansion. More generally, as long as the Markov chain is

time-reversible then the conductance can be reduced to the edge-isoperimetry of a weighted

graph. This motivates the use of edge-isoperimetry as a means for bounding the conductance

function.

The following two theorems can be used to bound the mixing time.

Theorem 2.1 (Conductance [JS88]). The mixing time τ of any Markov chain is bounded

by

τ ≤ 2
Φ2

log(4/π0)) .

Theorem 2.2 (Average Conductance [LK99]). The mixing time τ of any Markov chain

is bounded by

τ ≤ K

(
4
Φ

+ 14
∫ 1/2

π0

dx

xΦ(x)2

)
,

where K = 16 arises from converting between Tmix and τ .

Theorem 2.2 is essentially that given in [LK99], however we have corrected a minor

mistake in their theorem (the 4/Φ term was omitted) and have adjusted the constants to

take into account the fact that our conductance function differs from theirs by roughly a

factor of 2. The corrections and a proof of Theorem 2.2 can be found in Chapter 3.

We will also show rapid mixing by a newer method, using a quantity known as a blocking

conductance function φ(x) (BCF). We refer the reader to Definition 3.2 in Chapter 3 for

the definition of a BCF φ(x), but we note that roughly speaking φ(x) ≥ 1
4 Φ2(x) so the

following theorem promises to be at least as strong as Theorem 2.2.

Theorem 2.3. If M is a Markov chain and φ(·) is a blocking conductance function, then

τ ≤ K

∫ 1/2

π0

dx

xφ(x)
,

where K is a constant independent of the Markov chain.

We are aware of three methods for bounding Φ, and by Theorem 2.1 these give a method

for bounding the mixing time. We will extend all of these methods in order to obtain

bounds on Φ(x) or φ(x), then by applying Theorem 2.2 or Theorem 2.3 we will significantly

improve on previous mixing time results in all three cases.
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2.2.4 Spectral gap and log-Sobolev

Many proofs of rapid mixing use the spectral gap λ or the log-Sobolev constant ρ. The

spectral gap λ is the difference between the largest eigenvalue of P (i.e. 1, with eigenvector

π) and the second largest eigenvalue. The log-Sobolev constant is a sort of local entropy of

the Markov chain and arises in the theory of hypercontractivity.

λ = inf
f :Ω→R

V ar(f)6=0

E(f, f)
V ar(f)

and ρ = inf
f :Ω→R
L(f) 6=0

E(f, f)
L(f)

where Var(f) is the variance of f , E is the Dirichlet form, and L is the entropy

E(f, f) =
1
2

∑

x,y∈Ω

(f(y)− f(x))2π(x)P (x, y)

V ar(f) =
1
2

∑

x,y∈Ω

(f(y)− f(x))2π(y)π(x)

L(f) =
∑

x∈Ω

|f(x)|2 log
( |f(x)|2
‖f‖2

)
π(x)

The spectral gap is well known to bound the mixing time, because the second eigenvalue

is the slowest component to go to zero. In particular, we have the following theorem [DS91].

Theorem 2.4. The mixing time τ of a Markov chain M can be bounded by

τ ≤ 1
λ

(2 + log π−1
0 )

where λ is the spectral gap of M.

We can derive Theorem 2.1 from this by using the following theorem [JS88].

Theorem 2.5. The spectral gap of a Markov chain M satisfies

Φ2

2
≤ λ ≤ 2Φ

where Φ is the conductance of M.

Perhaps the most common method used to bound the conductance or the mixing time is

by canonical paths. For every pair of vertices x, y ∈ Ω, let γxy be a path from x to y along

edges in the underlying graph, and let e be used to denote edges in the graph. Ideally the

paths should be chosen so that they are not heavily concentrated on any particular edge.

Then Sinclair [Sin92] showed that
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Theorem 2.6. Let M be a Markov chain with underlying graph G = (E, V ) and let

ρe = max
e∈E

1
Q(e)

∑
γxy3e

π(x)π(y) and ρ = max
e∈E

1
Q(e)

∑
γxy3e

π(x)π(y) |γxy|

then

Φ ≥ 1
2 ρe

λ ≥ 1
ρ
≥ 1

ρe `max

τ ≤ ρe `max (2 + log π−1
0 )

where `max = maxx,y∈V |γxy| denotes the length of the longest path.

In Chapter 6 we will show a closely related result by using only isoperimetry.

Theorem 2.7. If M is a Markov chain with underlying graph G = (E, V ), define

ρv = max
v∈V

1
π(v)

∑
γxy3v

π(x) π(y) and ρave
v =

∑

v∈V

π(v)


 1

π(v)

∑
γxy3v

π(x)π(y)




to be the maximal and average vertex congestion over the space.

Then

τ = O
(
ρv ρe log π−1

0

)

= O

(
ρv

ρave
v

ρe `ave log π−1
0

)
,

where `ave =
∑

x,y∈V π(x) π(y) |γxy| is the average length of the canonical paths.

Other methods, such as isoperimetric inequalities or inductive methods, have also been

used to bound the conductance and will be discussed further in Chapters 4 and 5.

Some examples of log-Sobolev constants can be found in [DSC96]. In particular it is

shown that

Theorem 2.8. The mixing time τ of a Markov chain M can be bounded by

τ ≤ 1
2ρ

(2 + log log π−1
0 )

where ρ is the log-Sobolev constant of M.

In theory, the log-Sobolev constant may be the same order as the spectral gap, and

so Theorem 2.8 may improve spectral gap results. However, in practice the log-Sobolev

constant has proven very difficult to compute and thus has been used for very few problems.
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Recent work of Houdré [Hou01] gives reasonably good bounds on the log-Sobolev constant

in terms of a quantity related to the conductance function. We rewrite the definitions and

theorems from [Hou01] in a form which is equivalent, but where the relation to our current

techniques is clearer.

Let

g+
1 = inf

π0≤x≤1/2

Φ(x)√
log(1/x)

and `+
1 = inf

π0≤x≤1/2

Φ(x)
log(1/x)

. (2.2)

These quantities may seem a bit artificial, however it is shown in Section 3.1.3 that when

combined with Theorem 2.2 the g+
1 and `+

1 are natural improvements on Φ.

Then we have

Theorem 2.9 (Houdré). Let M be a Markov chain and let g+
1 and `+

1 be as in (2.2).

Then the log-Sobolev constant ρ is bounded by

(i) ρ ≥ 1
100

(g+
1 )2 (ii) ρ ≥ λ`+

1

2(
√

λ + 2`+
1 )

≥
√

λ`+
1

12
,

where we simplified the final inequality by using the fact 2λ ≥ Φ2 ≥ (`+
1 log 2)2.

By combining Theorems 2.8 and 2.9 (i), we can obtain an improvement over the Conduc-

tance bound in Theorem 2.1 when g+
1 ≈ Φ. From our simplification of Theorem 2.9 (ii), we

see that the second log-Sobolev bound will improve on the spectral gap bound when λ ≈ Φ2

and `+
1 ≈ Φ.

There are other methods for bounding the mixing time, such as coupling or strong stop-

ping times, however these do not relate directly to the methods considered in this paper

and hence we do not discuss them here.
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Chapter 3

Isoperimetric Bounds on Mixing

Time

This chapter is concerned with establishing and proving results on the mixing time of

Markov chains in terms of certain isoperimetric quantities.

The first method, known as Average Conductance uses a generalization of the conductance

Φ known as the conductance function Φ(x), a measure of bottlenecks which depends on the

set size x (see Section 2.2.3). The main theorem was first proved in [LK99].

The second method uses a quantity known as a blocking conductance function (BCF).

This can be thought of as a generalization of Φ(x)2, which simultaneously considers both

edge and vertex bottlenecks. The theorem is based on unpublished work of Kannan, Lovász

and Montenegro [KLM02].

3.1 Average Conductance

3.1.1 The Theorem

The theorem as stated in [LK99] has an error, we give the correct form of the theorem

below. The constants are different than in [LK99] because our definition of conductance

differs from theirs by roughly a factor of 2.

Theorem 3.1 (Average Conductance [LK99]). The mixing time τ of any Markov chain
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is bounded by

τ ≤ K

(
14

∫ 1/2

π0

dx

xΦ(x)2
+

4
Φ

)

where K = 16 arises from converting between different measures of mixing time.

The proof can be found in [LK99]. An alternative proof with different constants is given

at the end of Section 3.2.2.

3.1.2 A Correction to Lovász and Kannan’s Paper

Theorem 3.1 as given in [LK99] was incorrect as stated, because it left out the 4/Φ term.

A counterexample to the original form is given as the final example of Section 3.1.3.

The problem in the proof (see [LK99]) is as follows. Sets were constructed with sizes

π0 = x0 < x1 < ...xn−1 ≤ .5 < xn .

However, the integral that was used estimated the terms up to xn, but the remainder from

0.5 to xn was ignored. There’s a similar problem for the reverse direction going from 1−π0

down to 0.5.

To compute the amount that was left out, look at the construction in the proof and

observe that the integral left out was used to approximate the term 2/Φ(xn−1). But,

2/Φ(xn−1) ≤ 2/Φ, so it suffices to add a 2/Φ term for the construction from π0 to 0.5, and

another 2/Φ for the construction from 1− π0 down to 0.5.

3.1.3 Some Examples of Average Conductance

Much of this thesis is concerned with bounding the conductance function, via edge-isoperimetry,

for problems of combinatorial interest. Edge-isoperimetry is a well studied subject, some

information on this topic and a list of references can be found in [Bez99].

The quantities g+
1 and `+

1 defined in (2.2) can be combined with Theorem 3.1 to get some

intriguing mixing time results. From the definitions we have that Φ(x) ≥ g+
1

√
log(1/x) and

Φ(x) ≥ `+
1 log(1/x). Substituting these bounds into the Average Conductance Theorem 3.1
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and integrating gives

τ ≤ C





1
Φ2 log π−1

0

1
g+2
1

log log π−1
0

1
`+2
1

(3.1)

with the constant C a constant independent of the Markov chain.

The first bound is the Jerrum and Sinclair’s Theorem 2.1. The second term is just the

mixing time bound given by combining Theorem 2.9 (1) and Theorem 2.8, so Average

Conductance is always at least as good as the first part of Houdré’s result. The third bound

is entirely new. It is worth noting that the tensorization property of the log-Sobolev constant

[Hou01] makes Theorem 2.9(1) more useful than Average Conductance when working with

product chains.

The bounds in (3.1) show that g+
1 and `+

1 are in a sense natural analogs of conductance.

The different bounds are best under different circumstances. The problems in the next two

chapters will be cases of `+
1 = Ω(Φ), in this case the third bound is the best. The first

bound is best for the random walk on the complete graph Kn, we don’t know of a situation

when the second bound is best.

However, Theorem 3.1 says more than this simple generalization. Consider the random

walk on the barbell given by two complete graphs Kn with transition probabilities 1/2n

inside each Kn, connected by a single central edge, and with transition probability along

the central edge of ε/2n. Then Φ(x) ≥ max{1
2 − x, 1

2n} for x < 1/2, Φ(1/2) = Θ(ε/n2) and

Theorem 2.2 gives τ = O(n2/ε) = O(1/Φ), the correct bound.

This shows that in special cases Average Conductance can even hit the lower bound in

1/Φ ≤ τ ≤ (2/Φ2)(2+log(1/π0)). It is also an example of why the correction to the original

theorem is needed; the trouble occurs because Φ(x) does not depend on ε except at x = 0.5

(i.e. Φ), a set of measure 0 in the integral, so the original theorem doesn’t take the ε into

account.
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3.2 Blocking Conductance Function

In this section we develop a stronger version of Average Conductance, which uses a quantity

called the Blocking Conductance Function φ(x). This method uses a measure of edge ×
vertex isoperimetry, rather than the edge isoperimetry which was used by conductance or

average conductance methods.

3.2.1 Definitions and the Theorem

As usual, let p(t) denote the probability distribution after t steps of the Markov chain, so

p(0) is the initial distribution. Also, for x ∈ Ω, where Ω is the state space, let

ρt(x) =
1
t

t−1∑

i=0

p(i)(x)

be the average probability distribution. As mentioned in the preliminaries, in order to

bound the mixing time it suffices to bound the time for ρt to approach stationary.

For t ∈ Z+ and x ∈ [0, 1], define

ht(x) = sup
A:π(A)<x

(
p(t)(A)− π(A)

)
and ht(x) = 0 for x < π0, ,

and let h(x) = h0(x). It was shown in [LS90] that for fixed x, ht(x) is non-increasing with t,

so ht(x) ≤ h(x) and in particular if A ⊆ Ω then ρt(A)− π(A) ≤ h(π(A)). Given x0 ∈ [0, 1]

we will assume that the initial distribution is not too overweighted on sets smaller than x0,

e.g. if x0 = π0 then any initial distribution will be allowed.

To motivate the definition of blocking conductance we start with a restricted form known

as the exterior blocking conductance function. The idea of blocking conductance is to im-

prove on the Φ(x) · Φ(x) in Theorem 3.1 (Average Conductance) by replacing the second

Φ(x) with a quantity involving boundary vertices.

To do this, consider a set A ⊂ Ω and let B ⊂ Ac with π(B) = 1
2 Q(A,Ac). Then

Q(A, Ac \B) = Q(A,Ac)− Q(A,B) ≥ Q(A,Ac)− π(B) ≥ 1
2

Q(A,Ac) , (3.2)

so that π(B) Q(A, Ac \ B) ≥ 1
4 Q(A,Ac)2 ≥ 1

4 Φ(x)2 x2 when x = π(A). Therefore, the

Φ(x)2 in Theorem 3.1 (Average Conductance) can be interpreted as a lower bound on
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π(B) Q(A, Ac\B)/x2. The blocking conductance will replace Φ(x)2 with the latter quantity

and allow the set B to be of size maximizing this product, rather than restricting it to size

1
2 Q(A,Ac).

Definition 3.1. A function φ : [x0, 1/2] → [0, 1] is called an exterior blocking conductance

function (EBCF) if for all S ⊂ Ω, x = π(S) ∈ [x0, 1/2] then

∀y ∈
[
x,

3
2
x

]
: Ψext(S) ≥ φ(min{y, 1− y})

where

Ψext(S) = sup
λ≤π(S)

min
B⊂Sc

π(B)≤λ

λQ(S, Sc \B)
[π(S)π(Sc)]2

.

Note : If Ψext(S) ≥ φ̂(π(S)) some φ̂(·) and all S, and there exists C such that ∀x ∈
[x0, 1/2], ∀y ∈ [x, 3x/2] : φ̂(min{y, 1 − y}) ≤ C φ̂(x), then φ(x) = φ̂(x)/C is a blocking

conductance function.

Because of discreteness of π(S), the constraint that φ(y) ≤ Ψext(A) is required to extend

φ(·) to the continuous interval [0, 1/2].

The argument before the definition shows that φ(x) = 1
4 Φ(x)2 is an example of a blocking

conductance function.

A key property of the blocking conductance is that it is a local property, with the value

of φ(x) determined only by sets whose size is of order x. This contrasts to the conductance

function Φ(x), which was determined by all sets of size less than or equal to x. The

added generality can be important when the state space has bottlenecks of various sizes, for

example bad flow from a single point will not immediately cause poor mixing time bounds.

To further generalize blocking conductance, observe that given a set A ⊂ Ω the calcula-

tions of (3.2) hold whether B ⊂ A, B ⊂ Ac or a combination of both. By considering only

B ⊂ A and B ⊂ Ac we lose at most a factor of two, because max{π(B ∩A), π(B ∩Ac)} ≥
1
2 π(B). The most general form of blocking conductance is then

Definition 3.2. A function φ(x) : [x0, 1/2] → [0, 1] is called a blocking conductance function

(BCF) if for all S ⊂ Ω, x = π(S) ∈ [x0, 1/2] one (but not necessarily both) of the following

holds
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1. ∀y ∈ [
1
2 x, x

]
: Ψint(S) ≥ φ(max{x0, y}),

2. ∀y ∈ [
x, 3

2 x
]

: Ψext(S) ≥ φ(min{y, 1− y}),

where

Ψint(S) = sup
λ≤π(S)

min
B⊂S

π(B)≤λ

λQ(S \B, Sc)
[π(S) π(Sc)]2

and Ψext(S) is as in the previous definition.

Again, it suffices to consider a φ̂(·), find the appropriate C value and set φ(x) = φ̂(·)/C.

It is reasonable to wonder why we restrict to the case x ≤ 1/2. However, notice that

Ψint(S) = Ψext(Sc) if the definitions are slightly generalized to consider min{x, 1 − x}
rather than x, so there is no advantage to allowing x > 1/2. This is similar to the symmetric

conductance function, where Φ(A) = Φ(Ac) so there is no reason to define Φ(x) for x > 1/2.

The quantities Ψint(S) and Ψext(S) are measures of vertex and edge bottlenecks. The

ratio λ/π(S) in Ψint(S) measures the fraction of the interior vertices that can be removed

and still have a Q(S \ B,Sc)/π(S) fraction of the maximum possible flow π(S); likewise

for Ψext(S). The constraint that Ψext(A) ≥ φ(y) is again required to extend φ(·) from the

discrete set of values π(S) to the complete interval [0, 1/2].

Then we have

Theorem 3.2. If M is a Markov chain (discrete or continuous), x0 ≤ 1/4, and φ(·) is a

blocking conductance function, then

‖ρt − π‖TV ≤ max

{
1
4

, h(x0) +
70
t

(
1

φ(x0)
+

∫ 1/2

x=x0

dx

xφ(x)

)}
.

In particular, if x0 = π0 then h(x) is not required.

Corollary 3.1. If M is a Markov chain with π0 ≤ 1/4, and if φ(·) is a BCF, then

τ ≤ 140K

∫ 1/2

x=π0

dx

xφ(x)

where K = 1376 arises from converting between different measures of mixing time.

For any B, Q(S,B) ≤ π(B) always holds, so if B ⊂ Sc and π(B) ≤ 1
2 Q(S, Sc) then B

blocks at most half the flow from S to Sc. Therefore Ψ(S) ≥ 1
4 Φ(S)2, and up to a constant

25



factor, then, Corollary 3.1 is at least as strong as the Average Conductance theorem. The

corollary gives an improvement if we can make π(B) much larger than Q(S, Sc) and still

maintain high flow.

For example, consider the random walk on the binary n-cube where points are p =

(p1, p2, . . . , pn) ∈ {0, 1}n and transitions are made by uniformly choosing a coordinate in

[1..n] and new value in {0, 1}. Then Φ(1/2) is minimized by the set A = {x ∈ 2n : xn = 0},
but Ψ(A) occurs at λ = 1

4 À 1
4 n = 1

2 Q(A,Ac), so we might hope that Corollary 3.1 improves

bounds by O∗(n) (which we will later show is true).

Remark : Many variations of Theorem 3.2 are possible by use of different BCF’s.

• The condition that ∀y ∈ [π(A)/2, π(A)] : Ψint(A) ≥ φ(y) can be relaxed slightly

if the condition λ ≤ π(A) in the definition of Ψint(A) is bounded more strongly.

In particular, let ` : [x0, 1/2] → [0, 1/2] satisfy ∀x : `(x) ≤ x, and restrict λ to

λ ≤ `(π(A)). Our previous definition of Ψint(A) had `(x) = x. Then it suffices that

∀y ∈
[
π(A)− 1

2
`(π(A)), π(A)

]
: Ψint(A) ≥ φ(y) .

A similar result holds for Ψext(A). This generalization will be needed for the proof of

Theorem 3.1.

• An interior BCF is defined like an exterior BCF, but with sets B ⊂ A. Then the

theorem and corollary hold as stated but with an interior BCF. An interior BCF can

be easier to work with than an exterior BCF, because the condition π(B) ≤ π(A) is

satisfied for every B ⊂ A.

• As defined earlier, an exterior BCF only uses sets B ⊂ Ac. When considering only an

exterior BCF then the 1/φ(x0) term is not required. Also, the condition Ψext(S) ≥
φ(min{y, 1− y}) can be simplified to Ψext(S) ≥ φ(min{y, 1/2}), if instead we add an

extra term (see proof, this is to compensate for the Bi with 1/2 ∈ Bi), to get

‖ρt − π‖TV ≤ max

{
1
4

, h(x0) +
70
t

(∫ 1/2

x=x0

dx

xφ(x)
+ sup

x∈[1/3,1/2]

`(x)
φ(x)

)}
,

where `(x) is defined at the beginning of these remarks (it suffices to let `(x) = x).
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An exterior BCF has an advantage over interior BCFs because step functions with

steps starting at the values given by π(S) can be used, for example the conductance

function Φ(x) or the quantity Ψext(S).

• A variation on blocking conductance allows `(x) ≤ 1− x (not just `(x) ≤ x). Let

Ψ′
ext(S) = sup

λ≤`(x)
min
B⊂Sc

π(B)≤λ

λQ(S, Sc \B) .

When `(x) = x then the restriction of λ ≤ `(x) is the same as λ ≤ x before, however if

`(x) = 1−x then Ψ′ permits much larger sets B to be considered. The disadvantage is

that φ′(x) must satisfy ∀y ∈ [π(S), π(S) + `(π(S))] : Ψ′
ext(S) ≥ φ′(y). This definition

is also better suited for the proof and we are able to improve the constant to

‖ρt − π‖TV ≤ max

{
1
4

, h(x0) +
28
t

(
1

φ(x0)
+

∫ 1/2

x=x0

x dx

φ′(x)

)}
.

3.2.2 Proofs

Before giving the proof of the theorem we need some notation. These preliminaries are the

same as in [KLM02].

For u ∈ Ω, let

gt(u) =
ρt(u)
π(u)

=
1
t

p(0)(u) + p(1)(u) + . . . p(t−1)(u)
π(u)

. (3.3)

For any sets S, T (not necessarily disjoint), we denote by F (S, T ) the expected number

of times we step from a state in S to a state in T during steps 1, 2, . . . t. Thus, by linearity

of expectations, we get,

F (S, T ) =
∑

u∈S

t gt(u) π(u) P(u, T ).

Define a probability measure G(·) on Ω by

G(A) =
∑

u∈A

g(u) π(u).

Then,

||G− π||TV =
∑

u∈U

(g(u)− 1) π(u), where U = {u : g(u) ≥ 1}. (3.4)

The following inequality, which is a modification of a result of [Che00] is crucial to our

proof :
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Lemma 3.1. Suppose A,B, C is a partition of Ω into three sets so that there exist positive

reals α > β and

A ⊆ {u : g(u) ≥ α}; B ⊆ {u : g(u) ∈ [β , α]}; C ⊆ {u : g(u) ≤ β}.

Then, we have

α− β ≤ 1
t Q(C, A)

.

Proof. F (A,A) + F (A,B ∪ C) = F (A, Ω) is the expected number of times we take a step

from a state in A (to anywhere) during steps 1, 2, . . . t. This is clearly equal to p(0)(A) +

p(1)(A)+. . .+p(t−1)(A). Similarly, F (A,A)+F (B∪C,A) = F (Ω, A) is the expected number

of times we take a step to a state in A during steps 1, 2, . . . t and this is clearly equal to

p(1)(A) + p(2)(A) + . . . p(t)(A). Subtracting, we get

F (B ∪ C,A)− F (A,B ∪ C) = p(t)(A)− p(0)(A) ≥ −1. (3.5)

From the above, we get

−1 ≤ F (B,A) + F (C, A)− F (A,B ∪ C)

=
∑

u∈B

g(u) tπ(u) P(u,A) +
∑

u∈C

g(u) tπ(u)P(u,A)−
∑

u∈A

g(u) tπ(u) P(u, B ∪ C)

≤ tα
∑

u∈B

π(u) P(u,A) + tβ
∑

u∈C

π(u) P(u,A)− tα
∑

u∈A

π(u) P(u,B ∪ C)

= tαQ(B, A) + tβQ(C, A)− tαQ(A,B ∪ C)

= tQ(C, A)(β − α),

where the last line uses time-reversibility. This proves the lemma.

Proof of Theorem 3.2. Fix the number of iterations t, and write g(u) to indicate gt(u).

Assume there are N states 1, 2, . . . , N , and the states are ordered in decreasing order

of g(u), that is g(i) ≥ g(j) if i ≤ j; any rule can be used to break ties. We use the

notation [1..i] (or [i..N ]) to indicate {1, . . . , i} (or {i, . . . , N}). Also let ai = π([1..i]),

imin = min{i : ai ≥ x0}, imax = max{i : g(i) > 1} and I = {imin, . . . , imax}.
If imax < imin then π([1..imax]) < x0 and so

‖ρt − π‖TV = π([1..imax])− ρt([1..imax]) ≤ π([1..imax]) ≤ x0, (3.6)
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and the theorem follows because x0 ≤ 1/4. Assume imax ≥ imin. A similar procedure

follows if π([imax + 1..N ]) < 1/4. Therefore, we may assume that imax ≥ imin and that

π([1..imax]) ≤ 3/4.

We have

‖ρt − π‖TV =
∑

u∈Ω
g(u)>1

(g(u)− 1)π(u)

≤ G([1..imin − 1])− π([1..imin − 1]) +
∑

i∈I
π([1..i]) (g(i)− g(i + 1)) .

Observe that if j < k then

k∑

i=j

ai (g(i)− g(i + 1)) ≤ ak (g(j)− g(k + 1))

≤ ak
1

t Q([1..j], [k + 1..N ])
,

where we used Lemma 3.1 for the final inequality. Therefore, to simplify the variation

distance we will group together vertices according to φ(·), so that the flow Q([1..j], [k+1..N ])

stays large.

For each i ∈ I, by definition of Ψint or Ψext applied to S = [1..i] (or S = [i + 1..N ] if

ai > 1/2), let λi be the value of λ where the sup occurs. Then points can be removed from

[1..i] or [i+1..N ], while still keeping the flow large; in the former case let Bi = [ai− 1
2 λi, ai]

and in the latter let Bi = [ai, ai + 1
2 λi], in both cases let Bi = {j : aj ∈ Bi} and observe

that i ∈ Bi.

Fix attention on one i for now. Let the minimal and maximal elements in Bi be m =

minj∈Bi j and M = maxj∈Bi j. Extend φ(·) by letting φ(x) = φ(x0) if x < x0 and φ(x) =

φ(1 − x) for x > 1/2, and also let Ψ(S) = max{Ψint(S), Ψext(S)}. Suppose that M = i,

that is λi was determined by Ψint([1..i]). Then we have

∑

j∈Bi

aj (g(j)− g(j + 1)) ≤ aM
1

tQ([1..m], [M + 1..N ])

≤ aM

t

λi

[ai(1− ai)]2 Ψ([1..i])

≤ aM

t

2π(Bi)
[ai (1− ai)]2

1
φ(ai)

≤ 15
4 t

∫

Bi

dy

y (1− y)2 φ(y)
,
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where the final expression comes from aM = ai and where the factor of 15
8 is because

ai (1− ai)2 ≥ 8
15 y(1− y)2 for ai ∈ [0, 3/4] and y ∈ [ai − 1

2 min{ai, 1− ai}, ai]. The case of

m = i (λi determined by Ψext([1..i])) is similar.

Now, let I ′ ⊆ I be such that {Bi}i∈I′ forms a minimal cover of the vertices i ∈ I, i.e.

I ⊆ ⋃
i∈I′ Bi. Observe that each point y ∈ (0, 1) is contained in at most two of the Bj∈I′ ;

this is because if three intervals share a point then one interval must be contained in the

union of the other two, contradicting minimality of I ′.
From these observations it follows that

‖ρt − π‖TV ≤ G([1..imin − 1])− π([1..imin − 1])

+
∑

i∈I′

15
4 t

∫

y∈Bi

dy

y max{1− y, 1
4}2 φ(min{y, 1− y})

≤ G([1..imin − 1])− π([1..imin − 1])

+
15
2 t

(∫ 1/2

x=x0/2

dx

x(1− x)2 φ(x)
+

∫ 7/8

x=1/2

dx

x max{1− x, 1
4}2 φ(1− x)

)

≤ G([1..imin − 1])− π([1..imin − 1])

+
15
2 t

(
4

∫ 1/2

x=x0/2

dx

xφ(x)
+

16
3

∫ 1/2

x=1/8

dx

xφ(x)

)

≤ G([1..imin − 1])− π([1..imin − 1]) +
70
t

(
1

φ(x0)
+

∫ 1/2

x0

dx

xφ(x)

)
,

where the first factor of 2 comes from the number of overlaps by the cover; the upper limit

of 7/8 is from the fact that aimax ≤ 3/4 so the final interval ends before 7/8; and 16/3 is

by minimizing xmax{1− x, 1
4}2/(1− x) for x ∈ (1/2, 7/8).

Proof of Corollary 3.1. Observe that h(π0) = 0 so the h(·) term drops out. To eliminate

the φ(x0)−1 term we will show that it can be assumed none of Bi in the cover extend below

π0. Let S = [1] be the point with maximal g(u). If π(S) ∈ [π0, 2π0) then we can assume

the BCF uses Ψext([1]) rather than Ψint([1]), with at most the loss of a factor of 2 because

the λext
S ≥ π0 > π(S)/2. If π(S) ≥ 2π0 then there is no problem because the Bi in the proof

of the theorem have size ≤ π(S)/2, so the Bi covering S = [1] cannot extend below π0.

Proof of Average Conductance Theorem 3.1. We use Corollary 3.1 with external blocking

conductance, and `(x) as defined in Remark 3.2.1. For A ⊂ Ω with π(A) = x let `(x) =
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λ = 1
2 xΦ(x) ≤ x/2. Now, a set of size λ blocks at most half the flow Q(A, Ac), so

Q(A, Ac \ B) ≥ 1
2 Q(A,Ac) ≥ 1

2 xΦ(x). Then φ(x) = 1
4 Φ2(x) is an external BCF. Because

φ(x) is monotonically decreasing then it automatically follows that φ(y) ≤ Ψext(A).

By Remark 3.2.1 on external BCF’s, it remains only to add a term

sup
x∈[1/3,1/2]

`(x)
φ(x)

= sup
x∈[1/3,1/2]

1
2 xΦ(x)
1
4 Φ2(x)

≤ 1
Φ

The theorem then follows (up to constant factors).
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Chapter 4

Geometric Markov Chains

The first case in which we use Average Conductance to show faster mixing are Markov

chains whose underlying graphs G = (E, V ) have a natural geometric structure.

Roughly speaking, we consider Markov chains where the underlying graph G can be

modeled as a convex set K, where if A ⊂ V then π(A) will be proportional to the volume

of A and Q(A,Ac) will be proportional to the surface area of the boundary ∂A \ ∂K. Then

the key to bounding the conductance (function) will be to bound the ratio of surface area

to volume of cuts; the main tool for doing this will be a type of isoperimetric inequality

developed in [KK91], strengthened in [DF91, LS93] and to be further strengthened in this

thesis.

4.1 Isoperimetric Inequalities

The key to bounding the conductance function is an isoperimetric inequality relating the

surface area of a cut to the volume it encloses. First a few definitions.

• A convex body is a bounded compact set K ⊂ Rn where ∀x, y ∈ K, t ∈ [0, 1] :

(1− t)x + ty ∈ K.

• A function f : K → R is concave if ∀x, y ∈ K, t ∈ [0, 1] : f [(1 − t)x + ty] ≥
(1− t)f(x) + tf(y).

• A function F : K → R+ is log-concave if log F is a concave function on intK, i.e.
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∀x, y ∈ K, t ∈ [0, 1] : log f [(1− t)x + ty] ≥ (1− t) log f(x) + t log f(y). In particular,

positive concave functions are log-concave.

• Given a norm ‖ · ‖ : Rn → R+, the dual norm ‖ · ‖∗ is given by

‖x‖∗ = sup
a∈Rn

{a · x : ‖a‖ = 1} .

For example, when ‖ · ‖ = ‖ · ‖p is the p-norm ‖x‖p = (
∑n

i=1 xp
i )

1/p, and q is such that

1/p + 1/q = 1, then ‖ · ‖∗p = ‖ · ‖q.

Previous uses of isoperimetry to bound conductance used various refinements of the fol-

lowing theorem of [DF91].

Theorem 4.1. Let K ⊆ Rn be a convex body and F a log-concave function on int K. Let

S ⊆ K be such that ∂S \ ∂K is a piecewise smooth surface σ, with u(x) the Euclidean unit

normal to σ at x ∈ σ. If µ′(S) =
∫
σ F (x)‖u(x)‖∗ dx, µ(S) =

∫
S F (x) dx and µ(S) ≤ 1

2µ(K),

then
µ(S)
µ′(S)

≤ 1
2

diamK

where the diameter diam K is measured with respect to ‖ · ‖.

The quantities in the theorem can be better interpreted visually, as in Figure 4.1.

u

u

u

S
S

S S

Figure 4.1: Cut surfaces for geometric isoperimetry

When the dual ‖u‖∗ ≤ c along ∂S \ ∂K then this theorem can be interpreted as saying

the ratio of volume µ(S) to surface area µ′(S) is at most c
2 diamK, i.e. the surface area is

not too small.
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Corollary 4.1. When F = 1, ∂S \ ∂K is piecewise smooth, and ‖u(z)‖∗ ≤ umax then

µn(S)
µn−1(∂S \ ∂K)

≤ umax

2
diamK

where µn and µn−1 are the n and n− 1 dimensional Lebesgue measures in Rn .

Taking the norm to be ‖ · ‖∞ with dual ‖ · ‖1, the space K to be a long thin cylinder like

that in Figure 4.1, and S to be half the space as in the figure, then the theorem is tight.

In the problems we consider, the Markov chain M will have underlying graph (G,V ) and

subsets A ⊂ V will map to subsets S ⊂ K; then Q(A,Ac) will be proportional to the surface

area µn−1(∂S \ ∂K) and π(A) will be proportional to the volume µn(S). Then Theorem

4.1 will give a method of bounding Φ.

To bound Φ(x) a theorem stronger than Theorem 4.1 will be needed. In particular, it will

be necessary to bound Q(A,Ac) conditioned on π(A) (since π(A) ≤ x in Φ(x)); in the convex

body K this will translate into the problem of bounding the surface area µn−1(∂S \ ∂K)

conditioned on µn(S). Lovász and Kannan [LK99] gave a result of this type for a continuous

random walk on convex sets. We will prove a different bound which is appropriate to our

applications; one nice feature of our theorem is that it is tight at every value of x, in a sense

to be discussed later.

Theorem 4.2. Under the same conditions as Theorem 4.1, with the added condition that

µ(S) = xµ(K) ≤ 1
2 µ(K), then

µ(S)
µ′(S)

≤ diamK

H(x)/x
. (4.1)

where

H(x) =
γ2eγ

(eγ − 1)2
(4.2)

and γ > 0 is the unique solution to

x =
eγ(γ − 1) + 1

(eγ − 1)2
.

Moreover, H(x) is optimal for all x ∈ (0, 1/2] in that for every x there is an example where

the inequality is an equality.
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Corollary 4.2. Under the same conditions as Corollary 4.1, but with µn(S) ≤ xµn(K) ≤
1
2 µn(K), then

µn(S)
µn−1(∂S \ ∂K)

≤ umax

H(x)/x
diamK .

where H(x) is as in Theorem 4.2. In particular, H(x) ≥ x(2 + log(1/2x)).

This extends Theorem 4.1 and also shows that Theorem 4.1 is tight only when x = 1/2.

Since Theorem 4.2 is optimal then all bounds of the form (4.1) will follow as corollaries to

our theorem. The quantity H(x) is difficult to lower bound because of the dependence on

γ, however the graph of H(x) demonstrates that

µ(S) µ(K \ S)
µ′(S) µ(K)

≤ diamK

4 + log
(

1
4

µ(K)2

µ(S) µ(K\S)

) ,

which is a stronger form of a result proven in [KLM02]. The best (graph assisted) approxi-

mation we have obtained to (4.2) is H(x) ≥ √
2π Igauss(x), or equivalently

µ(S)
µ′(S)

≤ diamK√
2π Igauss(x)/x

,

where x = µ(S)/µ(K) ≤ 1/2 and Igauss(x) is the Gaussian isoperimetric function (see

Example 4.3).

Bobkov [Bob00] used a Prékopa-Leindler inequality to obtain a related result when the

norm is `2.

Theorem 4.3. Let µ be a log-concave probability measure in Rn. For all measurable sets

S ∈ Rn, for every point x0 ∈ Rn, for every number r > 0, and for `2 norm,

2r µ′(S) ≥ µ(S) log
1

µ(S)
+ (1− µ(S)) log

1
1− µ(S)

+ log µ{|x− x0| ≤ r} .

This is not strong enough for our applications because we often require `∞ norms. When

dealing with `2 norm then Theorem 4.2 and 4.3 are not directly comparable because the

latter considers shape as well as size of cuts. For example, taking r = diam K and x0 ∈ K

then Theorem 4.2 is at least twice as strong, but when the object is not very round (e.g. a

simplex) then Bobkov’s result can be substantially better than Theorem 4.2.
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4.1.1 Needles and Isoperimetric Inequalities

The main tool in our proof will be a technique developed by Lovász and Simonovitz

[LS90, LS93, KLS99] to reduce n-dimensional isoperimetry problems into 1-dimensional

isoperimetry problems. The lemma below is a variation on results in [LS93, KLS99].

A lower semi-continuous function is one which is a limit of a monotone increasing sequence

of continuous functions. For example, the indicator of an open set, or the negative of the

indicator of a closed set.

Lemma 4.1 (Localization Lemma). Let g and h be lower semi-continuous Lebesgue

integrable functions on Rn such that

∫

Rn

g(x) dx ≥ 0 and

∫

Rn

h(x) dx = 0 .

Then there exist two points a, b ∈ Rn and a linear function ` : [0, 1] → R+ such that

∫ 1

0
`(t)n−1 g((1− t)a + tb) dt ≥ 0 and

∫ 1

0
`(t)n−1 h((1− t)a + tb) dt = 0 .

Sketch of Proof. The proof is an application of the Ham Sandwich Theorem. Let K = Rn.

Roughly speaking, take an (n − 2)-dimensional affine hyperplane H (e.g. x1 = a1, x2 =

a2, . . . , xn−2 = an−2 for fixed a ∈ Rn−2) and rotate around the 2 degrees of freedom until the

halfspace U above the hyperplane H has
∫
K∩U h(x) dx = 0. Then either

∫
K∩U g(x) dx ≥ 0

or
∫
K\U g(x) dx ≥ 0. Choose the appropriate halfspace K ′ = K ∩ U or K ′ = K \ U ; repeat

this process, bisecting the space each time until only an infinitesimal needle remains.

The pair N =
(
[a, b], `(t)n−1

)
is often referred to as a needle because `(t)n−1 on [a, b] can

be thought of as an infinitesimally narrow truncated cone. In keeping with [KLS99] we let

∫

N
f =

∫ |b−a|

0
`(a + t u)n−1 f(a + tu) dt ,

where u = (b−a)/|b−a|. More generally, a log-concave needle is of the form L = ([a, b], F (t))

for F log-concave, and an exponential needle is of the form E = ([a, b], eγ t), with
∫
L f and

∫
E f defined as with

∫
N f . We also let µL(A) =

∫
A F (x) dx for Lebesgue measurable sets

A, and likewise for µN (A) and µE(A).
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Observe that if F (t) is log-concave and `(t) is linear, then F̃ (t) = `(t)n−1 F ((1− t)a + tb)

is log-concave. Then the Localization Lemma reduces a problem on g = F G and h = F H

for F log-concave, to a problem on a log-concave needle L = ([a, b], F̃ (t)) with g = G and

h = H. Therefore most results using the Localization Lemma deal only with log-concave

functions as the original n-dimensional problem on log-concave functions reduces to a similar

1-dimensional problem on log-concave needles.

4.1.2 An Isoperimetric Inequality for Log-Concave Functions

In this section we prove Theorem 4.2 to get an isoperimetric inequality sufficient for applying

Average Conductance. The proof will proceed in several steps, as in [LS93]. First, a related

problem is reduced to a problem on one dimensional needles, we then solve the problem on

one dimensional needles, and finally the result is translated into the form of Theorem 4.2.

Theorem 4.4. Let K ⊆ Rn be a convex body and F a log-concave function defined on intK.

Let S1, S2 ⊆ K be Lebesgue measurable and let B = K \ (S1∪S2). Also let t ≤ dist(S1, S2)

and d ≥ diamK, both relative to ‖ · ‖.
Then, given G : (4, ∞) → R satisfying

1. G(1/x) is monotonically decreasing for x ∈ (0, 1/4),

2. xG(1/x) is monotonically increasing for x ∈ (0, 1/4),

it follows that
d

t
µF (B) ≥ µF (S1)µF (S2)

µF (K)
G

(
µF (K)2

µF (S1) µF (S2)

)
(4.3)

holds for all disjoint S1, S2 ⊆ K if it holds for all one-dimensional exponential needles E

with a single S1 −B − S2 partition, and with µE(·) in place of µF (·).

Proof. Assume a contradiction, i.e. ∃K, S1, S2, B with

d

t
µF (B) <

µF (S1) µF (S2)
µF (K)

G

(
µF (K)2

µF (S1) µF (S2)

)
. (4.4)

In order to reduce to the needle-like case, the Localization Lemma will require conditions

that reinforce the counterexample by decreasing the left side while increasing the right side.

The following two conditions will do the job.
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• µ(B)/µ(K) decreases when changing to needles.

• x = µ(S1)/µ(K) is constant when changing to needles.

These can be written in the form for the Localization Lemma and reduced to the one

dimensional case. To do this, we can assume that S1 and S2 are closed by taking the closures

S1 and S2. This does not effect t or d, the left side decreases, and the right side increases

(by the second monotonicity condition), so this gives another counterexample. But then

B = K \ (S1 ∪ S2) is open relative to K, and B and its closure B have the same measure.

Similarly, K and intK are interchangeable because µ(∂K) = 0 by compactness of K.

Then let

g(t) = F (t)
(
A1int K(t)− 1B(t)

)
where A = µ(B)/µ(K)

and h(t) = F (t) (x1int K(t)− 1S1(t)) where x = µ(S1)/µ(K) .

These are lower semi-continuous as they are indicators of open sets or negative indicators

of closed sets. Then by the Localization Lemma (Lemma 4.1) there is a one-dimensional

log-concave needle with the same conditions. Dividing both sides of (4.4) by µF (K) then

we see that the condition on g(t) implies the left side of the counterexample decreases, and

the condition on h(t) (x constant) implies that µ(S2)/µ(K) increased, so the right side of

the counterexample increased by the second monotonicity condition. Also, the needle has

smaller diameter (length) than K and larger separation t, so it is still a counterexample.

Moreover, by linearity all norms are equivalent along R1 up to a constant factor; these

constants cancel out when taking d/t, so we can assume the norm on the needle is standard

Euclidean length. Without loss assume the needle is [0, 1].

We will now show that this counterexample implies a counterexample for log-concave

needles with a single interval S1 −B − S2.

In general the needle may have many intervals, so we now reduce the general case to a

single S1 − B − S2 interval. To do this we use a trick from [LS93]. Assume the theorem

holds for log-concave needles with a single S1−B−S2 interval. Consider a maximal interval

[r, s] of B. If µ([0, r]) ≤ µ([s, 1]) then color [0, r] red, otherwise color [s, 1] red. Repeat this

process over the maximal intervals of B, proceeding from the intervals closest to 0 to those
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closest to 1. At some point it switches from red on the left ([0, r]) to red on the right ([s, 1]),

leaving out an interval [u, v] ⊆ S1 or S2. Then either S1 or S2 ⊆ [0, u−t1]∪[v+t2, 1] – where

the maximal intervals of B were [u−t1, u] and [v, v+t2] – assume S1 ⊆ [0, u−t1]∪[v+t2, 1].

By the single interval case we get

d

t
µ([u− t1, u]) ≥ µ([0, u− t1])µ([u, 1])

µ(K)
G

(
µ([0, 1])2

µ([0, u− t1])µ([u, 1])

)

≥ µ([0, u− t1] ∩ S1) µ([u, 1] ∪ ([0, u− t1] \ S1))
µ(K)

×G

(
µ([0, 1])2

µ([0, u− t1] ∩ S1) µ([u, 1] ∪ ([0, u− t1] \ S1))

)

≥ µ([0, u− t1] ∩ S1) µ(S2)
µ([0, 1])

G

(
µ([0, 1])2

µ(S1) µ(S2)

)

where the second inequality used (x − A)(y + A) ≤ xy when x < y, and the second and

third inequalities used the first and second monotonicity conditions. Likewise,

d

t
µ([v, v + t2]) ≥ µ([v + t2, 1] ∩ S1)µ(S2)

µ([0, 1])
G

(
µ([0, 1])2

µ(S1) µ(S2)

)
.

Adding these expressions together gives

d

t
µ(B) ≥ d

t
(µ([u− t1, u]) + µ([v, v + t2])) ≥ µ(S1) µ(S2) G

(
µ([0, 1])2

µ(S1) µ(S2)

)
,

as desired. If it were S2 ⊆ [0, u− t1] ∪ [v + t2, 1] then the same steps would hold with S2.

Now, suppose there is a 1-d counterexample where B consists of a single segment, i.e. the

line is of the form S1 − B − S2. Assume S1 = [0, a], B = (a, b), S2 = [b, 1] and let log F̃ (t)

be the line log F̃ (t) = A+γ t passing through the points (a, log F (a)) and (b, log F (b)). By

the log-concavity of F (t), it follows that F̃ (t) ≤ F (t) in B and F̃ (t) ≥ F (t) in S1 ∪ S2. We

now show that F̃ (t) will give a counterexample to the exponential needle problem with the

same S1 −B − S2.

Let µF̃ (A) =
∫
A F̃ (t) dt be the measure induced on subsets A ⊆ [0, 1] by F̃ (t), and simi-

larly let µF (A) = µ(A) =
∫
A F (t) dt. Then µF̃ (B) ≤ µF (B) so the left side of the counterex-

ample decreased. Now, µF̃ (S1) ≥ µF (S1) and µF̃ (S2) ≥ µF (S2), and also µF̃ (S1)/µF̃ (K) ≥
µF (S1)/µF (K) or µF̃ (S2)/µF̃ (K) ≥ µF (S2)/µF (K). Then µ(S1) µ(S2)/µ(K) increases in

going from F to F̃ , so by the second monotonicity condition then the right side of the

counterexample increases.
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Then there is a one dimensional single interval counterexample with an exponential needle,

contradicting the assumption.

We have reduced to exponential needles on [0, 1] with a single B interval. Assume the

needle is E = ([0, 1], eγ t), and the interval is partitioned into three pieces – S1 = [0, s], B =

[s, s + t], S2 = [s + t, 1] – where µ(S1) =
∫ s
0 eγy dy and likewise for B and S2.

Theorem 4.5. Let G be a function G : (4,∞) → R satisfying the two monotonicity condi-

tions of Theorem 4.4. Then if

∀γ > 0 : x(1− x)G
(

1
x(1− x)

)
≤ γ2eγ

(eγ − 1)2
(4.5)

where

x =
eγ(γ − 1) + 1

(eγ − 1)2
∈ (0, 1/2) ,

then the conditions of Theorem 4.4 are satisfied. Moreover, (4.5) is both necessary and

sufficient for this to be true.

Proof. In the following work extend G : (4,∞) → R+ to G : [4,∞) → R+ by letting

G(4) = limt→4+ G(t). This is well defined because G is monotonic. In the work below we

will not worry about γ = 0, but this case can easily be worked out with the same methods.

We first show that the second condition implies the first.

Consider a counterexample with γ > 0

∫ s+t
s eγydy

t
<

(∫ s
0 eγydy

) (∫ 1
s+t eγydy

)

∫ 1
0 eγydy

G




(∫ 1
0 eγydy

)2

(∫ s
0 eγydy

) (∫ 1
s+t eγydy

)


 . (4.6)

The right side is decreasing in t by the second monotonicity condition, while the left

side is increasing in t because it is the average of the increasing function eγ y. Then taking

t → 0+ on both sides gives another counterexample :

eγs < µ([0, 1])x(1− x) G(1/x(1− x))

where

x =
µ([0, s])
µ([0, 1])

=
γ−1(eγs − 1)

µ([0, 1])
.

The case γ < 0 is similar but with t−1
∫ s
s−t eγydy on the left side of (4.6).
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Solving for eγs in terms of x and substituting into the counterexample gives

γx +
γ

eγ − 1
< x(1− x) G(1/x(1− x)) . (4.7)

Fix x and minimize the left side with respect to γ.

∂

∂γ

(
γx +

γ

eγ − 1

)
= x +

eγ − 1− γeγ

(eγ − 1)2

This is increasing in γ because d
dγ > 0 except at γ = 0, so the optima is an absolute minima,

i.e. the minimum occurs at the solution to

x =
eγ(γ − 1) + 1

(eγ − 1)2
∈ (0, 1) . (4.8)

Observe that for γ ∈ (−∞,∞) then (4.8) is a bijection onto x ∈ (0, 1). Since the solution

to (4.8) is the minimum of the left side in (4.7) then there is another counterexample with

γ
eγ(γ − 1) + 1

(eγ − 1)2
+

γ

eγ − 1
< x(1− x) G

(
1

x(1− x)

)
.

This simplifies to give a counterexample to (4.5). Notice that γ2 eγ/(eγ − 1)2 is the same

for ±γ, and that x(−γ) = 1− x, so it suffices to consider γ > 0.

To show that the first condition implies the second, observe that the above work showed

that given x then taking t → 0+ the γ given by (4.8) satisfies the second condition in the

theorem. Then the second condition follows.

Proof of Theorem 4.2. The first part of the proof is identical to that in [DF91], but with

our stronger bound from Theorem 4.5. For completeness we give the proof from [DF91].

By considering the limit of an appropriate sequence of simplicial approximations, it clearly

suffices to prove the theorem for σ a “simplicial surface”, i.e. one whose “pieces” are

(n − 1)-dimensional simplexes. For small t > 0, let B be the closed 1
2 t-neighborhood of

such a surface σ. Consider a simplicial piece σ′ ⊆ σ, with normal u and surface integral

α =
∫
σ′ F (x) dx. The measure of B around σ′ is then approximately hα, where

h = max{uz : ‖z‖ = t} = ‖u‖∗ t .

Thus the measure of this portion of B is tα‖u‖∗ + o(t) and hence, since u is constant on

each such σ′, µ(B) = tµ′(S) + o(t).
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Now, G(1/y) from Theorem 4.5 satisfies both monotonicity conditions of Theorem 4.4 so

if S1 = S \B, and S2 = K \ (B ∪ S), then we have

d

t
µ(B) ≥ µ(S1) µ(S2)

µ(K)
G

(
µ(K)2

µ(S1) µ(S2)

)
.

The first part of the theorem follows by letting t → 0+.

For the second part, the construction in the proof of Theorem 4.5 shows that if K = [0, 1]

then F (y) = eγ y is tight at x = [eγ(γ − 1) + 1]/(eγ − 1)2 as t → 0+. This generalizes to n

dimensions by taking K = [0, 1]n and F (y) = eγ y1 , where y1 is the first coordinate of y.

For brevity we will use the notation

H(x) =
γ2eγ

(eγ − 1)2
where x =

eγ(γ − 1) + 1
(eγ − 1)2

∈ (0, 1/2) ,

to denote the upper bound on x(1− x)G(1/x(1− x)).

Remark : The proof of Theorem 4.5 shows that given x, then letting γ be the unique

solution to x = (eγ (γ − 1) + 1)/(eγ − 1)2, ‖ · ‖ = ‖ · ‖∞, F = eγ y, and K = [0, 1]n then the

inequality is an equality. When x = 1/2 then F = 1 and this gives the same example of

equality as that given in [DF91].

Remark : The γ in Theorem 4.2 can be interpreted as the slope of H(x). To see this,

observe that

d

dx
H(x) =

d

dγ

[
γ2eγ

(eγ − 1)2

] [
dx

dγ

]−1

=
(2γeγ+γ2eγ)(eγ−1)2−γ2eγ2eγ(eγ−1)

(eγ−1)4

(eγ+eγ(γ−1))(eγ−1)2−(eγ(γ−1)+1)2eγ(eγ−1)
(eγ−1)4

=
γeγ(eγ − 1) [(2 + γ)(eγ − 1)− 2γeγ ]

eγ(eγ − 1) [γ(eγ − 1)− 2(eγ(γ − 1) + 1)]

= γ .

Example 4.1. Consider the n-dimensional hypercube [0, 1]n with F = 1, `∞ norm and

S ⊂ K required to have flat faces (i.e. ‖u‖1 = 1). The earlier remark mentions that this is

tight at x = 1/2. However, when x → 0+ then Bollobás and Leader [BL91b] showed that
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the surface area is minimized by taking small sub-cubes [0, ε]n in a corner. This has

µ(S)
µ′(S)

=
x

nx(n−1)/n
= n
√

x/n ,

while Theorem 4.2 gives

µ(S)
µ′(S)

≤ diamK

H(x)/x
=

eγ(γ − 1) + 1
γ2 eγ

.

Taking x → 0+ (γ →∞) then the ratio of these two bounds is

n

√
eγ(γ−1)+1

(eγ−1)2

eγ(γ−1)+1
γ2 eγ

γ→∞−−−→ 0 .

So at least for the hypercube we see that the bound of Theorem 4.2 can be arbitrarily bad

for small x. In the next section we will prove a version of Theorem 4.2 for the uniform

distribution F = 1 and show that it is asymptotically tight for x → 0+ in the Bollobás and

Leader example.

Theorem 4.2 gives an optimal bound, but it seems impossible to write H in closed form.

Below we show a few good approximations to H(x), and hence good lower bounds for

Theorem 4.2.

Example 4.2. Consider bounds of the form

H(x)/x ≥ A + logα(1/x) (4.9)

where x ∈ (0, 1/2).

Use the notation of (4.5), where x = eγ(γ−1)+1
(eγ−1)2

. First consider the base α. Dividing both

sides of (4.9) by ln(1/x), then

γ2eγ

eγ(γ−1)+1

ln
(

(eγ−1)2

eγ(γ−1)+1

) ≥ 1
ln α

.

Taking γ →∞, this shows that 1 ≥ 1/ ln α, so α ≥ e. From now on the log is base e.

Next consider the constant A. Then (4.9) is equivalent to

γ2eγ

eγ(γ − 1) + 1
− ln

(
(eγ − 1)2

eγ(γ − 1) + 1

)
≥ A
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Taking d
dγ shows that the left side of this equation is increasing in γ, so letting γ → 0+ this

reduces to 2− ln 2 ≥ A.

Now the conditions of Theorem 4.4. The first condition holds for any constant A. For

the second condition it suffices that d
dxH(x) ≥ 0, that is

d

dx
[x (A + ln(1/x))] = A + ln(1/x)− 1 ≥ 0 .

In particular A ≥ 1− ln(1/x), so any A ≥ 1− ln 2 suffices.

From this we get that the isoperimetric inequality holds for

H(x)/x = 2− ln 2 + ln(1/x) .

Kannan [Kan] previously showed a result similar to Theorem 4.2, but with H(x)/x =

1 + ln(1/x). This would be our lower bound on A if we required the second monotonicity

condition in Theorem 4.4 to hold for x ∈ (0, 1), rather than the weaker x ∈ (0, 1/4).

Example 4.3. An extremely good bound can be found with a Gaussian type isoperimetric

inequality as in [Bob00]. Let N(x) = 1√
2π

∫ x
−∞ e−t2/2 dt be the standard normal distribution

(this is not the conductance function), ϕ(x) = 1√
2π

e−x2/2 (note dN
dx = ϕ(x)), and Igauss(x) =

ϕ ◦N−1(x). Then a Gaussian type inequality has the form

d

t

µ(B)
µ(K)

≥ c Igauss(x) (4.10)

for some constant c.

From Example 4.2 it suffices to show that cIgauss(x)/x ≤ 2 + log(1/2x). However, it

is known that Igauss(x) ≤ C x
√

log(1/x) for some constant C, and so a Gaussian type

inequality will hold for some c.

Determining the optimal value of c is difficult. At this point we do not have a complete

proof of the optimal value. However, in the following we reduce the problem to a (possibly)

simpler one; this later problem can be easily graphed on a computer, and via this graph we

are able to verify that c =
√

2π is optimal.

From Theorem 4.5, it suffices to show

c Igauss(x) ≤ γ2

(eγ − 1)2
for x =

eγ(γ − 1) + 1
(eγ − 1)2

.
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Consider the endpoints. For x → 0+ ( γ →∞), we have γ2

(eγ−1)2
γ→∞−−−→ 0 and Igauss(x) x→0−−−→

0, so the inequality holds for any c. When x → 1/2 (γ → 0+) then γ2

(eγ−1)2
γ→0+

−−−−→ 1 and

Igauss(1/2) = 1/
√

2π, so the inequality holds for c ≤ √
2π. Assume c =

√
2π.

To show the inequality for general x ∈ (0, 1/2) consider d
dx [H(x)− c Igauss(x)].

Then

d

dx
ϕ

[
N−1(x)

]
= ϕ′

[
N−1(x)

] d

dx
N−1(x)

ϕ′(x) =
1√
2π

(−x)e−x2/2 = −xϕ(x)

d

dx
N−1(x) = 1/N ′ [N−1(x)

]
= 1/ϕ

[
N−1(x)

]
.

So
d

dx
ϕ

[
N−1(x)

]
= −N−1(x) .

From (4.9) we know that d
dxH(x) = γ, so

d

dx
[H(x)− c Igauss(x)] = γ + cN−1(x) .

Therefore, the extreme points occur when γ + cN−1(x) = 0, or equivalently when

N(−γ/c) − x = 0. This latter form can be plotted for c =
√

2π and has a single root

when x ∈ (0, 1/2), at γ ∼ 3.5. Therefore, the original function is either strictly positive or

strictly negative, as it has only one extreme point for x ∈ (0, 1/2) and is 0 at the endpoints.

The graph of N(−γ/c) − x is negative for γ >∼ 3.5 which means that d
dx is positive for

γ >∼ 3.5, i.e. x small, and shows that d
dx > 0 for small x and hence for all x ∈ (0, 1/2).

This shows that
d

t

µ(B)
µ(K)

≥
√

2π Igauss(x) .

This is tight at both endpoints and extremely close to optimal at the intermediate points.

4.1.3 Isoperimetric Inequalities for Uniform Distributions

When the distribution F is uniform over K then the results from the previous section can

be strengthened slightly.

Theorem 4.6. The same results as in Theorem 4.4 hold for µ(S) = V oln(S) (i.e. F = 1)

and reduction to a single interval truncated pyramid (linear) case (i.e. `(t) = (α + βt)n−1).
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Proof. The proof is identical to before without the step of reducing to an exponential

needle.

Theorem 4.7. Let G be a function G : (4,∞) → R, then if

∀γ > 0 : x(1− x) G

(
1

x(1− x)

)
≤ γ n

(1 + γ)n − 1

[
(1 + γ)n−1γ(n− 1)

(1 + γ)n−1 − 1

]1−1/n

(4.11)

where x =
(1 + γ)n−1 [γ(n− 1)− 1] + 1
[(1 + γ)n−1 − 1] [(1 + γ)n − 1]

∈ (0, 1/2),

then the conditions of Theorem 4.6 are satisfied. Moreover, (4.11 is both a necessary and

sufficient condition for this to be true.

Proof. The proof will follow the same steps as the general case. As before, extend G to

G : [4,∞) → R+ and ignore the case γ = 0.

We first show that the second condition implies the first.

The truncated pyramid is given by (α + β y)n−1; this reduces to two cases, (1 + γy)n−1

or yn−1, by dividing by αn−1 when α 6= 0 or βn−1 when α = 0. Assume γ ≥ 0, the case

γ < 0 follows similarly.

First deal with the harder case, (1 + γy)n−1 and γ ∈ [−1,∞). Then µ(S1) =
∫ s
0 (1 +

γy)n−1dy and likewise for B and S2. Simplify notation by setting x = µ([0, s])/µ([0, 1]).

Consider a counterexample with γ > 0
∫ s+t
s (1 + γy)n−1dy

t
< x

∫ 1

s+t
(1 + γy)n−1dy G

( ∫ 1
0 (1 + γy)n−1dy

x
∫ 1
s+t(1 + γy)n−1dy

)
. (4.12)

The right side is decreasing in t by the second monotonicity condition, while the left side

is increasing in t because it is the average of the increasing function (1 + γ y)n−1. Then

taking t → 0+ on both sides gives another counterexample :

(1 + γs)n−1 < µ([0, 1])x(1− x) G(1/x(1− x))

where

x =
µ([0, s])
µ([0, 1])

=
(1 + γs)n − 1
(1 + γ)n − 1

.

The case −1 < γ < 0 is similar but with t−1
∫ s+t
s (1 + γy)n−1dy on the left side of (4.12).
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Solving for (1 + γs)n−1 in terms of x and substituting into the counterexample gives

γn {1 + x [(1 + γ)n − 1]}(n−1)/n

(1 + γ)n − 1
< x(1− x) G(1/x(1− x)) . (4.13)

Fix x and n and minimize the left side with respect to γ. Simplify by setting u =

(1 + γ)n − 1.

∂

∂γ

γn(1 + xu)(n−1)/n

u
=

[
n(1 + xu)1−1/n + γnn−1

n (1 + x u)−1/nx∂u
∂γ

]
u− γn(1 + xu)1−1/n ∂u

∂γ

u2

=
n(1 + xu)−1/n

u2

{[
u − γ

∂u

∂γ

]
+ x

[
u2 − uγ

n

∂u

∂γ

]}

This is increasing in γ, so the optima is an absolute minima, i.e. the minimum occurs at

the solution to

x =
(1 + γ)n−1 [γ(n− 1)− 1] + 1
[(1 + γ)n−1 − 1] [(1 + γ)n − 1]

∈ (0, 1) . (4.14)

Observe that for γ ∈ (−1,∞) then (4.14) is a bijection onto x ∈ (0, 1). Since the solution

to (4.14) is the minimum of the left side in (4.13), then substituting for x gives another

counterexample with

γn
{

1 + (1+γ)n−1[γ(n−1)−1]+1
[(1+γ)n−1−1][(1+γ)n−1]

[(1 + γ)n − 1]
}(n−1)/n

(1 + γ)n − 1
< x(1− x) G(1/x(1− x)) .

This simplifies to give a counterexample to the second condition.

A similar proof for distribution yn−1 shows G(x) ≤ n n
√

x, which is a weaker condition

than the second condition in the theorem.

To show that the first condition implies the second, observe that the above work showed

that given x then taking t → 0+ the γ given by (4.14) satisfies the second condition in the

theorem. Then the second condition follows.

Note : Two points in this proof were computer assisted. The statement that the quantity

above (4.14) is increasing, and the reduction from γ ∈ (−1,∞) to γ > 0 were both done

by graphing on Mathematica. This makes the proof incomplete, however we do not use

Theorem 4.7 outside of Section 4.1.3, so this is not a major problem.

As before, this gives a result on surface area and volume. In the next two examples we

let H(x) = (1− x) G(1/x(1− x)) where x and G are as in the previous theorem.
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Example 4.4. It was shown in [BL91b] that on small sets the hypercube with flat faces

has isoperimetric inequality H(x) = n n
√

1/x with ‖ · ‖ = ‖ · ‖∞. This was the bound in our

theorem when we only considered yn−1, i.e. with cones and not truncated cones. However,

in general Theorem 4.7 behaves asymptotically like the hypercube when x → 0+:

lim
x→0

n
n
√

x−1

H(x)/x
= lim

γ→∞

n n

√
[(1+γ)n−1−1][(1+γ)n−1]
(1+γ)n−1[γ(n−1)−1]+1

γn n
√

(1 + γ)n−1 − 1 [(1+γ)n−1γ(n−1)]1−1/n

(1+γ)n−1[γ(n−1)−1]+1

= lim
γ→∞

n
√

(1 + γ)n − 1
γ

{
(1 + γ)n−1 [γ(n− 1)− 1] + 1

(1 + γ)n−1γ(n− 1)

}1−1/n

= 1
Example 4.5. Bollobás and Leader [BL91b] conjectured that the subsets with smallest

boundary in the unit hypercube are “cylinders” of the form :

∃r ∈ {1, . . . , n}, a ∈ [0, n] : B = {x ∈ In :
r∑

i=1

x2
i ≤ a}

where smallest boundary is exactly µ′(S) with norm ‖ · ‖2. In other words, they conjecture

that H(x) is determined by the cylinders.

Consider the limit as x → 0+, so that the smallest term in the conjecture is r = n, i.e. a

partial sphere embedded in the corner of the hypercube. Then

x = 2−nV oln(δ)

=
(

δ

2

)n





πn/2

(n/2)! if n is even

π(n−1)/2 2(n+1)/2

1·3···n if n is odd

≈
(π e

2n

)n/2 δn

√
πn

where the final term used Stirling’s Formula n! ≈ (n/e)n
√

2πn.

By the generalized Cavalier principle, or a simple bit of calculus, we see

SAn(δ)
V oln(δ)

=
n

δ
≈

√
π e

2 n
√

πn

√
n

n
√

x
.

By Example 4.4 we saw that limx→0
H(x)
n/ n√x

= 1. Now, diam2 K =
√

n, so H(x) is decreased

by a factor of
√

n from the ‖ · ‖∞ case in the previous example. Then

lim
x→0+

cylinder F

my bound
≈

√
π e

2 n
√

π n
≈ 2 .

While this doesn’t answer the conjecture it shows that at least for small sets the conjecture

is within a factor of about 2 of optimal, and even closer when the dimension n is small.
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4.2 Edge-Isoperimetry

The connection between Theorem 4.2 and edge-isoperimetry can be seen clearly by an

example. This is done by associating vertices of graphs with simplexes, such that two

vertices are adjacent exactly when their associated simplexes share a face. The technique is

similar to that developed in [DFK91, KK91] to bound the cutset of a graph, our contribution

is in extending these inequalities to edge-isoperimetry.

Our toy example throughout this chapter will be a random walk on a grid. A more

practical example will be given at the end of the chapter.

Example 4.6. Let G = (E, V ) be the grid [k]n, the n-dimensional cube of side length k,

and write the vertices V of G in Cartesian product form so that

V = {v = (v1, v2, . . . , vn) : vi ∈ [1, . . . , k]}

To each vertex v ∈ G associate the polytope

P (v) = {x ∈ Rn : vi − 1 ≤ xi ≤ vi for all i ∈ [1, . . . n]} .

and denote the image of G by Ω =
⋃

v∈G P (v) = [0, k]n ⊂ Rn.

S P(S)

Figure 4.2: Mapping a graph into a convex body

Properties such as adjacency and cut size in G carry over well to Ω. Cuts S ⊆ V with

|S|/|V | ≤ x map to cuts P (S) of Ω with

volnP (S)/volnΩ = |S|/|V | ≤ x .

Two vertices v1, v2 ∈ G are adjacent if and only if P (v1) and P (v2) intersect at a face, and

|Cut(S)| = voln−1 (∂P (S) ∩ int(Ω)) (4.15)
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The right hand side of (4.15) is just µ′(P (S)) when F = 1 and the norm is ‖ · ‖∞ (observe

‖u‖∗ = 1 for F = 1), while µ(P (S)) = volnP (S). This suggests the use of Theorem 4.2 to

bound |Cut(S)|.
µ(P (S))
µ′(P (S))

=
volnP (S)

voln−1 (∂P (S) ∩ int(Ω))
≤ diam∞Ω

2 + log(1/2x)
. (4.16)

Algebraic manipulation of (4.15) and (4.16), along with diamΩ = k and volnP (S) = |S|
give

|Cut(S)|
|S| ≥ 1

k
(2 + log(1/2x)) when |S| ≤ x|G| . (4.17)

This is correct when x = 1/2, and is always within a factor e of the optimal (in terms of

log only) inequality [BL91b]

|Cut(S)|
|S| ≥ 2

k
log2(1/x) when |S| ≤ x|G| .

The properties important for use of the isoperimetric inequality in the previous example

are captured by the following definition.

Definition 4.1. We say an undirected weighted graph G = (E, V ) with vertex weights

π(v) and edge weights Q(x, y) is a geometric graph if there is a mapping

φ : V → Simplexes in Rn

such that K = φ(V ) is a convex body in Rn, the simplexes are disjoint except possibly along

the faces, vertex weights are preserved (i.e. ∀v ∈ V : µn(φ(v)) ∝ π(v)), and edge weights

are preserved (i.e. ∀v1, v2 ∈ V : µn−1(φ(v1) ∩ φ(v2)) ∝ Q(v1, v2)).

With this we can generalize the result of Example 4.6.

Theorem 4.8. Let G = (E, V ) be a geometric (weighted) graph with vertex constant of

proportionality A, edge constant B, diameter diam K in norm ‖ · ‖, and u(x) the Euclidean

unit normal to ∂φ(v) at x satisfying ‖u‖∗ ≤ umax for all x along ∂φ(v). Then the graph

has cutset expansion
Q(S, Sc)

π(S)
≥ γ when π(S) ≤ 1

2
π(V )

and edge-isoperimetric inequality

Q(S, Sc)
π(S)

≥ 2 + log(1/2x)
2

γ when π(S) ≤ xπ(V ) ≤ 1
2

π(V ) ,
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where

γ =
A

B

2
umax diamK

.

Proof. By definition of a geometric graph, there is a model of the graph as a convex body.

Suppose S ⊂ V , then by the construction µn(φ(S)) = Aπ(S) and µn−1(φ(S) ∩ φ(Sc)) =

B Q(S, Sc). Corollary 4.1 implies that

Q(S, Sc)
π(S)

=
A

B

µn−1(∂φ(S) \ ∂K)
µn(φ(S))

≥ A

B

2
umax diamK

The second bound can be shown similarly, but with Corollary 4.2 instead.

In the grid Example 4.6 the norm is ‖ · ‖∞, A = B = umax = 1 and diamK = k so

Theorem 4.8 gives a short proof of the edge isoperimetry in this case.

4.3 Rapid Mixing

We are now in a position to apply Average Conductance and Houdré’s theorem to obtain

bounds on the mixing time and log-Sobolev constants of Markov chains with geometric

underlying graphs. The family of Markov chains we will consider is :

Definition 4.2. A geometric Markov chain M is one with a geometric underlying graph

G = (E, V ), with vertex weights π(v) given by the stationary distribution of M and edge

weights Q(x, y) given by the flow π(x) P(x, y) along edges of M.

Example 4.7. Consider the grid [k]n of Example 4.6. Define a random walk on this graph

with equal transition probability 1/(4n) to any neighbor. This is a geometric Markov chain

with p = 1/(4n), so by (2.1) and (4.17), Φ(x) ≥ (2 + log(1/2x))/(4nk). Applying the

Average Conductance Theorem with Φ = Φ(1/2) we get

τ ≤ K

(
14

∫ 1/2

π0

dx

xΦ(x)2
+

4
Φ

)
≤ 260K k2n2 = O(k2n2) .

This is not far from the correct bound of O(k2n log n).

We can extend this technique to general geometric Markov chains in a similar fashion as

the extension to edge isoperimetry.

51



Theorem 4.9. Let M be a geometric Markov chain with vertex constant of proportionality

A, edge constant B, diameter diamK in norm ‖ · ‖, and u(x) the Euclidean unit normal to

∂φ(v) at x satisfying ‖u‖∗ ≤ umax for all x along ∂φ(v). Then

Φ(x) ≥ 2 + log(1/2x)
2

Φg τ ≤ 38K/Φ2
g

and

(i) ρ ≥ Φ2
g/36 (ii) ρ ≥

√
λ Φg/24 .

where

Φg =
A

B

2
umax diamK

is a lower bound on the conductance (i.e. Φ ≥ Φg).

Proof. Let γ be as in Theorem 4.8, then Φg = γ and the bound on Φ(x) follows from

Theorem 4.8. The bound on τ follows by substituting this expression and Φ ≥ Φg into the

Average Conductance Theorem. The second bound on ρ follows by using the lower bound

on Φ(x) to bound `+
1 and substituting this into Theorem 2.9. The first bound on ρ comes

from substituting λ ≥ Φ2/2 into the second bound (or with a weaker constant if Theorem

2.9 (i) is used).

Observe that Theorem 4.9 can give better mixing time bounds than that given by the

spectral gap. One example of this is Example 4.7 where the mixing time was found to

be τ = O(k2 n2), on the other hand the spectral gap is λ = Ω(1/k2 n) which would show

τ = O(k2 n2 log k), which is a weaker result.

Example 4.8. One Markov chain where geometry has been used to find upper bounds on

the mixing time is a random walk on Linear Extensions [DFK91, KK91, Jer98]. Given a

partially ordered set (V,≺), V = [1..n] the set of linear extensions of ≺ is defined by

Ω = {g ∈ Sym V : g(i) ≺ g(j) ⇒ i ≤ j, for all i, j ∈ V }

i.e. the set of permutations on V that preserve the partial ordering, or the set of total

orderings which are consistent with the partial ordering.

Sample from Ω u.a.r. as follows. If Xt is the current state then choose a transposition

(i, i + 1) u.a.r., if Xt ◦ (i, i + 1) ∈ Ω then with probability 1/2 set Xt+1 = Xt ◦ (i, i + 1),
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otherwise Xt+1 = Xt. This Markov chain is symmetric so it has the uniform stationary

distribution, also all edges (i, j) have identical flow qe = 1/(2 (n− 1)|Ω|).
This is a geometric Markov chain as follows. Suppose g ∈ Ω is a linear extension. Then

let

φ(g) = {x ∈ Rn : 0 ≤ xg(1) ≤ xg(2) ≤ · · · ≤ xg(n) ≤ 1} .

To show convexity of K = φ(Ω) let X0 = φ(g0) and X1 = φ(g1) be simplexes in K and

consider any path (1 − t)a + tb from X0 to X1. Suppose the path passes between two

adjacent simplexes S0 = φ(g2) and S1 = φ(g3), say xi ≤ xj in S0 but xi ≥ xj in S1. Then

xi − xj can only increase with t (by linearity), in particular X1 must have xi ≥ xj and

hence the total order defining S1 was a linear extension, i.e. S1 ⊆ K.

The simplexes all have equal volume and intersections have equal surface area

V oln(φ(g)) =
1
n!

and V oln−1(φ(g1) ∩ φ(g2)) = 0 or

√
2

(n− 1)!
.

The first expression is because each simplex is a 1/n! fraction of the cube [0, 1]n of volume 1.

The second expression is because the intersection of two simplexes has an (n−1)-dimensional

projection, e.g. x1 ≤ x2 ≤ · · · ≤ xi ≤ xi+2 ≤ · · · ≤ xn of volume 1/(n− 1)!, and the added

constraint xi = xi+1 increases this by a factor
√

2.

The stationary and transition probabilities are π(g) = 1/|Ω| and P(x, y) = 1/2(n− 1), so

that A = |Ω|/n! and B = |Ω| 2√2/(n− 2)!. Also, the `∞ diameter is diamK ≤ 1, and the

`1 norms along the boundaries are ‖u‖1 =
√

2. Then Theorem 4.9 gives

Φg =
A

B

2
umax diamK

=
1

2
√

2n(n− 1)
2√
2

=
1

2n(n− 1)

Φ(x) ≥ 2 + log(1/2x)
2

Φg =
2 + log(1/2x)

4n(n− 1)

τ ≤ 152K n2(n− 1)2 = O(n4)

ρ ≥ 1/(144n2(n− 1)2) = Ω(1/n4)

This gives a large improvement over the previous conductance bound of τ = O(n5 log n)

and even beats the path-coupling and comparison bound [BD97] of τ = O(n4 log2 n). It

is also quite close to the correct bound of Θ(n3 log n), which Wilson [Wil97] showed by an

elegant application of path-coupling.
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Chapter 5

Inductive Markov Chains and

Balanced Matroids

A second means for bounding the conductance or cutset expansion is by induction. The best

example of this in the theory of rapidly mixing Markov chains, is the inductive proof used

by Mihail et. al. [MS92, FM92] to bound the cutset expansion of a class of matroids known

as balanced matroids. In this section we will extend their results to give an inductive bound

on the conductance function Φ(x) and an improved bound on the mixing time of a Markov

chain on balanced matroids. These are results from collaborative work with Jung-Bae Son

and previously appeared in [MS01].

5.1 Preliminaries

A matroid is an important generalization of objects in many areas of mathematics. There

are equivalent definitions of matroids in all these areas, in this section we will follow a form

motivated by bases of vector spaces. Much of this description follows an account given in

[Jer00].

A matroid M is given by a ground set E(M) and a collection of bases B(M) ⊆ 2E(M).

The bases B(M) must satisfy two conditions :

• (Cardinality) All bases have the same size, namely the rank of M.
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• (Edges) ∀X, Y ∈ B(M), ∀e ∈ X, ∃f ∈ Y : X ∪ {f} \ {e} ∈ B(M).

The bases-exchange graph G(M) of M has vertex set B(M), and vertices (bases) are

connected by an edge if they differ in exactly one element. The second (edge) condition in

the definition of a matroid guarantees that this is a connected graph.

Two operations that reduce the size of matroids are contraction and deletion. Given an

element of the ground set e ∈ E(M), then

• (Contraction) M\ e has E(M\ e) = E(M) \ {e} and B(M\ e) = {X ⊆ E(M\ e) |
X ∈ B(M)}.

• (Deletion)M/e has E(M/e) = E(M)\{e} and B(M/e) = {X ⊆ E(M/e) | X∪{e} ∈
B(M)}.

Any matroid obtained from a series of contractions and deletions is a minor of M.

If X is a basis uniformly chosen at random from B(M) and e is an element of E(M),

let by abuse of notation e denote the event e ∈ X. A matroid M is negatively correlated if

for all pairs of distinct elements e, f ∈ E(M) the inequality Pr[e|f ] ≤ Pr[e] (eq. Pr[ef ] ≤
Pr[e]Pr[f ]) holds. A matroid M is said to be balanced if itself and all its minors are

negatively correlated.

We define a Markov chain on the bases exchange graph as follows. Suppose the current

state is X ∈ B(M), then choose a basis element b ∈ X and an edge e ∈ E(M) uniformly at

random. If X ′ = (X ∪ e \ b) ∈ B(M) then move to X ′ with probability 1/2, otherwise stay

at X.

This Markov chain has been shown to mix rapidly by several authors, the strongest

bounds on the mixing time were shown in [FM92]. We will apply Average Conductance

and log-Sobolev techniques to this problem to obtain improved mixing time bounds.

Remark : A few examples of matroids include :

1. Graphic matroids : Ground set is edges of graph, bases are spanning trees, so

m = |E(G)| and n = |V | − 1.

2. Vectorial matroids : Ground set is a vector space, bases are bases of the vector

space, so m = |V | and n = dimV .
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5.2 Edge-Isoperimetry

We will first show an edge-isoperimetric inequality for cuts in balanced matroids, just as

was done with the geometric problems studied in the previous chapter. The inductive proof

is motivated by results in [MS92, FM92].

Theorem 5.1 (Matroid Edge-Isoperimetry). Let G(M) be the bases-exchange graph

of any balanced matroid M with bases B. For all subsets S ⊂ B with 0 < |S| ≤ |B| we have

|Cut(S)|
|S| ≥ log2

( |B|
|S|

)
.

Proof. The proof will proceed by induction on the size of the ground set of M.

For the base cases, |E(M)| = 1, 2, the hypothesis is trivially true.

For the induction step, assume |E(M)| > 2. Let S ⊆ B define a cut in the bases-exchange

graph of M and let X = |S|
|B| . Choose any e ∈ E(M), and let Be = M/e and Be be the

deletion and contraction of e respectively. Let Se = S ∩ Be and Se = S ∩ Be, and define

x, y ∈ [0, 1] by |Se| = x |Be| and |Se| = y|Be|. Also, define α ∈ [0, 1] so that |Be| = α|B| and

|Be| = (1− α)|B|. Observe that X = xα + y (1− α).

The edges forming the cut are of three kinds:

1. those whose endpoints are both within Be

2. those whose endpoints are both within Be

3. those which span Be and Be

Since, as mentioned above, Be and Be are isomorphic to B(M/e) and B(M\e), they give

rise to minors ofM and the induction hypothesis is applicable. By the induction hypothesis,

the numbers of edges of the first two kinds are at least x log2(1/x) |Be| and y log2(1/y) |Be|
respectively.

To lower bound the number of edges of type (3), assume first that x ≥ y. By [FM92](lemma

3.1), there are at least x|Be| bases in Be adjacent to some bases in Se; of these, at least

(x− y)|Be| must lie outside |Se|. Thus there are at least (x− y)|Be| edges of type (3).

This argument can equally well be applied in the opposite direction, starting at the set

Be \ Se, yielding a second lower bound of (x− y)|Be|.
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Thus the number of edges of kind (3) is at least (x − y)max {|Be|, |Be|}. Since the case

x < y is entirely symmetric, we obtain, summing the contributions from the three types of

edges

|Cut(S)| ≥ x log2

(
1
x

)
|Be|+ y log2

(
1
y

)
|Be|+ |x− y|max {|Be|, |Be|}

= |B|
(

α x log2

(
1
x

)
+ (1− α) y log2

(
1
y

)
+ |x− y|max {α, 1− α}

)

To complete the proof, we must show that |Cut(S)| is always at least X log2(1/X) |B|,
where X defined above is X = α x + (1− α) y. It suffices to show

f(x, y) = α x log2

(
1
x

)
+ (1− α) y log2

(
1
y

)
+ |x− y|max {α, 1− α} −X log2(1/X)

≥ 0

Extend f to the boundary in the obvious way by letting 0 log2(1/0) = 0.

Fix α and y, assume x 6= y. Then

fx =
α

ln 2

(
ln

1
x
− ln

1
X

)
±max {α, 1− α}

and

fxx =
α

ln 2

(
α

X
− 1

x

)

=
α

ln 2
−y(1− α)

x X

≤ 0 .

Therefore, any extreme points are maxima with respect to x, so a global minimum must

occur on the boundary (x = 0, x = 1, or x = y). A similar process shows that fyy ≤ 0 so

y = 0, y = 1 or y = x. This reduces the problem to corners or diagonals. But f(x, x) = 0,

f(1, 0) = max{α, 1 − α} − α log(1/α) > 0, and likewise for f(0, 1), so the result again

holds.

5.3 Rapid Mixing

We now have all that is needed to show rapid mixing.
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Corollary 5.1. The mixing time of the bases-exchange walk on any balanced matroid of

rank n on a ground set of size m is at most τ ≤ C m2n2 for some constant C independent

of the matroid.

Proof. By Theorem 5.1 |Cut(S)|/|S| ≥ log2(1/x) . The Markov chain has p = 1/(2mn),

so by (2.1) in the Preliminaries we have

Φ(x) ≥ 1
2mn

inf
π0≤π(S)≤x

|Cut(S)|
|S| ≥ log2(1/x)

2mn
(5.1)

Substituting (5.1) into the Average Conductance theorem gives the result.

This Theorem is stronger than [FM92] Theorem 5.1 (τ = O(n3m log m)) when n log m =

Ω(m), eg. when m = O(n log n). In the case of graphic matroids this would be the case

when the average degree of vertices is O(log n). However, we can get a stronger result with

log-Sobolev constants.

Corollary 5.2. The log-Sobolev constant and mixing time of the bases-exchange walk on

any balanced matroid of rank n on a ground set of size m are bounded by

ρ ≥ 1
24 m3/2n2

τ ≤ 24 m3/2n2(log n + log log m)

Proof. By (5.1) we see `+
1 ≥ 1/[(2 log 2)m n]. It was shown in [FM92] that λ ≥ 1/mn2.

Thus

ρ ≥
√

λ `+
1 /12 ≥ 1/(24m3/2 n2)

and

τ ≤ 12m3/2n2(2 + log log(mn)) ≤ 24m3/2n2(log n + log log m)

This is stronger than [FM92] Theorem 5.1 (τ = O(n3m log m)) when n log m = Ω(
√

m log n),

eg. when m = O(n2). According to a result by Heller [Hel57] this is true for simple regular

matroids (i.e. matroids without loops and parallel elements): m ≤ n(n+1), which is smaller

than 2n2 for n ≥ 1, and implies that m = O(n2) if the size of all parallel classes is bounded

by a constant. In particular, this includes all graphic matroids with few multiple edges.
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n pairs of edges

Figure 5.1: A graphic matroid for the binary n-cube

Example 5.1. To see how strong or weak these results are we consider the graphic matroid

of Figure 5.1.

This is just the binary n-cube; in the i-th pair of edges the lower edge can be labeled 0

and the upper edge labeled 1 and we let ei ∈ {0, 1} be the edge that is chosen, then trees

are exactly n-tuples (e1, e2, . . . , en). The Markov chain on this graphic matroid chooses

a coordinate i uniformly and an edge to substitute for it uniformly. With probability 1/n

the new edge is in the i-th coordinate and we accept the change, otherwise we reject it.

Therefore, the spectral gap λ, log-Sobolev constant ρ and mixing time τ are all a factor of

n from that of the binary n-cube; this is intuitively clear but can also be proven by using

comparison methods of [DSC93].

λ = Θ(1/n2) = Θ(1/mn)

ρ = Θ(1/n2) = Θ(1/mn)

τ = Θ(n2 log n) = Θ(mn log n)

The results in [FM92] showed that λ = Ω(1/n3) and τ = O(n4 log n), Corollary 5.1 shows

τ = O(n4), and Corollary 5.2 gives bounds ρ = Ω(1/n3.5) and τ = O(n3.5 log n).

We note that Jerrum and Son [JS02] have recently shown for balanced matroids that the

spectral gap λ ≥ 1/(mn) and log-Sobolev constant ρ ≥ 1/(2m n), so τ = O(mn (log n +

log log m)). On the binary n-cube example shown above, all three bounds are exact up

to constant factors. It seems likely that the optimal bound on mixing time are τ =

O(mn log n).
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Chapter 6

Canonical Paths and other BCF

based Isoperimetric Bounds

This chapter explores applications of the blocking conductance function (BCF) φ(x), the

improvement on Average Conductance which was discussed and proven in Chapter 3.2.

In the previous two chapters we considered methods of lower bounding the conductance

function, in this chapter we will similarly provide methods for lower bounding the blocking

conductance φ(x).

As a first application we will show how canonical paths can be used to give a blocking

conductance function, and thus provide an upper bound on the mixing time. A corollary is

closely related to the canonical paths result of Sinclair [Sin92].

Next, for the main result in this chapter we define new conductance-like isoperimetric

quantities h+
2 (x) and h−2 (x). We show that h+

2 (x) can be used to obtain very good upper

and lower bounds on the optimal φ(x), moreover in some cases the quantity h−2 (x) can be

used to further improve the lower bounds.

This method was originally motivated by a theorem of Talagrand [Tal93] where he studied

the logarithmic Sobolev constant for the binary n-cube {0, 1}n, and proved a lower bound

for h+
2 (x). Applying Talagrand’s bound we obtain a lower bound on φ(x) and a near optimal

mixing time bound for the binary hypercube. As a further application, we show how h+
2 (x)

improves on previous conductance based bounds for the mixing time of product Markov
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chains.

Although the quantity h+
2 (x) suffices to prove near optimal results, the methods given

here seem insufficient for obtaining optimal results. We conjecture a stronger mixing time

theorem in terms of h+
2 (x). If it holds then it would give optimal mixing time bounds on

the binary hypercube, product Markov chains, and most likely also for the geometric and

inductive Markov chains considered in the previous two chapters.

It is still possible that the correct lower bound on φ(x) will give optimal mixing time

bounds, however we are unable to show this. The question remains whether the methods

used to prove Theorem 3.2 are powerful enough to prove optimal mixing time bounds on

problems such as the hypercube. In our second approach to the hypercube we look at the

proof of Theorem 3.2 and observe that it only uses subsets of a certain form. We show

a blocking conductance function for these subsets, and with Theorem 3.2 this gives the

correct mixing time τ = O(n log n).

6.1 Canonical Paths

As a first application we show that blocking conductance can be used to give a theorem for

canonical paths (see Chapter 2, before Theorem 2.6, for an explanation of canonical paths).

We also give a corollary which is closely related to Theorem 2.6.

Theorem 6.1. Suppose M is a Markov chain with underlying graph G = (V, E). Define

ρe = max
e∈E

1
Q(e)

∑
γxy3e

π(x) π(y) and ρv = max
v∈V

1
π(v)

∑
γxy3v

π(x) π(y)

to be the maximal edge and vertex congestion.

Then

φ(x) =
1

4 ρv ρe

is a blocking conductance function, and so

τ = O
(
ρv ρe log π−1

0

)
.

Proof. In [Sin92] the quantity ρe was used to show that Q(A,Ac) is large. We will use a

similar argument but with the quantity ρv as well.
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Let A ⊂ V be such that π(A) ≤ 1/2. For each path γxy, route flow of π(x) π(y) along

the path from x to y, for a total of π(A) π(Ac) from A to Ac. Then ρv is the highest flow

through a vertex as a multiple of its capacity π(v).

Let ∂A = {x ∈ A : P(x,Ac) 6= 0} be the boundary of A with Ac, then

ρv ≥ π(A) π(Ac)
π(∂A)

follows because the right side is the average flow per unit of vertex capacity in the boundary,

while ρv is the worst case.

It follows that a blocking set B of size

λ =
1
2

π(A) π(Ac)
ρv

≤ π(A)
2

will block at most half of the flow A → Ac, so there is at least 1
2 π(A) π(Ac) flow along the

edges from A \B → Ac.

Likewise

ρe ≥
1
2 π(A) π(Ac)
Q(A \B,Ac)

,

as the right side is a lower bound on the average flow per unit of edge capacity from A \B

to Ac, while ρe is the worst case among all vertices.

Then

λQ(A \B, Ac) ≥ [π(A) π(Ac)]2

4 ρv ρe

and the result follows from Corollary 3.1.

The following corollary is similar to the main theorem in [Sin92].

Corollary 6.1. Let ρe and ρv be as in Theorem 6.1, and also let

ρave
v =

∑

v∈G

π(v)


 1

π(v)

∑
γxy3v

π(x)π(y)




be the average vertex congestion over the entire space G. Then

τ = O

(
ρv

ρave
v

ρe `ave log π−1
0

)

where `ave =
∑

x,y∈V π(x) π(y) |γxy| is the average length of the canonical paths.
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Proof. Observe that

ρave
v =

∑
γxy

∑
v∈γxy

π(x) π(y)

=
∑
γxy

π(x) π(y) (|γxy|+ 1)

= `ave + 1

Multiplying the φ(x) in Theorem 6.1 by 1 ≥ ρave
v /2`ave gives

φ(x) ≥ 1
8

ρave
v

ρv

1
ρe `ave

.

The result then follows.

Theorem 6.1 and Corollary 6.1 are essentially equivalent, just written in different forms.

Therefore, when comparing the corollary to [Sin92] we will use the simpler Theorem 6.1.

Example 6.1. Consider the balanced matroid problem looked at in Chapter 5 and [FM92].

Results in [FM92] are equivalent to showing ρe ≤ n m
2 and ρv ≤ 2n, so by Theorem 6.1 it

follows that τ = O
(
n2 m log π−1

0

)
. This is the same result obtained in [FM92] by using a

modified form of [Sin92].

The corollary is not directly comparable to Theorem 2.6. Moreover, it appears that

the corollary cannot be weakened further, so that the ρv

ρave
v

term may be necessary. Miclo

[Mic99] has shown that for any graph G there is a transition kernel K and distribution µ

with Φ/λ > `(G)/2, where `(G) is the length of the longest injective path in G and λ is the

spectral gap of the Markov chain given by (G,K). It is easy to construct Markov chains

where `ave ¿ `max, so this seems to suggest that Sinclair’s theorem cannot be weakened to

utilize `ave instead of `max, and that Corollary 6.1 must likewise include the ρv

ρave
v

to correct

for the use of `ave.

6.2 A new isoperimetric quantity and near optimal bounds

on the binary hypercube

The methods of this section are motivated by a desire to apply the following isoperimetric

inequality of [Tal93, BG96] to show rapid mixing.
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Theorem 6.2 (Talagrand). For each subset A of Ω = {0, 1}n we have

∑
α∈A

√
P (α, Ac) π(α)

π(A)π(Ac)
≥ 1

4

√
log 1

π(A) π(Ac)

n
.

This suggests a conductance type function :

Conductance : Φ̃ = min0<π(A)≤1/2

P
α∈A π(α)P(α,Ac)

π(A) π(Ac)

Conductance function : Φ̃(x) = min0<π(A)≤x

P
α∈A π(α)P(α,Ac)

π(A) π(Ac)

h2 : h+
2 (x) = min0<π(A)≤x

P
α∈A π(α)

√
P(α,Ac)

π(A) π(Ac)

Some history of these quantities serves to further motivate h+
2 (x). Houdré and Tetali

[HT96] defined a quantity h+
2 , which is just h+

2 (1/2), as part of a larger family

h+
p = min

0<π(A)≤1/2

∑
α∈A π(α) p

√
P(α, Ac)

π(A)π(Ac)
.

(their quantity was slightly different, actually a factor of 1 to 2 smaller than our h+
p ). The

quantity h+
1 is the Cheeger constant h and roughly the same as Φ, and relates to edge

isoperimetry, while h+∞ is related to vertex isoperimetry [BHT00]. Both h+
1 and h+∞ can

be used to show rapid mixing by bounding the spectral gap λ [BHT00]. Talagrand [Tal93]

observed that a simple application of Cauchy-Shwartz gives the upper bound

h+
2 (x) ≤

√
π(∂intA) Q(A,Ac)

x (1− x)
,

which is easily seen to also be an upper bound on
√

φ(x).

A similar family h−p and h−p (x) can also be defined by replacing P(α, Ac) for α ∈ A with

P(α, A) for α ∈ Ac; these relate to exterior vertices and all the above comments hold with

h−p in place of h+
p .

We could also define a Φ+(x) and Φ−(x), just as was done in the definitions of h±2 (x),

but by time reversibility we would have Φ+(x) = Φ−(x). On the other hand, h+
2 (x) and

h−2 (x) can be quite different [Tal93]. Therefore, we may also consider a symmetric version

h2(x) = min
0<π(A)≤x

∑
α∈A π(α)

√
P(α, Ac) +

∑
α∈Ac π(α)

√
P(α, A)

π(A) π(Ac)
.

This is similar to a quantity h2 in [HT96].

Also, let h+
2 (A) be defined as would be expected, by

h+
p (A) =

∑
α∈A π(α) p

√
P(α, Ac)

π(A) π(Ac)
,
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and likewise for h−p (A) and hp(A).

Our main result in this section will be the following theorem.

Theorem 6.3. Given a Markov chain M with state space G, let Pmin = minx,y∈G{P(x, y) :

P(x, y) > 0}. Then for any set A ⊂ G with π(A) ≤ 1
2 it follows that

2h+
2 (A)2 ≥ Ψint(A) ≥

(
h+

2 (A)
2 + log(1/

√
Pmin)

)2

min{2h−2 (A)2, 4Φ(A)} ≥ Ψext(A) ≥ 1
4

√
Pmin h−2 (A) min{2, h−2 (A)} .

Corollary 6.2. The mixing time of the lazy random walk on the cube {0, 1}n is

τ = O
(
n log3 n

)
.

Proof of Corollary 6.2. Use the previous theorem with h+
2 (x) and φ̂(x) = minπ(A)=x Ψint(A).

Observe that Talagrand’s bound on h+
2 (x)2 varies by at most a factor of 2 when y ∈ [x/2, x],

so it suffices to let φ(x) = 1
4 φ̂(x).

In the proofs of all the bounds we let v1, v2, . . . , vk be the elements of A, assume that they

are ordered in decreasing order of P(vi, Ac) = Q(vi, Ac)/π(vi), and let Bi = {v1, v2, . . . , vi}
(B0 = ∅ is the empty-set).

The upper bounds in the theorem are the easier to prove of the two directions.

Proof of upper bounds. Looking back at the definition of Ψint(A), observe that upper bound-

ing Ψint(A) requires only an upper bound on

[π(Bi) + π(vi+1)]Q(A \Bi, Ac) = π(Bi+1) Q(A \Bi+1, Ac) + π(Bi+1) Q(vi+1, Ac) (6.1)

for all i. We will bound the two terms on the right separately.

Let B = B` be the “maximal blocking set” in the sense that

∀i, π(Bi) ≤ 1
2

: π(Bi) Q(A \Bi, Ac) ≤ π(B) Q(A \B, Ac) .

In particular, if y = v`+1 then

[π(B) + π(v`+1)] [Q(A \B, Ac)− Q(v`+1, Ac)] ≤ π(B) Q(A \B, Ac) .
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Simplifying the inequality gives

P(v`+1, Ac) =
Q(v`+1, A

c)
π(v`+1)

≥ Q(A \B, Ac)
π(B) + π(v`+1)

.

Because the vi ∈ B are in decreasing order then P(vi, Ac) ≥ P(v`+1, Ac), and therefore

h+
2 (A) π(A)π(Ac) =

∑

α∈A

π(α)
√

P(α, Ac)

≥
∑

α∈B∪y

π(α)
√

P(v`+1, Ac)

≥
∑

α∈B∪y

π(α)

√
Q(A \B, Ac)

π(B) + π(v`+1)

=
√

[π(B) + π(v`+1)]Q(A \B, Ac) .

This gives a bound on the first term on the right of (6.1).

For the second term, observe that

h+
2 (A)π(A)π(Ac) ≥

∑

j≤i+1

π(vj)
√

P(vi+1, Ac)

= π(Bi+1)
√

P(vi+1, Ac)

≥
√

π(Bi+1) Q(vi+1, Ac)

It follows that

Ψint(A) ≤ 2h+
2 (A)2 .

The same proof will hold with Ψext(A) and h−2 (A). The 4Φ(A) bound comes from π(A) ≥
π(B) and Q(A,Ac) ≥ Q(A,Ac \ B), so that Ψext(A) ≤ π(A) Q(A,Ac)/(π(A)π(Ac))2 ≤
4Φ(A).

The proof of the upper bound treated Ψint(A) as a bound on π(B) Q(A \ B, Ac), with

the v`+1 term merely complicating the proof. In contrast to this, for both lower bounds the

v`+1 term will prove essential.

A first approach to a lower bound is to bound the external (or internal) vertex boundary,

and then bound edge isoperimetry when a constant fraction of these vertices are blocked.

This was the approach used with canonical paths in the previous section, and in proving

the second lower bound.
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Proof of lower bound on Ψext(A). Define

Q2(C, D) =
∑

α∈C

π(α)
√

P(α, D) .

Suppose that B′ ⊂ Ac is such that Q2(B′, A) > 1
2 Q2(Ac, A). Because P(Ac, ·) ≤ 1 then

1
2

Q2(Ac, A) < Q2(B′, A) ≤ π(B′) .

It follows that if λ = min{1
2 Q2(A,Ac), π(A)} then Q2(Ac \B, A) ≥ 1

2 Q2(Ac, A). Therefore,

λQ(Ac \B,A) ≥ min
{

1
2

Q2(Ac, A), π(A)
}

Q2(Ac \B,A)
√

Pmin

≥ 1
2

Q2(Ac, A) min
{

1
2

Q2(Ac, A), π(A)
} √

Pmin .

Essentially the same proof applies to the Ψ′
ext(A) discussed in the remarks following

Theorem 3.2. With Ψ′
ext(A) we can allow λ = 1

2 Q2(Ac, A).

This is already a major improvement over previous isoperimetric methods, for example

for the lazy Markov chain on the binary n-cube this gives mixing in time τ = O(n3/2 log n),

while τ = O(n3) by conductance or τ = O(n2) by average conductance. However, by more

carefully bounding the blocking conductance we are able to improve on this.

In order to prove the lower bound on Ψint(A) we will treat the set of points A =

{v1, v2, . . . , vk} as a continuous set [0, x] where x = π(A), and treat P(vi, Ac) as a con-

tinuous non-increasing function on A = [0, x] (recall that the vi are ordered by decreasing

P(·, Ac)). The probability measure π and the ergodic flow Q(·, Ac) can then be naturally

extended to π([a, b]) =
∫ b
a 1 dt = b−a and Q([a, b], Ac) =

∫ b
a P(t, Ac) dt. The “blocking sets”

will be B = [0, b] ⊂ A, and we also define

Ψ0(A) = sup
λ≤x

inf
B=[0,b]⊆[0,λ]

λQ(A \B, Ac) = sup
λ≤x

λQ([λ, x], Ac) .

With a little thought it should be clear that Ψint(A) ≥ Ψ0(A) ≥ 1
4 Ψint(A), so in order to

lower bound Ψint(A) it will suffice to lower bound Ψ0(A). In the following proof we will

always work with intervals B = [0, b] and A \B = [b, x].

Proof of lower bound on Ψint(A). Define B0 = [0, λ] to be the B where the optimal value

Ψ0(A) occurs. Then for any other B = [0, b] it follows that

π([0, b])Q([b, x], Ac) ≤ π(B0) Q(A \B0, Ac) = Ψ0(A) ,
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and therefore,

Q([b, x], Ac) ≤ Ψ0(A)
π(B)

. (6.2)

If B = [0,
√

Ψ0(A)/Pmin] then this shows that Q([
√

Ψ0(A)/Pmin, x], Ac) ≤
√

Ψ0(A) Pmin.

When P(t, Ac) 6= 0 then P(t, Ac) ≥ Pmin (by definition of Pmin), so this flow can be

distributed over a set of size at most
√

Ψ0(A) Pmin/Pmin. It follows that P(t, Ac) = 0 if

t > 2
√

Ψ0(A)/Pmin. With this in mind, then (6.2) can be rewritten as an integral

∫ x

b
P(t, Ac) dt ≤

∫ x

b
Pc(t) dt

where

Pc(t) =





1 if t ≤
√

Ψ0(A)

Ψ0(A)/t2 if
√

Ψ0(A) < t <
√

Ψ0(A)/Pmin

Pmin if
√

Ψ0(A)/Pmin ≤ t ≤ 2
√

Ψ0(A)/Pmin

0 if t > 2
√

Ψ0(A)/Pmin

By Lemma 6.1 (see below) it follows that

∫ x

0

√
P(t, Ac) dt ≤

∫ x

0

√
Pc(t) dt .

Rewriting the left side and integrating the right side shows that

h+
2 (A)π(A)π(Ac) =

∫ x

0

√
P(t, Ac) dt ≤

√
Ψ0(A)(2 + log(1/

√
Pmin)) .

Lemma 6.1. Suppose that f, g : R+ → R+, and that g is monotonically increasing. If

∀t ≥ 0 :
∫ t

0
f(y) dy ≤

∫ t

0
g(y) dy

then it follows that

∀t ≥ 0 :
∫ t

0

√
f(y) dy ≤

∫ t

0

√
g(y) dy .

Proof of Lemma. We prove the lemma when the set S = {y : f(y) > g(y)} can be de-

composed into a finite number of disjoint intervals Si, as this is sufficient for our proof of

Theorem 6.3.
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Assume that the Si are ordered so that if i < j then Si < Sj (i.e. if x ∈ Si and y ∈ Sj then

x < y). By the assumption in the theorem, if
∫
S1

(f(y)− g(y)) dy = M1 then there exists a

set T1 < S1 such that
∫
T1

(g(y)− f(y)) dy = M1. Likewise, if
∫
T2

(f(y)− g(y)) dy = M2 then

there exists a set T2 < S2 disjoint from T1∪S1 and such that
∫
T2

(g(y)−f(y)) dy = M2. This

can be repeated for all Si, generating Ti such that Ti < Si and all Si and Ti are disjoint.

Also, let xi be the left endpoints of the Si.

Then
∫ t

0

(√
g(y)−

√
f(y)

)
dy =

∫ t

0

g(y)− f(y)√
g(y) +

√
f(y)

dy

≥
∫ t

0

g(y)− f(y)
2

√
g(y)

dy

≥
∑

i

∫

Si

g(y)− f(y)
2

√
g(y)

dy +
∫

Ti

g(y)− f(y)
2

√
g(y)

dy

≥
∑

i

∫

Si

g(y)− f(y)
2

√
g(xi)

dy +
∫

Ti

g(y)− f(y)
2

√
g(xi)

dy

= 0 .

This completes the proof of Theorem 6.3.

6.3 Examples

Perhaps the best example of how Theorem 6.3 improves on previous geometric bounds on

mixing time is the lazy random walk on the binary hypercube {0, 1}n, where it was shown

in Corollary 6.2 that τ = O(n log3 n). In the following we give other applications.

Example 6.2. Consider the natural Markov chain on the complete graph Kn given by

choosing among neighboring vertices with probability 1
n−1 and holding with probability

1/2. The following quantities are not difficult to compute :

• τ = O(1),

• Ψint(x) = 1
8(1−x) , Ψext(x) = 1

2(1−x) ,

• h+
2 (x) = 1√

2(1−x)
, h−2 (x) = 1√

2x
, Φ(x) = 1−x

2 , Pmin = 1
2n ,
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where we let Ψint(x) = infπ(A)=x Ψint(A), and likewise for Ψext(x)

Then Theorem 6.3 for h+
2 (x) gives the bound 1 ≥ Ψint(x) ≥ 1

2(1−x)(2+log
√

2n−2)2
, and

mixing time τ = O(log3 n). However, the bound involving h−2 (x) gives 2(1−x) ≥ Ψext(x) ≥
1/4

√
x(n− 1) and mixing in time τ = O(

√
n).

Another natural Markov chain to consider is the weighted two point space, with weights p

and q = 1−p, and the natural lazy random walk on this graph with transition probabilities

from p to q of 1/2q and from q to p of 1/2p. Then, for p ¿ q we have

• τ = O(1) ,

• Ψint(x) = 1
2q , Ψext(x) = 1

2q ,

• h+
2 (x) = 1√

2q
, h−2 (x) = 1√

2p
, Φ(x) = q

2 , Pmin = p
2 .

Then Theorem 6.3 for h+
2 (x) gives the bound 1/q ≥ Ψint(x) ≥ 1/2 log2(1/p) and mixing

in time τ = O(log3(1/p)). However, the bound in terms of h−2 (x) gives 2q ≥ Ψext(x) ≥ 1/4,

and mixing in time τ = O(log(1/p)). The bound on τ in terms of h−2 (x) can be made

optimal (τ = O(1)) by observing that we can let φ(x) = ∞ when x > 2 p.

These examples show that either of the lower bound on Ψext(A) or Ψint(A) may be better

for bounding mixing time, depending on the problem : the h+
2 (x) lower bound for Kn and

the h−2 (x) bound for the two point space. In contrast, with the binary hypercube considered

in the previous section, as well as the complete graph and two point space just considered,

the upper bounds for Ψint(A) and Ψext(A) are all within constant factors of the correct

values.

Unfortunately, the constructions in the proof of the lower bounds show that the log terms

cannot be dropped in general.

Example 6.3. Consider a Markov chain M as before.

Houdré and Tetali [HT96] showed that for a product Markov chain Kn = K1×K2×· · ·×
Kn that

h+
p (Kn) ≥ 1

4
√

6n1/p
min

1≤i≤n
h+

1 (Ki) for 1 ≤ p ≤ 2 . (6.3)

Setting p = 2 this gives

h+
2 (Kn) ≥ 1

4
√

6
√

n
min

1≤i≤n
Φ(Ki) .
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Observe that h+
2 (x) ≥ h+

2 (Kn).

Then applying Theorem 6.3 shows

τ(Kn) = O

(
n

(
log n + log(1/ min

1≤i≤n
Pi, min)

)2 log(1/π0)
min1≤i≤n Φ(Ki)2

)
.

Previous geometric proofs for mixing time were only able to show

τ(Kn) = O

(
n2 log(1/π0)

min1≤i≤n Φ(Ki)2

)
,

and so working with h+
2 will typically improve bounds by a factor of n/ log2 n.

This is also nearly as strong as the bound using the spectral gap. Recall from Theorem

2.5 that λ(Ki) ≥ 1/Φ(Ki)2. Using the well known fact that λ(Kn) = min{λ(Ki)}/n gives

λ(Kn) ≥ 1/n min1≤i≤n Φ(Ki)2, and therefore a slightly better mixing time of

τ(Kn) = O

(
n

log(1/π0)
min1≤i≤n Φ(Ki)2

)
.

Example 6.4. Tensorizing h+
2 does not exploit the full power of blocking conductance,

because it does not consider the sizes of sets, as does h+
2 (x). Houdré [Hou01] introduced

the quantity g+
p which also considers the sizes of sets via a log factor,

g+
p (K)2 = inf

A⊂K
π(A)≤1/2

(
EπD+

p 1A

)2

π(A)π(Ac)
√

log(1/π(A)π(Ac))

where

D+
p f(x) =


∑

y∈K

P(x, y)[f(x)− f(y)]+p




1/p

is the discrete p-gradient at x, 1A is the indicator function of A and C+ = max{C, 0} is

the positive component of C.

Applying Theorem 6.3 to this shows

τ(K) = O

(
1

g+2
2

log2(1/Pmin) log log(1/π0)
)

, (6.4)

so that g+2
2 is nearly as strong as the log-Sobolev constant. This is a new result, although

Houdré [Hou01] has shown a relation between g+
1 and the log-Sobolev constant. It is not

yet known how to bound g+
2 for more than a few spaces, but it may turn out to be easier

than bounding the logarithmic Sobolev constant.
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We give here a lower bound on g+
2 for the random walk on the grid [k]n considered in

Chapter 4. This will lead to a mixing time bound close to the correct τ = Θ(k2 n log n).

Bobkov’s constant b+
p is defined to be the largest constant such that for all f : X → [0, 1],

Igauss(Ef) ≤ E
√

I2
gauss(f) + (D+

p f)2/b+2
p ,

where Igauss is the Gaussian Isoperimetric constant considered in Example 4.3. Recall that

Igauss(0) = Igauss(1) = 0. Moreover, since Igauss(x) ≥ x(1 − x)
√

log(1/x(1− x)) ([BG96])

this implies that when f = 1A is an indicator function then g+
p ≥ b+

p .

It is well known (see for example [Mur01]) that Bobkov’s constant b+
2 tensorizes as

b+
2 (Kn) =

1√
n

b+
2 (K) .

Lower bounding b+
2 (K) is difficult. A weaker result can be found by using b+

2 (K) ≥ b+
1 (K),

which follows trivially from the definitions. In her Ph.D. Dissertation Murali [Mur01] has

shown that the quantity

β+2
1 (K) = min

A⊂K
π(A)≤1/2

Φ2(K)
π(A) π(Ac)

satisfies b+
1 (K) ≥ β+

1 (K). We then have the following chain of inequalities

g+
2 (Kn) ≥ b+

2 (Kn) =
1√
n

b+
2 (K) ≥ 1√

n
b+
1 (K) ≥ 1√

n
β+

1 (K) ,

or in particular

h+
2 (x) ≥ 1√

n
β+

1 (K) log(1/x) .

It is easy to bound β+
1 (K). In particular, for the natural lazy random walk on the line

[k], it is clear that Φ(x) = Θ(1/kx), and so β+
1 (K) = Θ(1/k2). Applying (6.4) to this shows

τ([k]n) = O
(
k2 n log3 n

)
. (6.5)

Remark : In both the hypercube example and the direct product example, only the

log2(1/Pmin) term kept the bounds from being correct. A method to bound the mixing

time in terms of h+
2 (x) might give mixing in

τ = O

(∫ 1
2
+πmax

π0

dx

xh+
2 (x)2

)
,
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where π0 = minπ(v) and πmax = maxπ(v). This would give correct mixing time results

on a variety of Markov chains such as the line, binary hypercube, dumbbell, and products

of Markov chains. Also, for the geometric and inductive Markov chains considered in

the previous chapters this would likely give correct mixing time bounds (see Chapter 7).

Moreover, Theorems 2.1 and 2.2 – the mixing time bounds for conductance and average

conductance – would follow immediately because h+
2 (x) ≥ Φ(x).

6.4 Optimal bounds with a modified blocking conductance

In Section 6.2 blocking conductance was used to prove that the lazy random walk on the

binary hypercube {0, 1}n is mixing in time τ = O(n log3 n). Although this is near optimal,

there is still a gap of size log2 n between this bound and the correct τ = Θ(n log n). This

gap is the same size as the gap between our upper and lower bounds on Ψint, so it is quite

possible that blocking conductance can be used to prove the correct mixing time for this

Markov chain. At the moment we have been unable to show this either in the affirmative

or in the negative, but in this section we are able to show that a slightly weaker version of

blocking conductance can be used to prove the correct bound for this Markov chain. Our

main tool will be a compression method that builds on ideas of Bollobas and Leader.

Bollobas and Leader considered the binary hypercube (actually, the grid [k]n) and showed

that compressing sets A along the axes ei reduces the numbers of cut edges [BL91b] and

neighboring vertices [BL91a]. A similar argument, by compressing A and B simultaneously,

can be used to show that compression of a set A leads to a set A′ with smaller blocking

conductance. Repeated compression along the various axes will lead to a down-set A with

small blocking conductance. However, it is unclear how to reduce A to a canonical form,

as was done in the Bollobas and Leader results (lexicographic order [BL91b] and simplicial

order [BL91a]).

To see where the difficulty arises, consider the case when x = 1/2 and n is odd and use

exterior blocking conductance (Ψext(A)). The set A with the fewest cut edges is Ae = {x :

xn = 0}, and this set will have λ = 1
4 or equivalently there will be 2n−2 vertices in the

blocking set B. The set with the least neighboring vertices is Av = {x :
∑n

i=1 xi ≤ n−1
2 },
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and it’s blocking set B will have 1
2

(
n

(n+1)/2

) ¿ 2n−2 vertices in the blocking set. Therefore,

any compression method will need to not only compress from Av to Ae (or vice-versa), but

it will also need to adjust the sizes of the blocking sets B. It seems difficult to construct

such a compression.

This motivates a different approach to Blocking Conductance. In this section we look

at the proof of Theorem 3.2 and observe that the blocking conductance only needs to be

bounded for sets A of a certain form. For these sets we are able to compress “diagonally,”

leading to a fractional hamming ball as the worst case BCF.

In the search for an optimal BCF we delve into the proof of Theorem 3.2.

Lemma 6.2. Suppose the space G can be decomposed into a disjoint sum G =
∐

i∈I Si

where ∀x, y ∈ Si : g(x) = g(y). Then it suffices to show a BCF for I ′, I ′′ ⊂ I disjoint

(I ′ ∩ I ′′ = ∅), A =
∐

i∈I′ Si and B =
∐

i∈I′′ Si.

More simply, it suffices to bound φ(x) only for A and B disjoint unions of Si.

Proof. The proof of Theorem 3.2 uses φ(·) to bound Q(A,C) for some disjoint sets A and

C. The goal was to bound g(vi) − g(vj) where vi ∈ A has minimal g(vi) in A and vj ∈ C

has maximal g(vj) in C. But then, if vi ∈ Sk then ∀v′ ∈ Sk : g(v′) = g(vi), so in particular

we can assume that Sk ⊆ A and this does not effect the value of the smallest g(vi) in A.

Likewise, if vj ∈ S′k then we can assume S′k ⊆ C.

Corollary 6.3. Bounding blocking conductance for the binary hypercube reduces to consid-

ering the case when A and B are disjoint unions of Sk = {x :
∑n

i=1 xi = k}.

Proof. It is easy to see that the mixing time is bounded by the time from the worst starting

point.

The hypercube 2n is vertex transitive, so up to automorphism the distribution does not

depend on the starting point. Without loss assume the starting point is the origin 0.

We can define level sets Sk = {x : d(0, x) = k}. This follows from distance transitivity;

if d(0, x) = d(0, y) = k and g is an automorphism such that g(0) = 0, g(x) = y, then

unique arcs of length t from 0 to x get mapped to unique arcs of length t from 0 to y, and

conversely for g−1, so p(t)(x) = p(t)(y) for all t ≥ 0.
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To define our compression operators on these Sk we will need some additional notation.

Observe that a set A ⊂ G can be represented by an indicator function 1A, and that we can

define π(A), Q(A,Ac), etc. in terms of 1A, for example Q(A,Ac) =
∑

x∈A, y∈Ac(1A(x) −
1A(y))+ π(x)P(x, y). The definitions below will build on this by generalizing the indicator

1A(·) ∈ {0, 1} to a probability PA(·) ∈ [0, 1].

A fractional set A is given by PA(x) ∈ [0, 1], the probability that x ∈ A. If π is a

distribution on G then we can define π(A) in terms of PA(·), as well as cut edges and

boundary vertices, as given below. Other definitions, such as those in [BL91c] may be

suitable for other situations.

π(A) =
∑

x∈G

PA(x) π(x)

P∂A(x) = maxy∈Γ(x) (PA(y)− PA(x))+

Q(~e = {y, x}) = (PA(y)− PA(x))+

π(∂A) =
∑

x∈G

P∂A(x) π(x)

Q(A,Ac) =
∑

~e={y,x}∈G×G

Q(~e)π(y) P(y, x)

When there is a (fractional) blocking set B, then the definitions are the same except in

P∂A(x) and Q(~e = {y, x}) the PA(x) is replaced by PA(x) + PB(x). Notice all these def-

initions correspond to the regular definitions when A and B have no partial terms (i.e.

∀x : PA(x), PB(x) ∈ {0, 1}).
We define a fractional striped set A by giving αA

0 , αA
1 , . . . , αA

n ∈ [0, 1]; this defines a PA(·)
by

PA(x) = αA
k if |x| =

n∑

i=1

xi = k .

A fractional hamming ball [BL91c] Ak,α is given by αi<k = 1, αk = α, and αi>k = 0.

With these definitions we are ready to show a modified BCF for the binary hypercube.

We will work with exterior blocking conductance and will consider the set Bi as a blocking

set, by which we mean that defining C := Ac \ B then the minimal Q(A,C) occurs when

Q(A,Bi) is maximized, i.e. when Bi blocks the most flow from A.
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Theorem 6.4. The BCF for the binary hypercube reduces to the case of fractional hamming

balls Ak,α, with elements of the blocking set only at k or else also at k + 1 if α + αB
k = 1.

Proof. By the Corollary, A and B can be assumed to be fractional striped sets, where

αA
i∈I′ = 1, αB

i∈I′′ = 1, and both are 0 elsewhere.

First, assume bn
2 c /∈ A and ignore B. We show that fractional hamming balls have

minimal flow Q(A,Ac).

We now compress to a fractional hamming ball. Let M = max{i < n/2 : αA
i > 0} and

m = max{i < M : αA
i = 0}. Then let αA

m ← 1 and αA
M ← αA

M − (
n
m

)
/
(

n
M

)
, i.e. shift units

from M to m. Then ∆Q(A,C) ≤
(

n
m

) [(
m
n − n−m

n

)
+

(
M
n − n−M

n

)]
< 0. If αA

M <
(

n
m

)
/
(

n
M

)

then simply shift units of M−1 as well, and the same sort of computation shows ∆Q(A,C) < 0.

Repeat this process until no more compression is possible, i.e. only a fractional hamming

ball is remaining. Likewise, compress the i > n/2 upward to a second fractional hamming

ball.

Suppose the fractional hamming balls are Ak,α and Ak′,α′ (the second is centered at

(1, 1, . . . , 1)n). To combine the hamming balls, without loss assume π(Ak,α) ≥ π(Ak′,α′),

i.e. k > k′, or k = k′ and α ≥ α′. Then, as in the previous paragraph, increase αA
k

while decreasing αA
n−k′ and as before ∆Q(A,C) ≤ 0. Repeat until compressed into a single

fractional hamming ball.

Now, assume bn
2 c ∈ A. Then there is a component in the center, let m = max{i < n/2 :

αi = 0} and M = min{i > n/2 : αi = 0}. Without loss assume |n/2 −M | ≤ |n/2 −m|.
Then, as above increase αm while decreasing αM and again ∆Q(A,C) ≤ 0. Repeat until

bn
2 c /∈ A, then compress as above.

Consider blocking sets and the stage of compressing into two fractional hamming balls. If

αB
it+1

> 0 then let αB
M = ∆αA

M and have αB
it+1

decrease accordingly, i.e. replace compressed

units of A with units of B. Then

∆Q(A,C) ≤
(

n

m

)[(
m

n
− n−m

n

)
+

(
M

n
− n−M

n

)
+

(
n−M

n
− M

n

)]
≤ 0 .

Likewise, near m shift units from αB
m to αB

m−1 and the calculations work out similarly. If

αB
m−1 = 1 or αA

m−1 = 1 then leftover blocking units from αB
m can be distributed anywhere

as they are not needed, likewise at αB
M+1.
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The blocking set B in other stages of the compression work out similarly.

The problem is now reduced to a fractional hamming ball Ak,α with αB
k and αB

k+1 possibly

non-zero. Recall in the Lemma that A was increased in size and B decreased in order to

round to the nearest level sets Si. Decreasing Ak,α to π(Ak,α) = x and increasing B, to

restore both to their original sizes, can only decrease Q(A, C).

Theorem 6.5. The lazy random walk on the hypercube {0, 1}n satisfies

φ(x) ≥ 1
4n

log(1/x(1− x)) .

Proof. From Theorem 6.4 we can assume A is a fractional hamming ball Ak,α.

Let λ = 2−n 1
2

(
(1− α)

(
n

k−1

)
+ α

(
n
k

))
. Then 1

2 (1 − α)
(

n
k−1

)
term can be optimistically

thought of as blocking half the edges from Sk−1 to Sk, and similarly for
(
n
k

)
and Sk to Sk+1.

Then, the set B with π(B) ≤ λ blocks at most half of Q(A,Ac). Also, λ ≥ 1
4 π(∂intA),

because π(∂intA) ≤ π(Sk−1) + απ(Sk) and the 1/4 easily follows when α ≤ 1/2 or α > 1/2.

Then λQ(A,C) ≥ 1
8 π(∂intA) Q(A,Ac) and Talagrand’s inequality [Tal93] π(∂intA) Q(A,Ac) ≥

1
4 x2(1− x)2 log(1/x(1−x))

n gives the result.

We could, of course, have found a bound for Theorem 6.5 directly without reference to

[Tal93], however the form of the result in [Tal93] is ideal for the following corollary.

Corollary 6.4. The mixing time of the hypercube {0, 1}n is

τ = O(n log n)
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Chapter 7

Open Problems

Several open problems and conjectures are raised in this thesis.

Problem 7.1. In Chapter 4 the mixing time bounds for the Markov chain on the grid [k]n

and the one on linear extensions – using geometry with transition probability p to bound

mixing – gave results Θ(p log(1/p)) from the correct bounds. Perhaps Theorem 4.9 can be

strengthened to

τ = O

(
p log(1/p)

Φ2
g

)
and ρ = Ω

(
Φ2

g/p
)

.

One reason to believe this holds is that geometric Markov chains have a lot of the symmetry

of product Markov chains. In a d term product Markov chain the mixing time increases by

O(d log d), but in the geometric problems 1/Φ2 overstates this and increases the mixing time

by O(d2). In these problems, p = Ω(1/d) so p log(1/p) would correct this overstatement.

Problem 7.2. As mentioned in Chapter 5, Jerrum and Son [JS02] recently studied balanced

matroids by using an inductive argument on the second eigenvalue, and similarly on the

log-Sobolev constant, to show that

λ ≥ 1/mn and τ = O(mn2 log m)

ρ ≥ 1/mn and τ = O(mn (log n + log log m)) .

These are of the correct orders, as discussed at the end of Chapter 5. Our question is,

is it possible to prove this mixing time bound using blocking conductance? Problem 7.3
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below suggests a variation on blocking conductance that we expect can be used to obtain

the correct mixing time bounds for this problem.

Problem 7.3. In Chapter 6, in both the hypercube example and the direct product exam-

ple, only the log2(1/Pmin) term kept the mixing time bounds from being correct. A method

to bound the mixing time directly in terms of h+
2 (x) might give mixing in

τ = O

(∫ 1
2
+πmax

π0

dx

x h+
2 (x)2

)
(7.1)

where π0 = minπ(v) and πmax = maxπ(v). This would give correct mixing time bounds

on a variety of Markov chains such as the line, hypercube, barbell, and products of Markov

chains. It would also show that the quantity β̃2
p(K) gives mixing time bounds as strong as

the log-Sobolev constant ρ.

This may also solve the geometry and matroid problems. The difference in the definitions

of Φ(x) and h+
2 (x) is in the transition probability P versus

√
P. In both the geometric and

balanced matroid problems (Chapters 4 and 5), it was found that Φ(x) ∝ p log(1/x).

This says if A ⊂ K and π(A) = x then the average P(α,Ac) for α ∈ A is proportional

to p log(1/x). If the distribution is sufficiently concentrated around this average then it

can be expected that Φ(x) ∝ p log(1/x) will become h+
2 (x) ∝

√
p log(1/x). This would

improve the mixing times by O((p log log(1/π0))−1), and for both the geometric and matroid

problems it would give optimal mixing time results.

Regardless of whether (7.1) is correct, Theorem 6.3 shows that h+
2 (x)2 and φ(x) are

nearly of the same order, so the heuristics in the previous paragraph suggest that blocking

conductance φ(x) may in fact be sufficient for proving optimal bounds on all these examples.

Problem 7.4. It would be nice if the spectral gap λ could be bounded by blocking con-

ductance. One possible form is

λ = Ω




[∫ 1/2+πmax

π0

dx

φ(x)

]−1

 .

A heuristic argument for this form is that removing the 1/x term in the bound on τ should

roughly correspond to removing the log(1/π0) in the upper bound τ ≤ λ−1 log(1/π0), and

hence the upper bound on τ may become an upper (or bound) on λ.

79



This form could be used to show some classical results. For example, letting φ(x) = 1
4 Φ2

would give λ = Ω(Φ2). On the other extreme, if an upper bound on λ were of the same

form then when φ(x) hits the upper bound Ψext(A) ≤ 4Φ(A) in Theorem 6.3 for all A, then

we can let φ(x) = Φ and obtain λ = O(Φ). It seems too much to hope that λ be bounded

both above and below in this way, but these results do show the possibility that at least

one of the bounds may be correct.
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