92.445/545 Partial Differential Equations Spring 2013

Homework Assignment $# 4$ Solutions

1. (Pinchover and Rubinstein problem 3.1) Find the canonical form of the following pde. Be sure to show the change of coordinates that reduces the pde to canonical form.

$$
u_{xx} - 6u_{xy} + 9u_{yy} = xy^2
$$

Recall that the second order linear pde in 2 independent variables $au_{xx} + 2bu_{xy} + cu_{yy} + du_x + eu_y + fu = g$ is hyperbolic if $b^2 - ac > 0$, parabolic if $b^2 - ac = 0$, and elliptic if $b^2 - ac < 0$. Here $a = 1, 2b = -6$, and $c = 9$, so $b^2 - ac = (-3)^2 - 1(9) = 0$. Therefore, this pde is parabolic in the entire xy plane.

As explained on page 69 of the textbook, the canonical variable η satisfies the equation $a\eta_x + b\eta_y = 0$ and ξ can be chosen to be any function which makes the Jacobian $\xi_x \eta_y - \xi_y \eta_x$ nonzero. In this problem, $a = 1$ and $b = -3$, so η must satisfy the equation $\eta_x - 3\eta_y = 0$. Solving this equation by the method of characteristics, we find that $\eta = f(3x + y)$. For simplicity, we take $\eta = 3x + y$. If we just take $\xi = x$, the Jacobian of the transformation becomes $\xi_x \eta_y - \xi_y \eta_x = (1)(1) - (0)(3) = 1 \neq 0$. We can therefore take $\left|\xi = x\right|$ and $\left|\eta = 3x + y\right|$. With this choice, we obtain

$$
u_x = w_{\xi} \xi_x + w_{\eta} \eta_x = w_{\xi} + 3w_{\eta}
$$

\n
$$
u_y = w_{\xi} \xi_y + w_{\eta} \eta_y = 0 \cdot w_{\xi} + w_{\eta} = w_{\eta}
$$

\n
$$
u_{xx} = [w_{\xi\xi} \xi_x + w_{\xi\eta} \eta_x] + 3 [w_{\eta\xi} \xi_x + w_{\eta\eta} \eta_x] = w_{\xi\xi} + 6w_{\xi\eta} + 9w_{\eta\eta}
$$

\n
$$
u_{xy} = [w_{\xi\xi} \xi_y + w_{\xi\eta} \eta_y] + 3 [w_{\eta\xi} \xi_y + w_{\eta\eta} \eta_y] = w_{\xi\eta} + 3w_{\eta\eta}
$$

\n
$$
u_{yy} = [w_{\eta\xi} \xi_y + w_{\eta\eta} \eta_y] = w_{\eta\eta}
$$

Therefore, the given pde $u_{xx} - 6u_{xy} + 9u_{yy} = xy^2$ becomes $[w_{\xi\xi} + 6w_{\xi\eta} + 9w_{\eta\eta}] - 6[w_{\xi\eta} + 3w_{\eta\eta}] + 9[w_{\eta\eta}] = \xi(\eta - 3\xi)^2$, or $w_{\xi\xi} = \xi(\eta - 3\xi)^2$ You might get a different right-hand side if you chose a different transformation.

2. (Pinchover and Rubinstein problem 5.1) Solve the following IBVP.

$$
u_t = 17u_{xx} \qquad \text{on } 0 < x < \pi, t > 0
$$

\n
$$
u(0, t) = 0 \qquad t \ge 0
$$

\n
$$
u(\pi, t) = 0 \qquad t \ge 0
$$

\n
$$
u(x, 0) = \begin{cases} 0 & 0 \le x \le \pi/2 \\ 2 & \pi/2 < x \le \pi \end{cases}
$$

As discussed in class and as shown on page 104 of Pinchover and Rubinstein, the solution of the heat equation with thermal diffusivity k over the interval $0 < x < L$ with $u(0, t) = 0$, $u(L, t) = 0$, and $u(x, 0) = f(x)$ can be written as

$$
u(x,t) = \sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi x}{L}\right) e^{-k\pi^2 n^2 t/L^2}
$$

where

$$
B_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx
$$

In this problem $k = 17$ and $L = \pi$, so we have

$$
B_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin\left(\frac{n\pi x}{\pi}\right) dx = \frac{2}{\pi} \left[\int_0^{\pi/2} 0 \cdot \sin(nx) dx + \int_{\pi/2}^{\pi} 2 \cdot \sin(nx) dx \right] = -\frac{4}{n\pi} \left[\cos(n\pi) - \cos\left(\frac{n\pi}{2}\right) \right]
$$

Because $\cos(n\pi) = (-1)^n$, this gives us $u(x, t) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \left[\cos\left(\frac{n\pi}{2}\right) - (-1)^n \right] \sin(nx) e^{-17n^2 t}$

3. (Pinchover and Rubinstein problem 5.4) Solve the following IBVP. Hint: Use a trig identity to replace $\sin^3(x)$ by an equivalent expression.

$$
u_{tt} = u_{xx} \qquad \text{on } 0 < x < \pi, t > 0
$$

\n
$$
u(0, t) = 0 \qquad t \ge 0
$$

\n
$$
u(\pi, t) = 0 \qquad t \ge 0
$$

\n
$$
u(x, 0) = \sin^3(x) \qquad 0 \le x \le \pi
$$

\n
$$
u_t(x, 0) = \sin(2x) \qquad 0 \le x \le \pi
$$

As discussed in class, the solution of the wave equation with wave speed c over the interval $0 < x < L$ with $u(0, t) = 0$, $u(L, t) = 0$, $u(x, 0) = f(x)$, and $u_t(x, 0) = g(x)$ can be written as

$$
u(x,t) = \sum_{n=1}^{\infty} \left[A_n \cos\left(\frac{\pi nct}{L}\right) + B_n \sin\left(\frac{\pi nct}{L}\right) \right] \sin\left(\frac{n\pi x}{L}\right)
$$

where

$$
A_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx
$$

are the coefficients in the Fourier sine series expansion of f and

$$
B_n = \frac{2}{\pi n c} \int_0^L g(x) \sin\left(\frac{n\pi x}{L}\right) dx
$$

are $\frac{L}{\sqrt{2}}$ $\frac{1}{\pi n c}$ times the Fourier sine series coefficients of g. $\sin^3(x) = \sin(x)\sin^2(x) = \sin(x)\left[\frac{1}{2}\right]$ $\frac{1}{2}$ 1 $\frac{1}{2} \cos(2x) = \frac{1}{2}$ $\frac{1}{2}\sin(x) - \frac{1}{2}$ $\frac{1}{2}\sin(x)\cos(2x)$ $=\frac{1}{2}$ $\frac{1}{2}\sin(x) - \frac{1}{2}$ 2 \int 1 $\frac{1}{2} \left[\sin(x + 2x) + \sin(x - 2x) \right]$ = $\frac{3}{4}$ $\frac{3}{4}\sin(x) - \frac{1}{4}$ $\frac{1}{4}\sin(3x)$

Therefore, the Fourier sine series for $f(x) = \sin^3(x)$ has only 2 nonzero terms: $A_1 = \frac{3}{4}$ $\frac{3}{4}$ and $A_3 = -\frac{1}{4}$ $\frac{1}{4}$.

The Fourier sine series for $g(x) = \sin(2x)$ has only one nonzero term, with coefficient equal to 1, corresponding to $n = 2$.

In this problem, $c = 1$ and $L = \pi$, so we have $B_2 = \frac{\pi}{\pi(2)(1)} \cdot 1 = \frac{1}{2}$ 2

Therefore,

$$
u(x,t) = \sum_{n=1}^{\infty} \left[A_n \cos\left(\frac{\pi nct}{L}\right) + B_n \sin\left(\frac{\pi nct}{L}\right) \right] \sin\left(\frac{n\pi x}{L}\right)
$$

=
$$
\sum_{n=1}^{\infty} \left[A_n \cos\left(nt\right) + B_n \sin\left(nt\right) \right] \sin\left(nx\right)
$$

=
$$
A_1 \cos(t) \sin(x) + B_2 \sin(2t) \sin(2x) + A_3 \cos(3t) \sin(3x)
$$

so
$$
u(x,t) = \frac{3}{4}\cos(t)\sin(x) + \frac{1}{2}\sin(2t)\sin(2x) - \frac{1}{4}\cos(3t)\sin(3x)
$$

FOR STUDENTS ENROLLED IN 92.545.

- 4. (Pinchover and Rubinstein problem 3.12) Consider the pde $u_{xx} + y u_{yy} = 0$.
- a. Find the domain on which the given pde is elliptic.

Recall that the second order linear pde in 2 independent variables $au_{xx} + 2bu_{xy} + cu_{yy} + du_x + eu_y + fu = g$ is hyperbolic if $b^2 - ac > 0$, parabolic if $b^2 - ac = 0$, and elliptic if $b^2 - ac < 0$. Here $a = 1$, $2b = 0$, and $c = y$, so $b^2 - ac = 0^2 - 1(y) = -y$. Therefore, this pde is elliptic in the upper half-plane $y > 0$.

b. Find the canonical form of the given pde on the domain you found in part a.

We will use the change of variables given by $\xi = \Re(\phi)$ and $\eta = \Im(\phi)$, where ϕ is a solution of

$$
a\phi_x + \left(b + i\sqrt{ac - b^2}\right)\phi_y = 0
$$

Here $a = 1, b = 0$, and $c = y$, so we need a solution of $\phi_x + i\sqrt{y}\phi_y = 0$. Suppose the initial data are given on the positive y axis, so the initial data curve Γ is parameterized by $x = 0$, $y = s$. The characteristic curves satisfy the equations $\frac{dx}{dt} = 1$, $\frac{dy}{dt} = i\sqrt{y}$. $\frac{dx}{dt} = 1$, $x = 0$ on $t = 0 \Rightarrow x = t$. $\frac{dy}{dt} = i\sqrt{y}$, $y = s$ on $t = 0 \Rightarrow y^{-1/2} dy = i dt \Rightarrow 2y^{1/2} = it + 2s^{1/2}$. The pde for ϕ tells us that $\frac{d\phi}{dt} = 0$ on characteristics, so $\phi = f(s)$. For convenience we take $f(s) = 2s^{1/2}$, so $\phi = 2s^{1/2} = 2y^{1/2} - it = 2y^{1/2} - ix$. Then $\xi = \Re(\phi) = 2y^{1/2}$ and $\eta = \Im(\phi) = -x$. With this choice, we obtain

$$
u_x = w_{\xi} \xi_x + w_{\eta} \eta_x = -w_{\eta}
$$

\n
$$
u_y = w_{\xi} \xi_y + w_{\eta} \eta_y = y^{-1/2} w_{\xi}
$$

\n
$$
u_{xx} = -[w_{\eta\xi} \xi_x + w_{\eta\eta} \eta_x] = w_{\eta\eta}
$$

\n
$$
u_{yy} = -\frac{1}{2} y^{-3/2} w_{\xi} + y^{-1/2} [w_{\xi\xi} \xi_y + w_{\xi\eta} \eta_y] = -\frac{1}{2} y^{-3/2} w_{\xi} + y^{-1} w_{\xi\xi}
$$

Therefore, the given pde $u_{xx} + yu_{yy} = 0$ becomes $w_{\eta\eta} + y$ − 1 $\frac{1}{2}y^{-3/2}w_{\xi} + y^{-1}w_{\xi\xi} = 0$, or

$$
w_{\xi\xi} + w_{\eta\eta} - \frac{1}{\xi}w_{\xi} = 0
$$